CHAPITRE 6. LE LANGAGE SQL 65

Chapitre 6

Le langage SQL

Sommaire

6.1 RequétessimplesSQL
6.1.1 Sélectionssimples
6.1.2 LacClaus&HERE vt it
6.1.3 Valeursnulles,

6.2 Requétes sur plusieurs tables
6.21 JOINMUIES

6.2.2 Union, intersection etdifférence 71
6.3 Requétesimbriquées 72
6.3.1 Conditions portantsurdesrelations 72
6.3.2 Sous-requétescorrellées 74
6.4 AQrégration 74
6.4.1 Fonctionsd'agrégation 74
6.42 Laclaus@ROUP BY i vttt 75
6.43 Laclaus®AVINGttt 76
6.5 MiSES-a-jour 76
6.5.1 Insertion 76
6.5.2 Destruction 76
6.5.3 Modification. 77
6.6 EXErciCes 7

Ce chapitre présente le langage SQL d'interrogation et de manipulation de données (insertion, mise-
a-jour, destruction). La syntaxe est celle de la norme SQL2, implantée plus ou moins complétement dans
la plupart des principaux SGBDR. Certaines fonctionnalitégders par exemple) sont en cours de nor-
malisation dans SQL3, mais existent déja dans quelques systémes en raison de leur importance. Ils seront
présentés brievement.

SQL est un langageéclaratifqui permet d’interroger une base de données sans se soucier de la re-
présentation interne (physique) des données, dedeatitation, des chemins d'acces ou des algorithmes
nécessaires. A ce titre il s'adresse a une large communauté d'utilisateurs potentiels (pas seulement des
informaticiens) et constitue un des atouts les plus spectaculaires (et le plus connu) des SGBDR. On peut
I'utiliser de maniére interactive, maégalement en assotizn avec des interfaces graphiques, des outils
dereportingou, trées généralement, des langages de programmation.

Ce dernier aspect est trés important en pratique car SQL ne permet pas de faire de la programmation
au sens courant du terme et doit donc étre associé avec un langage comme le C, le COBOL ou JAVA pour
réaliser des traitements complexes accédant a use ¢ données. Linterface de SQL et du langage C
sera présentée dans le chapitre 8.

Philippe Rigaux (rigaux@lIri.fr\Cours de bases de données, 2003

6.1. REQUETES SIMPLES SQL 66

6.1 Requétes simples SQL

Dans tout ce chapitre on va prendre I'exemple de &i{@) base de données présentée dans le chapitre
sur I'algebre.

6.1.1 Sélections simples

Commengons par les requétes les plus simples: la figure 5.1 montre une instance de la base pour les
relationsStation etActivite. Premiére requéte: on souhaite extraire de la base le nom de toutes les
stations se trouvant aux Antilles.

SELECT nomStation
FROM Station
WHERE region = ‘Antilles’

Ce premier exemple montre la structure de base d'une requéte SQL, avec les trois SELEBET,
FROM et WHERE.

— FROM indigue la (ou les) tables dans lesquelles on trouve les attributs utiles a la requéte. Un attribut
peut étre 'utile’ de deux maniéres (non exclesly: (1) on souhaite afficher son contenu, (2) on
souhaite qu'il ait une valeur particuliére (une constante ou la valeur d’'un autre attribut).

— SELECT indique la liste des attributs constituant le résultat.

— WHERE indique les conditions que doivent satisfaire les n-uplets de la base pour faire partie du
résultat.

Dans I'exemple précédent, I'interétation est simple : on parart les n-uplets de la relatidtation.
Pour chaque n-uplet, si l'attribetegion a pour valeur 'Antilles’, on place l'attributomStat ion dans
le résultat. On obtient donc le résultat :

nomStation
Venusa
Santalba

Le résultat d'un ordre SQL est toujours une relation (une table) dont les attributs sont ceux spécifiés
dans la claussELECT. On peut donc considérer en premiéere approche ce résultat comme un 'découpage’,
horizontal et vertical, de la table indiqguée dang#®M, similaire a une utilisation combinée de la sélection
et de la projection en algébre relationnelle. En fait on dispose d’un peu plus de liberté que cela. On peut:

— Renommer les attributs
— Appliquer des fonctions aux valeurs de chaque tuple.
— Introduire des constantes.

Les fonctions applicables aux valeurs des attsksont par exemple les opérations arithmétiques (
*, ...) pour les attributs numériques ou des manipataide chaine de caractéres (concaténation, sous-
chaines, mise en majuscule, ...). Il n’existe pasidene mais la requéte suivante devrait fonctionner sur
tous les systemes: on convertit le prix des activités en euros et on affiche le cours de I'euro avec chaque
tuple.

SELECT libelle, prix / 6.56, ’'Cours de l’euro = ', 6.56
FROM Activite
WHERE nomStation = ’Santalba’

1. Attention, ce n’est pas forcément ainsi que la requétex@stutéear le systeme.

CHAPITRE 6. LE LANGAGE SQL 67

Ce quidonne le résultat:

‘libelle |prix / 6.56 |’Cours de l'euro =’ '6.56"
‘ Kayac | 7.62 | 'Cours de l’euro =’ ‘ 6.56

Renommage

Les noms des attributs sont par défaut ceux indiqués dans la daaseT, méme quand il y a des
expressions complexes. Pour renommer les attributs, on utilise le mas-clé

SELECT libelle, prix / 6.56 AS prixEnEuros,

'Cours de l’euro = ', 6.56 AS cours
FROM Activite
WHERE nomStation = ’Santalba’

On obtient alors:

'Cours de l’euro =' ‘cours‘
‘Cours de l’euro =’ | 6.56 |

|1ibe11e ‘prixEnEuros
[Kayac | 7.69

Remarque: Sur certains systémes, le mot-&l¢ est optionnel.

Doublons

Lintroduction de fonctions permet d'aller au-dela de qui est possible en algébre relationnelle. Il
existe une autre différence, plus subtile : SQL permet I'existence de doublons dans les tables (il ne s'agit
donc pas d’ensemble au sens strict du terme). égifipation de clés permet d’éviter les doublons dans
les relations stockées, mais il peuvent apparaitre dans le résultat d’'une requéte. Exemple:

SELECT libelle
FROM Activite

donnera autant de lignes dans le résultat que dans laxablevite.

libelle
Voile
Plongee
Plongee
Ski
Piscine
Kayac

Pour éviter d'obtenir deux tuples identiques, on peut utiliser le mabTErINCT.

SELECT DISTINCT libelle
FROM Activite

Attention : I'élimination des doublons peut étre une opération colteuse.

Tri du résultat

Il est possible de trier le résultat d’'un requéte avec la cla®EER BY suivie de la liste des attributs
servant de critére au tri. Exemple:

SELECT *
FROM Station
ORDER BY tarif, nomStation

Philippe Rigaux (rigaux@lIri.fr\Cours de bases de données, 2003

6.1. REQUETES SIMPLES SQL 68

trie, en ordre ascendant, les stations par leur tarif, puis, pour un méme tarif, présente les stations selon
I'ordre lexicographique. Pour trier en ordre descendant, on ajoute le mDEEIé apres la liste des attri-
buts.

Voici maintenant la plus simple des requétes SQL : elle consiste a afficher I'intégralité d’'une table. Pour
avoir toutes les lignes on omet la claus@ERE, et pour avoir toutes les colonnes, on peut au choix lister
tous les attributs ou utiliser le caractére "' qui a la méme signification.

SELECT *
FROM Station

6.1.2 LaclauseWHERE

Dans la claus@HERE, on spécifie une condition booléenne pattaur les attributs des relations du
FROM. On utilise pour cela de maniéere standard\ep, le OR, le NOT et les parentheéses pour changer
I'ordre de priorité des opérateurs booléens. Par exemple:

SELECT nomStation, libelle

FROM Activite

WHERE nomStation = ’Santalba’
AND (prix > 50 AND prix < 120)

Les opérateurs de comparaison sont ceux du Pasgat=, >, >, =, et<> pour exprimer la diffé-
rence [= est également possible). Pour obtenir une recherche par intervalle, on peut également utiliser le
mot-CIéEBETWEEN. La requéte précédente est équivalente a:

SELECT nomStation, libelle
FROM Activite

WHERE nomStation = ’Santalba’
AND prix BETWEEN 50 AND 120

Chaines de caracteres

Les comparaisons de chaines de caractéres soulévent quelques problemes délicats.

1. Il faut étre attentif aux différences entre chaines de longueur fixe et chaines de longueur variable. Les
premiéres sont complétées par des blancs (') et pas les secondes.

2. Si SQL ne distingue pas majuscules et minuscules pour les mot-clés, il n’en va pas de méme pour
les valeurs. Donc 'SANTALBA est différent de Santalba’.

SQL fournit des options pour les recherches par mptttern matchinya I'aide de la claus&IKE.
Le caractere '_’ désigne n'importe quel caractérelee®o’ n'importe quelle chaine de caractéres. Par
exemple, voici la requéte cherchant toutes les stations dont le nom termine par un 'a’.

SELECT nomStation
FROM Station
WHERE nomStation LIKE ‘%a’

Quelles sont les stations dont le nom commence par un 'V’ et comprend exactement 6 caractéres ?
SELECT nomStation

FROM Station
WHERE nomStation LIKE 'V !

CHAPITRE 6. LE LANGAGE SQL 69

Dates

Une autre différence avec I'algébre est la possibilité de manipuler des dates. En fait tous les systémes
proposaient bien avant la normalisation leur propre format de date, et la norme préconisée par SQL2 n’est
de ce fait pas suivie par tous.

Une date est spécifiée en SQL2 par le motBdl&E suivi d'une chaine de caractéres au format 'aaaa-
mm-jj’, par exempleDATE ’1998-01-01'. Les zéros sont nécessaires afin que le mois et le quantiéme
comprennent systématiquement deux chiffres.

On peut effectuer des sélections sur les dates a I'aide des comparateurs usuels. Voici par exemple la
requéte 'ID des clients qui ont commencé un séjour en juillet 1998,

SELECT idClient
FROM Sejour
WHERE debut BETWEEN DATE ’1998-07-01’ AND DATE '1998-07-31’

Les systéemes proposent de plus des fonctions peantele calculer des écarts de dates, d’ajouter des
mois ou des années a des dates, etc.

6.1.3 Valeurs nulles

Autre spécificité de SQL par rapport a I'algebre : on admet que la valeur de certains attributs soit incon-
nue, et on parle alors deleur nulle désignée par le mot-clULL. Il est trés important de comprendre
que la 'valeur nulle’ n’est en fait pas une valeur mais une absence de valeur, et que I'on ne peut donc lui
appliquer aucune des opérations ou comparaisons usuelles.

— Toute opération appliquée®LL donne pour résultatuLL.

— Toute comparaison avewLL donne un résultat qui n’est ni vrai, ni faux mais une troisiéme valeur
booléenneyNKNOWN.

Les valeurs booléenn@RUE, FALSE et UNKNOWN sont définies de la maniére suivaneRUE vaut
1, FALSE 0 etUNKNOWN 1/2. Les connecteurs logiques donnent alors les résultats suivants:

1. z AND y = min(z,y)
2. £ ORy = maz(z,y)
3. NOTz=1-z

Les conditions exprimées dans une claMBERE sont évaluées pour chaque tuple, et ne sont conservés
dans le résultat que les tuples pour lesquels cette évaluation damree La présence d’une valeur nulle
dans une comparaison a donc souvent (mais pas toujours!) le méme effet que si cette comparaison échoue
et renvoieFALSE.

\oici une instance de la tabEEJOUR avec des informations manquantes.

\ SEJOUR |
idClient | station début nbPlaces|
10 Passac | 1998-07-01 2
20 Santalba| 1998-08-03
30 Passac 3

La présence dEULL peut avoir des effets surprenants. Par exemple la requéte suivante
SELECT station

FROM Sejour
WHERE nbPlaces <= 10 OR nbPlaces >= 10

Philippe Rigaux (rigaux@lIri.fr\Cours de bases de données, 2003

6.2. REQUETES SUR PLUSIEURS TABLES 70

devrait en principe ramener toutes les stations de la table. En fait 'Santalba’ ne figurera pas dans le
résultat cahbPlaces est aNULL.

Autre piége NULL est un mot-clé, pas une constante. Donc une comparaison cappigces =
NULL est incorrecte. Le prédicat pour tester 'absence de valeur dans une colonne& £sKULL (et
son inverseLS NOT NULL). La requéte suivante sélectionne tous les séjours pour lesquels on connait le
nombre de places.

SELECT *
FROM Sejour
WHERE nbPlaces IS NOT NULL

La présence d&lULL est une source de problemes: dans la mesure du possible il faut I'éviter en
spécifiant la contraintsOT NULL ou en donnant une valeur par défaut.

6.2 Requétes sur plusieurs tables

Les requétes SQL décrites dans cette section pemegananipuler simultanément plusieurs tables et
d’exprimer les opérations binaires de I'algébre relationnelle : jointure, produit cartésien, union, intersection,
différence.

6.2.1 Jointures

La jointure est une des opérations les plus utiEsdpnc une des plus courantes) puisqu’elle permet
d’exprimer des requétes portant sur des données réparties dans plusieurs tables. La syntaxe pour exprimer
des jointures avec SQL est une extension directeetle étudiée précédemment dans le cas des sélections
simples : on donne simplement la liste des tables concernées dans |aEetatset on exprime les critéres
de rapprochement entre ces tables dans la CIeHERE.

Prenons I'exemple de la requéte suivardenner le nom des clients avec le nom des stations ou ils
ont séjournéLe nom du client est dans la tabtd ient, I'information sur le lien client/station dans la
tablesejour. Deux tuples de ces tables peuvent étre joints s'ils concernent le méme client, ce qui peut
s’exprimer a |'aide de I'identifiant du client. On obtient la requéte :

SELECT nom, station
FROM Client, Sejour
WHERE 1id = idClient

On peut remarquer qu'il N’y a pas dans ce cas d’ambiguité sur les noms des attribut®t id
viennent de la tablelient, tandis questation etidClient viennent de la tablgejour. Il peut
arriver (il arrive de fait fréquemment) qu'un méme noratttibut soit partagé par plusieurs tables impli-
guées dans une jointure. Dans ce cas on résout I'ambiguité en préfixant I'attribut par le nom de la table.

Exemple: afficher le nom d’une station, son tarif hebdomadaire, ses activités et leurs prix.

SELECT nomStation, tarif, libelle, prix
FROM Station, Activite
WHERE Station.nomStation = Activite.nomStation

Comme il peut étre fastidieux de répéter intégralement le nom d’une table, on peut lui associer un
synonyme et utiliser ce synonyme en tant que préfixe. La requéte précédente devient par éxemple :

SELECT S.nomStation, tarif, libelle, prix
FROM Station S, Activite A
WHERE S.nomStation = A.nomStation

2. Au lieu destation S, lanorme SQL2 préconisecation AS S, mais leas est parfois inconnu ou optionnel.

CHAPITRE 6. LE LANGAGE SQL 71

Bien entendu, on peut effectuer des jointures sur un nombre quelconque de tables, et les combiner avec
des sélections. Voici par exemple la requéte qui affiche le nom des clients habitant Paris, les stations ou ils
ont séjourné avec la date, enfin le tarif hebdomadaire pour chaque station.

SELECT nom, station, debut, tarif
FROM Client, Sejour, Station

WHERE ville = ’'Paris’
AND id = idClient
AND station = nomStation

Il 'y a pas d’ambiguité sur les noms d’attribudenc il est inutile en I'occurence d’employer des
synonymes. Il existe en revanche une situation'atilisation des synonymes est indispensable : celle ou
I'on souhaite effectuer une jointure d’une relation avec elle-méme.

Considérons la requéte suivanfganner les couples de stations situées dans la méme régidoutes
les informations nécessaires sont dans la seule ahie i on, mais on construitin tupledans le résultat
avecdeux tuplepartageant la méme valeur pour I'attribtégion.

Tout se passe comme s'il on devait faire la jointure entre deux versions distinctes de fttableon.
Techniquement, on résout le probléme en SQL en utilisant deux synonymes distincts.

SELECT sl.nomStation, s2.nomStation
FROM Station sl1, Station s2
WHERE sl.region = s2.region

On peutimaginer que1l ets2 sontdeux 'curseurs’ qui pasarentindépendammentla talsfeat ion
et permettent de constituer des couples de tuplesiuels on applique la condition de jointure.

Interprétation d’une jointure

Linterprétation d’une jointure est une généralisation de I'interprétation d’'un ordre SQL portant sur
une seule table. Intuitivement, on parcourt tous les tuples définis par la ¢irose et on leur applique
la condition exprimée dans IeHERE. Finalement on ne garde que les iatits spécifiés dans la clause
SELECT.

Quels sont les tuples définis par#®oM? Dans le cas d’une seule table, il n’y a pas de difficulté.
Quand il y a plusieurs tables, on peut donreer (noins) deux définitions équivalentes :

1. Boucles imbriquées On considére chaque synonyme de table (ou par défaut chaque nom de table)
comme unevariable tuple Maintenant on construit des boucles imbriquées, chaque boucle corres-
pondant & une des tables HROM et permettant & la variable correspondante d'itérer sur le contenu
de la table.

A l'intérieur de I'ensemble des boucles, on applique la clauseRE.
2. Produit cartésien. On construit le produit cartésien des tablesaoM, en préfixant chaque attribut
par le nom ou le synonyme de sa table pour éviter les ambiguités.
On est alors ramené a la situation ou il y a une seule table (le résultat du produit cartésien) et on
interpréte I'ordre SQL comme dans le cas des requétes simples.

La premiére interprétation est proche de ce que I'on obtiendrait si on devait programmer une requéte
avec un langage comme le C ou Pascal, la deuxiéme s'inspire de I'algébre relationnelle.

6.2.2 Union, intersection et différence

L'expression de ces trois opérations ensemblistes en SQL est trés proche de I'algébre relationnelle.
On construit deux requétes dont les résultats ont méme arité (méme nombre de colonnes et mémes types
d'attributs), et on les relie par un des mot-CI$ION, INTERSECT OU EXCEPT.

Philippe Rigaux (rigaux@lIri.fr\Cours de bases de données, 2003

6.3. REQUETES IMBRIQUEES 72

Trois exemples suffiront pour illustrer ces opérations.
1. Donnez tous les noms de région dans la base.

SELECT region FROM Station
UNION
SELECT region FROM Client

2. Donnez les régions ou I'on trouve a la fois des clients et des stations.

SELECT region FROM Station
INTERSECT
SELECT region FROM Client

3. Quelles sont les régions ou I'on trouve des stations mais pas des clients ?

SELECT region FROM Station
EXCEPT
SELECT region FROM Client

La norme SQL2 spécifie que les doublons doivent étre éliminés du résultat lors des trois opérations
ensemblistes. Le colt de I'élimination de doublons n’étant pas négligeable, il se peut cependant que certains
systemes fassent un choix différent.

L'union ne peut étre exprimée autrement qu’ausi@ ON. En revanch@NTERSECT peut étre exprimée
avec une jointure, et la différence s’obtient, souvent de maniére plus aisée, a I'aide des requétes imbriquées.

6.3 Requétes imbriquées

Jusqu'a présent les conditions exprimées damsiERE consistaient en comparaisons de valeurs sca-
laires. Il est possible également avec SQL d’exprimer des conditions steldtsns Pour I'essentiel, ces
conditions consistent en I'existence d’au moins un tuple dans la relation testée, ou en I'appartenance d'un
tuple particulier a la relation.

La relation testée est construite par une req8&®ECT ... FROM ... WHERE que I'on appelle
sous-requéte orequéte imbriquépuisqu’elle apparait dans la claugBERE

6.3.1 Conditions portant sur des relations

Une premiére utilisation des sous-requétes est d'offrir une alternative syntaxique a I'expression de
jointures. Les jointures concernées sont celles paquelles le résultat est constitué avec des attributs
provenant d’'une seule des deux tables, Faute servant que pour exprimer des conditions.

Prenons I'exemple suivant: on veut les noms des stations ot ont séjourné des clients parisiens. On peut
obtenir le résultat avec une jointure classique.

SELECT station

FROM Sejour, Client
WHERE id = idClient
AND ville = ’'Paris’

Ici, le résultat,station, provient de la table&SEJOUR. D'ou I'idée de séparer la requéte en deux
parties: (1) on constitue avec une sous-requétedssdes clients parisiens, puis (2) on utilise ce résultat
dans la requéte principale.

SELECT station

CHAPITRE 6. LE LANGAGE SQL 73
FROM Sejour
WHERE idClient IN (SELECT id FROM Client

WHERE ville = ‘Paris’)

Le mot-cléIN exprime clairement la condition d’appartenancedelient a la relation formée par
la requéte imbriquée. On peut remplaceriepar un simple '='si on est slr que la sous-requéte raméne
un et un seul tuplePar exemple :

SELECT nom, prenom
FROM Client
WHERE region = (SELECT region FROM Station
WHERE nomStation = ’Santalba’)

est (partiellement) correct car lagherche dans la sous-requéte s'etfegtar la clé. En revanche il se peut
qu'aucun tuple ne soit ramené, ce qui génére une erredur.

\oici les conditions que I'on peut exprimer sur une relatoonstruite avec une requéte imbriquée.
1. EXISTS R. RenvoieTRUE si R n'est pas videFALSE sinon.
2. t IN Rouestun tuple dont le type est celui ReTRUE si ¢ appartient &, FALSE sinon.

3. v emp ANY R, OUcmp est un comparateur SQk(<, =, etc.). RenvoierRUE si la comparaison
avecau moins urdes tuples de la relation unaiferenvoieTRUE.

4. v emp ALL R, OUcmp est un comparateur SQLk(<, =, etc.). Renvoier'RUE si la comparaison
avectousles tuples de la relation unaif renvoieTRUE.

De plus, toutes ces expressions peuvent étre préfixéammgagrour obtenir la négation. Voici quelques
exemples.

— Ou (station, lieu) ne peut-on pas faire du ski?

SELECT nomStation, lieu

FROM Station

WHERE nomStation NOT IN (SELECT nomStation FROM Activite
WHERE 1libelle = ’Ski’)

— Quelle station pratique le tarif le plus élevé ?

SELECT nomStation
FROM Station
WHERE tarif >= ALL (SELECT tarif FROM Station)

Dans quelle station pratique-t-on une activité au méme prix qu'a Santalba ?

SELECT nomStation, libelle

FROM Activite

WHERE prix IN (SELECT prix FROM Activite
WHERE nomStation = ‘Santalba’)

Ces requétes peuvent s’exprimer sans imbricatexercice), parfois de maniére moins élégante ou
moins concise. La différence, en particulier, s'exprime facilement 5ot IN OUNOT EXISTS.

Philippe Rigaux (rigaux@lIri.fr\Cours de bases de données, 2003

6.4. AGREGRATION 74

6.3.2 Sous-requétes correllées

Les exemples de requétes imbriquées donnés peéudent pouvait &tre élgés indépendamment de
la requéte principale, ce qui permet au systéemé Is’juge nécessaire) d’exécuter la requéte en deux
phases. Il peut arriver que la sous-requéte soit baséeng ou plusieurs valeurs issues des relations de la
requéte principale. On parle alors @egjuétes correllées

Exemple :quels sont les clients (nom, prénom) qui ont séjourné a Santalba

SELECT nom, prenom

FROM Client

WHERE EXISTS (SELECT ’‘x’ FROM Sejour
WHERE station = ’‘Santalba’
AND idClient = id)

Le id dans la requéte imbriquée n'appartient pas a la tabfiour mais a la tablelient référencée
dans leFROM de la requéte principale.

Remarque : on peut employer MOT IN & la place dWOT EXISTS (exercice), de méme que I'on
peut toujours employeEXISTS a la place deN. Voici une des requétes précédentes ou I'on a appliqué
cette transformation, en utilisant de plus des synonymes.

Dans quelle station pratique-t-on une activité au méme prix qu'a Santalba ?

SELECT nomStation
FROM Activite Al
WHERE EXISTS (SELECT ’‘x’'FROM Activite A2

WHERE nomStation = ’Santalba’
AND Al.libelle = A2.libelle
AND Al.prix = A2.prix)

Cette requéte est elle-méme équivalente a une jointure sans requéte imbriquée.

6.4 Agrégration

Toutes les requétes vues jusqu’a présent pouvaient étre interprétées comme une suite d’opérations ef-
fectuéeguple a tuple De méme le résultat était toujours constitué de valeurs issues de tuples individuels.
Les fonctionnalitésl’agrégationde SQL permettent d'exprimer des conditiaus des groupes de tuples
et de constituer le résultat pagrégation de valeurau sein de chaque groupe.

La syntaxe SQL fournit donc:

1. Le moyen de partitioner une relation gmupesselon certains criteres.

2. Le moyen d’exprimer des conditions sur ces groupes.

3. Des fonctions d’agrégation.

Il existe un groupe par défaut: c’est la relation toute entiére. Sans méme définir de groupe, on peut
utiliser les fonctions d’agrégation.
6.4.1 Fonctions d'agrégation

Ces fonctions s'appliquent & une colonne, en général de type numérique. Ce sont:

1. COUNT qui compte le nombre de valeutsn nulles

2. MAX etMIN.

3. AVG qui calcule la moyenne des valeurs de la colonne.

CHAPITRE 6. LE LANGAGE SQL 75

4. suM qui effectue le cumul.
Exemple d'utilisation de ces fonctions:

SELECT COUNT (nomStation), AVG(tarif), MIN(tarif), MAX(tarif)
FROM Station

Remarque importante: on ne peut pas utiliser simultanément dans la slRUEeT des fonctions
d’agrégation et des noms d’attributs (sauf dans le cas@RoUP BY, voir plus loin). La requéte suivante
est incorrecte (pourquoi ?).

SELECT nomStation, AVG (tarif)
FROM Station

A condition de respecter cette régle, on peut utiliser les ordres SQL les plus complexes. Exemple:
Combien de places a réservé Mr Kerouac pour I'ensemble des séjours ?

SELECT SUM (nbPlaces)
FROM Client, Sejour
WHERE nom = ’‘Kerouac’
AND id = idClient

6.4.2 LaclausezROUP BY

Dans les requétes précédentes, on appliquaiiiation d’agrégation a I'esemble du résultat d’'une
requéte (donc éventuellement a I'ensemble deatdet elle-méme). Une fonctionnalité complémentaire
consiste artitioner ce résultat en groupes, et a appliquer la ou les fonction(s) a chaque groupe.

On construit les groupes en associant les tuples partageant la méme valeur pour une ou plusieurs co-
lonnes.

Exemple: afficher les régions avec le nombre de stations.

SELECT region, COUNT (nomStation)
FROM Station
GROUP BY region

Donc ici on constitue un groupe pour chaque régioiis Bn affiche ce groupe sous la forme d’un tuple,
dans lequel les attributs peuvent étre de deux types:

1. les attributsiont la valeur est constante pour I'ensemble du gro@pét précisément les attributs du
GROUP BY. Exemple ici I'attributregion;

2. le résultat d’'une fonction d’agrégation appliquée au groupeCaTiNT (nomStation).

Bien entendu il est possible d’exprimer des ordres SQL complexes et d'appliq@Raurr BY au
résultat. De plus, il n’est pas nécessaire de faire figurer tous les attrib@Ratip BY dans la clause
SELECT.

Exemple : on souhaite consulter le nombre de places resepafedient

SELECT nom, SUM (nbPlaces)
FROM Client, Sejour
WHERE id = idClient
GROUP BY id, nom

Linterprétation est simple: (1) on exécute d'abord la reqU8ECT ... FROM ... WHERE,
puis (2) on prend le résultat et on le partitione, enfin (3) on calcule le résultat des fonctions.

A lissue de I'étape (2), on peut imaginer une relation qui n'est pas en premiéere forme normale: on
y trouverait des tuples avec les attributsakoUP BY sous forme de valeur atomique, puis des attributs
de typeensemblédonc interdits dans le modele relationnél)est pour se ramener en 1FN que I'on doit
appliquer des fonctions d’agrégation a ces ensembles.

Exercice : pourquoi grouper surd, nom? Quels sont les autres choix possibles et leurs inconvé-
nients ?

Philippe Rigaux (rigaux@lIri.fr\Cours de bases de données, 2003

6.5. MISES-A-JOUR 76

6.4.3 LaclauseHAVING

Finalement, on peut faire porter des conditions sur les groupes avec la HRUSEG. La clause
WHERE ne peut exprimer des conditions que sur les tuples pris un a un.

Exemple : on souhaite consulter le nombre de places reservées, papdieries clients ayant réservé
plus de 10 places

SELECT nom, SUM (nbPlaces)
FROM Client, Sejour
WHERE id = idClient
GROUP BY nom

HAVING SUM (nbPlaces) >= 10

On voit que la condition porte ici sur une propriété de I'ensemble des tuples du groupe, et pas de chaque
tuple pris individuellement. La clauseaVING est donc toujours exprimée sur le résultat de fonctions
d’agrégation.

6.5 Mises-a-jour
Les commandes de mise-a-jour (insertion, destruatimification) sont considérablement plus simples
que les requétes.
6.5.1 Insertion
Linsertion s’effectue avec la comman@d&SERT dont la syntaxe est la suivante :
INSERT INTO R(Al, A2, ... An) VALUES (vl, v2, ... vn)

R est le nom d'une relation, etl@sL, ... An sontles noms des attributs dans lequels on souhaite
placer une valeut.es autres attributs seront doncULL (ou a la valeur par défaut)Tous les attributs
spécifiéNOT NULL (et sans valeur par défaut) doivent donc figurer dans une CIaU&ERT.

Lesvl, ... vn sont les valeurs des attributs. Exemple de l'insertion d’'un tuple dans la table
Client.

INSERT INTO Client (id, nom, prenom)
VALUES (40, ’‘Moriarty’, ’Dean’)

Donc, a l'issue de cette insertion, les attributsl 1e etregion seront aNULL.

Il est également possible d'insérer dans une table le résultat d'une requéte. Dans ce cas la partie
VALUES ... estremplacée par la requéte elle-méme. Exemple: on a créé unsialde (lieu,
region) eton souhaite y copier les couplésieu, region) déja existant dans latabfration.

INSERT INTO Sites (lieu, region)
SELECT lieu, region FROM Station

Bien entendu le nombre d’attributs et le type de ces derniers doivent étre cohérents.

6.5.2 Destruction

La destruction s’effectue avec la clauseLETE dont la syntaxe est:

DELETE FROM R
WHERE condition

CHAPITRE 6. LE LANGAGE SQL 77

R est bien entendu la table, ebndition est toute condition valide pour une claugéBERE. En
d’autres termes, si on effectue, avant la destruction, la requéte

SELECT * FROM R
WHERE condition

on obtient I'ensemble des lignes qui seront détruitesqEyETE. Procéder de cette maniére est un des
moyens de s'assurer que I'on va bien détruire ce que I'on souhaite....
Exemple: destruction de tous les clients dont le nom commence par 'M’.

DELETE FROM Client
WHERE nom LIKE ’‘M%’
6.5.3 Moadification

La modification s’effectue avec la clauseDATE. La syntaxe est proche de celle DBLETE :

UPDATE R SET Al=vl, A2=v2, ... An=vn
WHERE condition

R estlarelation, leai sontles attributs, lesi les nouvelles valeurs ebndi t i on est toute condition
valide pour la claus@HERE. Exemple : augmenter le prix des activités de la station Passac de 10%.

UPDATE Activite
SET prix = prix * 1.1
WHERE nomStation = ’‘Passac’

Une remarque importante : toutes les mises-a-jour ne deviennent définitives qu’a l'issue d’une valida-
tion parcommit. Entretemps elles peuvent étre annuléespdrl back. Voir le cours sur la concurrence
d'acces.

6.6 Exercices

Exercice 11 Reprendre les expressions algébriques du premier exercice du chapitre algébre, et les expri-
mer en SQL.

Exercice 12 Donnez I'expression SQL des requétes suivantes, ainsi que le résultat obtenu avec la base du
chapitre “Le langage SQL".

. Nom des stations ayant strictement plus de 200 places.

. Noms des clients dont le nom commence par 'P’ ou dont le solde est supérieur a 10 000.
. Quelles sont les régions dont I'intitulé comprend (au moins) deux mots ?

. Nom des stations qui proposent de la plongée.

. Nom des clients qui sont allés a Santalba.

o g A~ W N P

. Donnez les couples de clients qui habitent dans la méme région. Attention : un couple doit apparaitre
une seule fois.

~

. Nom des régions qu'a visité Mr Pascal.
8. Nom des stations visitées par des européens.
9. Qui n'est pas allé dans la station Farniente ?

10. Quelles stations ne proposent pas de la plongée ?

Philippe Rigaux (rigaux@lIri.fr\Cours de bases de données, 2003

6.6. EXERCICES 78

11. Combien de séjours ont eu lieu a Passac ?

12. Donner, pour chaque station, le nombre de séjours qui s'y sont déroulés.
13. Donner les stations ou se sont déroulés au moins 3 séjours.

14. (%)Les clients qui sont allés damsutesles stations.

Exercice 13 (Valeurs nulles)On considére la table suivante :

\ STATION

[NomStation[Capacité Lieu Région | Tarif
Gratuite 80 Guadeloupe| Antilles
NullePart 150 2000

1. Donnez les résultats des requétes suivantes (rappel] le est la concaténation de chaines de
caracteres.).

(a) SELECT nomStation FROM Station
WHERE tarif >200

(b) SELECT tarif * 3 FROM Station
WHERE nomStation LIKE ‘%1%’ AND lieu LIKE ’$%’

(C) SELECT ' Lieu = ' || lieu FROM Station
WHERE capacite >= 100 OR tarif >= 1000
(d) SELECT ’ Lieu = ' || lieu FROM Station

WHERE NOT (capacite <100 AND tarif <1000)

2. Les deux derniéres requétes sont-elles équivalentes (i.e. donnent-elles le méme résultat quel que soit
le contenu de la table) ?

3. Supposons que I'on ait conservé une logique bivaluée (aw&& et FALSE) et adopté la régle
suivante : toute comparaison avec NOLL donneFALSE. Obtient-on des résultats équivalents ?
Cette régle est-elle correcte ?

4. Méme question, en supposant que toute comparaisorNaxec donneTRUE.

Exercice 14 On reprend la requéte constituant la liste destistas avec leurs activités, [égérement modi-
fiée.

SELECT S.nomStation, tarif, libelle, prix
FROM Station S, Activites A, Sejour
WHERE S.nomStation = A.nomStation

1. Latablesejour est-elle nécessaire dansr®oM ?

2. Qu'obtient-ondans les trois cas suivants : (1) la taddej our contient 1 tuple, (2) la tablsejour
contient 100 000 tuples, (3) la tabejour est vide.

3. Soit trois table®, s etT ayant chacune un seul attribat On veut calculeR N (S U T).

(a) Larequéte suivante est-elle correcte ? Expliquez pourquoi.
SELECT R.A FROM R, S, T WHERE R.A=S.A OR R.A=T.A

(b) Donnez la bonne requéte.

