Structure of the minimal automaton of a numeration language
&
State complexity of testing divisibility

É. Charlier N. Rampersad M. Rigo L. Waxweiler

Département de mathématiques
Université de Liège

Journées montoises d’informatique théorique 2010
Amiens, September 6
An example first
The set $2\mathbb{N}$ of even integers is \textit{F-recognizable} or \textit{F-automatic}, i.e., the language $\text{rep}_F(2\mathbb{N}) = \{ \varepsilon, 10, 101, 1001, 10000, \ldots \}$ is accepted by some finite automaton.

Remark (in terms of the Chomsky hierarchy)

With respect to the Fibonacci system, \textit{any} F-recognizable set can be considered as a “particularly simple” set of integers.

We get a similar definition for \textit{other numeration systems}.
A *numeration system* is an increasing sequence of integers $U = (U_n)_{n \geq 0}$ such that

- $U_0 = 1$ and
- $C_U := \sup_{n \geq 0} \left\lceil \frac{U_{n+1}}{U_n} \right\rceil < +\infty$.

U is *linear* if it satisfies a linear recurrence relation over \mathbb{Z}.

Example

Let $(F_n)_{n \geq 0}$ be the Fibonacci sequence with $F_0 = 1$ and $F_1 = 2$.

- Let $n \in \mathbb{N}$. A word $w = w_{\ell-1} \cdots w_0$ over \mathbb{N} represents n if

\[
\sum_{i=0}^{\ell-1} w_i U_i = n.
\]
A representation $w = w_{\ell-1} \cdots w_0$ of an integer is **greedy** if
\[
\forall j, \sum_{i=0}^{j-1} w_i U_i < U_j.
\]

In that case, $w \in \{0, 1, \ldots, C_U - 1\}^*$.

$\text{rep}_U(n)$ is the greedy representation of n with $w_{\ell-1} \neq 0$.

$X \subseteq \mathbb{N}$ U-recognizable \iff $\text{rep}_U(X)$ is accepted by a finite automaton.

$\text{rep}_U(\mathbb{N})$ is the **numeration language**.
The Fibonacci numeration system

\[U_{n+2} = U_{n+1} + U_n \ (U_0 = 1, \ U_1 = 2) \]

\[\mathcal{A}_U \] accepts all words that do not contain 11.
The ℓ-bonacci numeration system

- $U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \cdots + U_n$
- $U_i = 2^i$, $i \in \{0, \ldots, \ell - 1\}$
- A_U accepts all words that do not contain 1^ℓ.
Motivations

- Cobham’s theorem for integer base systems (1969) shows that **recognizability depends on the choice of the base.** Only **ultimately periodic sets** are recognizable in all bases.
- Introduction of non-standard numeration systems and study \(U \)-recognizable sets.
- If \(\mathbb{N} \) is \(U \)-recognizable, then \(U \) is **linear** and any ultimately periodic set is \(U \)-recognizable.

Motivations

What is the “best automaton” we can get?

DFAs accepting the binary representations of $4N + 3$.

Question

The general algorithm doesn’t provide a minimal automaton. What is the state complexity of $0^* \text{rep}_U(pN + r)$?
Background (I)

Theorem

If L accepted by an n-state DFA, then the minimal automaton accepting the language of words of L indexed by the multiples of m (w.r.t. the radix order) has at most nm^n states.

For $x, y \in \mathbb{N}$, we have $x < y \iff \text{rep}_U(x) <_{\text{rad}} \text{rep}_U(y)$.

In particular, if $\text{rep}_U(\mathbb{N})$ is accepted by an n-state DFA, then the minimal automaton accepting $\text{rep}_U(m\mathbb{N})$ has at most nm^n states.
Alexeev’s result

Let $b, m \geq 2$. Let N, M be such that $b^N < m \leq b^{N+1}$ and

$$(m, 1) < (m, b) < \cdots < (m, b^M) = (m, b^{M+1}) = (m, b^{M+2}) = \cdots .$$

The minimal automaton accepting the base b representations of the multiples of m has exactly

$$\frac{m}{(m, b^{N+1})} + \inf\{N, M-1\} \sum_{t=0}^{\infty} \frac{b^t}{(m, b^t)}$$

states.

Honkala’s decision procedure

Given any finite automaton recognizing a set X of integers written in base b, it is decidable whether X is ultimately periodic.

Consider a linear numeration system U such that \mathbb{N} is U-recognizable. How many states does the minimal automaton recognizing $0^* \text{rep}_U(m\mathbb{N})$ contain?

1. Give upper/lower bounds?
2. Study special cases, e.g., Fibonacci numeration system?
3. Get information on the minimal automaton A_U recognizing $0^* \text{rep}_U(\mathbb{N})$?
Study of the state complexity of $0^* \text{rep}_U(m\mathbb{N})$
The Hankel matrix

Let $U = (U_n)_{n \geq 0}$ be a linear numeration system.

For $t \geq 1$ define

$$H_t := \begin{pmatrix} U_0 & U_1 & \cdots & U_{t-1} \\ U_1 & U_2 & \cdots & U_t \\ \vdots & \vdots & \ddots & \vdots \\ U_{t-1} & U_t & \cdots & U_{2t-2} \end{pmatrix}.$$

For $m \geq 2$, define $k_{U,m}$ to be the largest t such that $\det H_t \not\equiv 0 \pmod{m}$.
Calculating $k_{U,m}$

- $U_{n+2} = 2U_{n+1} + U_n$, $(U_0, U_1) = (1, 3)$
- $(U_n)_{n \geq 0} = 1, 3, 7, 17, 41, 99, 239, \ldots$
- $(U_n \mod 2)_{n \geq 0}$ is constant and trivially satisfies the recurrence relation $U_{n+1} = U_n$ with $U_0 = 1$.
- Hence $k_{U,2} = 1$.
- Modulo 4 we find: $(U_n \mod 4)_{n \geq 0} = 1, 3, 3, 1, 1, 3, 3, \ldots$
- $\det \begin{pmatrix} 1 & 3 \\ 3 & 3 \end{pmatrix} \equiv 2 \pmod{4}$ and $\forall t \geq 2$, $\det H_t \equiv 0 \pmod{4}$.
- Hence $k_{U,4} = 2$.
A system of linear congruences

Let $k = k_{U,m}$.

Let $\mathbf{x} = (x_1, \ldots, x_k)$.

Let $S_{U,m}$ denote the number of k-tuples \mathbf{b} in $\{0, \ldots, m - 1\}^k$ such that the system

$$H_k \mathbf{x} \equiv \mathbf{b} \pmod{m}$$

has at least one solution.

$S_{U,m} \leq m^k$.
Calculating $S_{U,m}$

- $U_{n+2} = 2U_{n+1} + U_n$, $(U_0, U_1) = (1, 3)$
- $(U_n)_{n \geq 0} = 1, 3, 7, 17, 41, 99, 239, \ldots$
- Consider the system

\[
\begin{align*}
1x_1 + 3x_2 & \equiv b_1 \pmod{4} \\
3x_1 + 7x_2 & \equiv b_2 \pmod{4}
\end{align*}
\]

- $2x_1 \equiv b_2 - b_1 \pmod{4}$
- For each value of b_1 there are at most 2 values for b_2.
- Hence $S_{U,4} = 8$.

Properties of the automata we consider

(H.1) \mathcal{A}_U has a single strongly connected component C_U.

(H.2) For all states p, q in C_U with $p \neq q$, there exists a word x_{pq} such that $\delta_U(p, x_{pq}) \in C_U$ and $\delta_U(q, x_{pq}) \notin C_U$, or vice-versa.
Theorem

Let $m \geq 2$ be an integer. Let $U = (U_n)_{n \geq 0}$ be a linear numeration system such that

(a) \mathbb{N} is U-recognizable and A_U satisfies (H.1) and (H.2),

(b) $(U_n \mod m)_{n \geq 0}$ is purely periodic.

The number of states of the trim minimal automaton accepting $0^* \text{rep}_U(m\mathbb{N})$ from which infinitely many words are accepted is

$$|C_U|S_{U,m}.$$
Corollary

If U satisfies the conditions of the previous theorem and A_U is strongly connected, then the number of states of the trim minimal automaton accepting $0^* \text{rep}_U(m\mathbb{N})$ is $|C_U|S_{U,m}$.
Result for the ℓ-bonacci system

Corollary

For U the ℓ-bonacci numeration system, the number of states of the trim minimal automaton accepting $0^* \text{rep}_U(m\mathbb{N})$ is ℓm^ℓ.
A lower bound

Theorem

Let U be any numeration system (not necessarily linear). The number of states of $A_{U,m}$ is at least $|\text{rep}_U(m)|$.
Structure of the minimal automaton A_U recognizing $0^* \text{rep}_U(\mathbb{N})$
Let U be a linear numeration system such that $\text{rep}_U(\mathbb{N})$ is regular.

(i) The automaton A_U has a non-trivial strongly connected component C_U containing the initial state.

(ii) If p is a state in C_U, then there exists $N \in \mathbb{N}$ such that $\delta_U(p, 0^n) = q_{U,0}$ for all $n \geq N$. In particular, one cannot leave C_U by reading a 0.
The ℓ-bonacci numeration system

- $U_{n+\ell} = U_{n+\ell-1} + U_{n+\ell-2} + \cdots + U_n$
- $U_i = 2^i$, $i \in \{0, \ldots, \ell - 1\}$
- A_U accepts all words that do not contain 1^ℓ.
Dominant root condition

- U satisfies the *dominant root condition* if
 \[\lim_{n \to +\infty} \frac{U_{n+1}}{U_n} = \beta \]
 for some real $\beta > 1$.
- β is the *dominant root* of the recurrence.
- E.g., Fibonacci: dominant root $\beta = (1 + \sqrt{5})/2$

Theorem (cont’d.)

Suppose U has a dominant root $\beta > 1$.

- If A_U has more than one non-trivial strongly connected component, then any such component other than C_U is a cycle all of whose edges are labeled 0.
- If $\lim_{n \to +\infty} \frac{U_{n+1}}{U_n} = \beta^-$, then there is only one non-trivial strongly connected component.
An example with two components

- Let $t \geq 1$.
- Let $U_0 = 1$, $U_{tn+1} = 2U_{tn} + 1$, and $U_{tn+r} = 2U_{tn+r-1}$, for $1 < r \leq t$.
- E.g., for $t = 2$ we have $U = (1, 3, 6, 13, 26, 53, \ldots)$.
- Then $0^* \text{rep}_U(\mathbb{N}) = \{0, 1\}^* \cup \{0, 1\}^* 2(0^t)^*$.
- The second component is a cycle of t 0's.
If U is a linear numeration system has a dominant root β and if $\text{rep}_U(\mathbb{N})$ is regular, then β is a Parry number.

With any Parry number β is associated a canonical finite automaton A_β.

We will study the relationship between A_U and A_β.

An example of the automaton \mathcal{A}_β

- Let β be the largest root of $X^3 - 2X^2 - 1$.
- $d_\beta(1) = 2010\omega$ and $d^*_\beta(1) = (200)\omega$.
- This automaton also accepts $\text{rep}_U(\mathbb{N})$ for U defined by $U_{n+3} = 2U_{n+2} + U_n$, $(U_0, U_1, U_2) = (1, 3, 7)$.
- $\mathcal{A}_U = \mathcal{A}_\beta$
Bertrand numeration systems

- **Bertrand numeration system**: w is in $\text{rep}_U(\mathbb{N})$ if and only if $w0$ is in $\text{rep}_U(\mathbb{N})$.
- E.g., the ℓ-bonacci system is Bertrand.
A non-Bertrand system

- $U_{n+2} = U_{n+1} + U_n$, $(U_0 = 1, U_1 = 3)$
- $(U_n)_{n \geq 0} = 1, 3, 4, 7, 11, 18, 29, 47, \ldots$
- 2 is a greedy representation but 20 is not.
Theorem (Bertrand)

A system U is Bertrand if and only if there is a $\beta > 1$ such that

$$0^* \text{rep}_U(\mathbb{N}) = \text{Fact}(D_\beta).$$

Moreover, the system is derived from the β-development of 1.

- If β is a Parry number, the system is linear and we have a minimal finite automaton A_β accepting $\text{Fact}(D_\beta)$.
- Consequently, $\text{rep}_U(\mathbb{N})$ is regular and $A_U = A_\beta$.
Applying our state complexity result to the Bertrand systems

Proposition

Let U be the Bertrand numeration system associated with a non-integer Parry number $\beta > 1$. The set \mathbb{N} is U-recognizable and the trim minimal automaton A_U of $0^* \text{rep}_U(\mathbb{N})$ fulfills properties (H.1) and (H.2).

Our state complexity result thus applies to the class of Bertrand numeration systems.
Let β be the largest root of $X^3 - 2X^2 - 1$.

$d_\beta(1) = 2010\omega$ and $d_\beta^*(1) = (200)^\omega$.

This automaton accepts $\text{rep}_U(\mathbb{N})$ for U defined by $U_{n+3} = 2U_{n+2} + U_n$, $(U_0, U_1, U_2) = (1, 3, 7)$.

$A_U = A_\beta$
Changing the initial conditions

- $U_{n+3} = 2U_{n+2} + U_n, (U_0, U_1, U_2) = (1, 3, 7)$
- We change the initial values to $(U_0, U_1, U_2) = (1, 5, 6)$.
- $A_U \neq A_\beta$
Theorem (cont’d.)

Suppose U has a dominant root $\beta > 1$. There is a morphism of automata Φ from C_U to A_β.

Φ maps the states of C_U onto the states of A_β so that

- $\Phi(q_{U,0}) = q_{\beta,0},$
- for all states q and all letters σ such that q and $\delta_U(q, \sigma)$ are in C_U, we have $\Phi(\delta_U(q, \sigma)) = \delta_\beta(\Phi(q), \sigma)$.
Other results

- When U has a dominant root $\beta > 1$, we can say more.
- E.g., if A_U has more than one non-trivial strongly connected component, then $d_\beta(1)$ is finite.
- We can also give sufficient conditions for A_U to have more than one non-trivial strongly connected component.
- In addition, we can give an upper bound on the number of non-trivial strongly connected components.
- When U has no dominant root, the situation is more complicated.
Further work

- Analyze the structure of A_U for systems with no dominant root.
- Remove the assumption that $(U_n \mod m)_{n \geq 0}$ is purely periodic in the state complexity result.
- Big open problem: Given an automaton accepting $\text{rep}_U(X)$, is it decidable whether X is an ultimately periodic set?