
CHAPITRE 6. LE LANGAGE SQL 65

Chapitre 6

Le langage SQL

Sommaire

6.1 Requêtes simples SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.1 Sélections simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2 La clauseWHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.3 Valeurs nulles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Requêtes sur plusieurs tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.1 Jointures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2.2 Union, intersection et différence . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Requêtes imbriquées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.1 Conditions portant sur des relations . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.2 Sous-requêtes correllées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Agrégration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.1 Fonctions d’agrégation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.2 La clauseGROUP BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4.3 La clauseHAVING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Mises-à-jour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5.1 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5.2 Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.5.3 Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Ce chapitre présente le langage SQL d’interrogation et de manipulation de données (insertion, mise-
à-jour, destruction). La syntaxe est celle de la norme SQL2, implantée plus ou moins complètement dans
la plupart des principaux SGBDR. Certaines fonctionnalités (triggerspar exemple) sont en cours de nor-
malisation dans SQL3, mais existent déjà dans quelques systèmes en raison de leur importance. Ils seront
présentés brièvement.

SQL est un langagedéclaratifqui permet d’interroger une base de données sans se soucier de la re-
présentation interne (physique) des données, de leur localisation, des chemins d’accès ou des algorithmes
nécessaires. A ce titre il s’adresse à une large communauté d’utilisateurs potentiels (pas seulement des
informaticiens) et constitue un des atouts les plus spectaculaires (et le plus connu) des SGBDR. On peut
l’utiliser de manière interactive, mais également en association avec des interfaces graphiques, des outils
dereportingou, très généralement, des langages de programmation.

Ce dernier aspect est très important en pratique car SQL ne permet pas de faire de la programmation
au sens courant du terme et doit donc être associé avec un langage comme le C, le COBOL ou JAVA pour
réaliser des traitements complexes accédant à une base de données. L’interface de SQL et du langage C
sera présentée dans le chapitre 8.

Philippe Rigaux (rigaux@lri.fr),Cours de bases de données, 2003

6.1. REQUÊTES SIMPLES SQL 66

6.1 Requêtes simples SQL

Dans tout ce chapitre on va prendre l’exemple de la (petite) base de données présentée dans le chapitre
sur l’algèbre.

6.1.1 Sélections simples

Commençons par les requêtes les plus simples : la figure 5.1 montre une instance de la base pour les
relationsStation etActivite. Première requête : on souhaite extraire de la base le nom de toutes les
stations se trouvant aux Antilles.

SELECT nomStation
FROM Station
WHERE region = ’Antilles’

Ce premier exemple montre la structure de base d’une requête SQL, avec les trois clausesSELECT,
FROM etWHERE.

– FROM indique la (ou les) tables dans lesquelles on trouve les attributs utiles à la requête. Un attribut
peut être ’utile’ de deux manières (non exclusives) : (1) on souhaite afficher son contenu, (2) on
souhaite qu’il ait une valeur particulière (une constante ou la valeur d’un autre attribut).

– SELECT indique la liste des attributs constituant le résultat.

– WHERE indique les conditions que doivent satisfaire les n-uplets de la base pour faire partie du
résultat.

Dans l’exemple précédent, l’interprétation est simple : on parcourt les n-uplets de la relationStation.
Pour chaque n-uplet, si l’attributregion a pour valeur ’Antilles’, on place l’attributnomStation dans
le résultat1. On obtient donc le résultat :

nomStation
Venusa

Santalba

Le résultat d’un ordre SQL est toujours une relation (une table) dont les attributs sont ceux spécifiés
dans la clauseSELECT. On peut donc considérer en première approche ce résultat comme un ’découpage’,
horizontal et vertical, de la table indiquée dans leFROM, similaire à une utilisation combinée de la sélection
et de la projection en algèbre relationnelle. En fait on dispose d’un peu plus de liberté que cela. On peut :

– Renommer les attributs

– Appliquer des fonctions aux valeurs de chaque tuple.

– Introduire des constantes.

Les fonctions applicables aux valeurs des attributs sont par exemple les opérations arithmétiques (� ,
*, ...) pour les attributs numériques ou des manipulations de chaîne de caractères (concaténation, sous-
chaînes, mise en majuscule, ...). Il n’existe pas denorme mais la requête suivante devrait fonctionner sur
tous les systèmes : on convertit le prix des activités en euros et on affiche le cours de l’euro avec chaque
tuple.

SELECT libelle, prix / 6.56, ’Cours de l’euro = ’, 6.56
FROM Activite
WHERE nomStation = ’Santalba’

1. Attention, ce n’est pas forcément ainsi que la requête estexécutéepar le système.



CHAPITRE 6. LE LANGAGE SQL 67

Ce qui donne le résultat :

libelle prix / 6.56 ’Cours de l’euro =’ ’6.56’
Kayac 7.62 ’Cours de l’euro =’ 6.56

Renommage

Les noms des attributs sont par défaut ceux indiqués dans la clauseSELECT, même quand il y a des
expressions complexes. Pour renommer les attributs, on utilise le mot-cléAS.

SELECT libelle, prix / 6.56 AS prixEnEuros,
’Cours de l’euro = ’, 6.56 AS cours

FROM Activite
WHERE nomStation = ’Santalba’

On obtient alors :

libelle prixEnEuros ’Cours de l’euro =’ cours
Kayac 7.69 ’Cours de l’euro =’ 6.56

Remarque : Sur certains systèmes, le mot-cléAS est optionnel.

Doublons

L’introduction de fonctions permet d’aller au-delà dece qui est possible en algèbre relationnelle. Il
existe une autre différence, plus subtile : SQL permet l’existence de doublons dans les tables (il ne s’agit
donc pas d’ensemble au sens strict du terme). La spécification de clés permet d’éviter les doublons dans
les relations stockées, mais il peuvent apparaître dans le résultat d’une requête. Exemple :

SELECT libelle
FROM Activite

donnera autant de lignes dans le résultat que dans la tableActivite.

libelle
Voile

Plongee
Plongee

Ski
Piscine
Kayac

Pour éviter d’obtenir deux tuples identiques, on peut utiliser le mot-cléDISTINCT.

SELECT DISTINCT libelle
FROM Activite

Attention : l’élimination des doublons peut être une opération coûteuse.

Tri du résultat

Il est possible de trier le résultat d’un requête avec la clauseORDER BY suivie de la liste des attributs
servant de critère au tri. Exemple :

SELECT *
FROM Station
ORDER BY tarif, nomStation

Philippe Rigaux (rigaux@lri.fr),Cours de bases de données, 2003

6.1. REQUÊTES SIMPLES SQL 68

trie, en ordre ascendant, les stations par leur tarif, puis, pour un même tarif, présente les stations selon
l’ordre lexicographique. Pour trier en ordre descendant, on ajoute le mot-cléDESC après la liste des attri-
buts.

Voici maintenant la plus simple des requêtes SQL : elle consiste à afficher l’intégralité d’une table. Pour
avoir toutes les lignes on omet la clauseWHERE, et pour avoir toutes les colonnes, on peut au choix lister
tous les attributs ou utiliser le caractère ’*’ qui a la même signification.

SELECT *
FROM Station

6.1.2 La clauseWHERE

Dans la clauseWHERE, on spécifie une condition booléenne portant sur les attributs des relations du
FROM. On utilise pour cela de manière standard leAND, le OR, le NOT et les parenthèses pour changer
l’ordre de priorité des opérateurs booléens. Par exemple :

SELECT nomStation, libelle
FROM Activite
WHERE nomStation = ’Santalba’
AND (prix > 50 AND prix < 120)

Les opérateurs de comparaison sont ceux du Pascal :� , �
� , � , � , � , et �

� pour exprimer la diffé-
rence (� � est également possible). Pour obtenir une recherche par intervalle, on peut également utiliser le
mot-cléBETWEEN. La requête précédente est équivalente à :

SELECT nomStation, libelle
FROM Activite
WHERE nomStation = ’Santalba’
AND prix BETWEEN 50 AND 120

Chaînes de caractères

Les comparaisons de chaînes de caractères soulèvent quelques problèmes délicats.

1. Il faut être attentif aux différences entre chaînes de longueur fixe et chaînes de longueur variable. Les
premières sont complétées par des blancs (’ ’) et pas les secondes.

2. Si SQL ne distingue pas majuscules et minuscules pour les mot-clés, il n’en va pas de même pour
les valeurs. Donc ’SANTALBA’ est différent de ’Santalba’.

SQL fournit des options pour les recherches par motif (pattern matching) à l’aide de la clauseLIKE.
Le caractère ’_’ désigne n’importe quel caractère, etle ’%’ n’importe quelle chaîne de caractères. Par
exemple, voici la requête cherchant toutes les stations dont le nom termine par un ’a’.

SELECT nomStation
FROM Station
WHERE nomStation LIKE ’%a’

Quelles sont les stations dont le nom commence par un ’V’ et comprend exactement 6 caractères ?

SELECT nomStation
FROM Station
WHERE nomStation LIKE ’V_____’



CHAPITRE 6. LE LANGAGE SQL 69

Dates

Une autre différence avec l’algèbre est la possibilité de manipuler des dates. En fait tous les systèmes
proposaient bien avant la normalisation leur propre format de date, et la norme préconisée par SQL2 n’est
de ce fait pas suivie par tous.

Une date est spécifiée en SQL2 par le mot-cléDATE suivi d’une chaîne de caractères au format ’aaaa-
mm-jj’, par exempleDATE ’1998-01-01’. Les zéros sont nécessaires afin que le mois et le quantième
comprennent systématiquement deux chiffres.

On peut effectuer des sélections sur les dates à l’aide des comparateurs usuels. Voici par exemple la
requête ’ID des clients qui ont commencé un séjour en juillet 1998’.

SELECT idClient
FROM Sejour
WHERE debut BETWEEN DATE ’1998-07-01’ AND DATE ’1998-07-31’

Les systèmes proposent de plus des fonctions permettant de calculer des écarts de dates, d’ajouter des
mois ou des années à des dates, etc.

6.1.3 Valeurs nulles

Autre spécificité de SQL par rapport à l’algèbre : on admet que la valeur de certains attributs soit incon-
nue, et on parle alors devaleur nulle, désignée par le mot-cléNULL. Il est très important de comprendre
que la ’valeur nulle’ n’est en fait pas une valeur mais une absence de valeur, et que l’on ne peut donc lui
appliquer aucune des opérations ou comparaisons usuelles.

– Toute opération appliquée àNULL donne pour résultatNULL.

– Toute comparaison avecNULL donne un résultat qui n’est ni vrai, ni faux mais une troisième valeur
booléenne,UNKNOWN.

Les valeurs booléennesTRUE, FALSE etUNKNOWN sont définies de la manière suivante :TRUE vaut
1,FALSE 0 etUNKNOWN 1/2. Les connecteurs logiques donnent alors les résultats suivants :

1. � AND � =

� � �
�

� � �
�

2. � OR � =

� �
�

�
� � �

�

3. NOT � = � � �

Les conditions exprimées dans une clauseWHERE sont évaluées pour chaque tuple, et ne sont conservés
dans le résultat que les tuples pour lesquels cette évaluation donneTRUE. La présence d’une valeur nulle
dans une comparaison a donc souvent (mais pas toujours !) le même effet que si cette comparaison échoue
et renvoieFALSE.

Voici une instance de la tableSEJOUR avec des informations manquantes.

SEJOUR

idClient station début nbPlaces
10 Passac 1998-07-01 2
20 Santalba 1998-08-03
30 Passac 3

La présence deNULL peut avoir des effets surprenants. Par exemple la requête suivante

SELECT station
FROM Sejour
WHERE nbPlaces <= 10 OR nbPlaces >= 10

Philippe Rigaux (rigaux@lri.fr),Cours de bases de données, 2003

6.2. REQUÊTES SUR PLUSIEURS TABLES 70

devrait en principe ramener toutes les stations de la table. En fait ’Santalba’ ne figurera pas dans le
résultat carnbPlaces est àNULL.

Autre piège :NULL est un mot-clé, pas une constante. Donc une comparaison commenbPlaces =
NULL est incorrecte. Le prédicat pour tester l’absence de valeur dans une colonne est� IS NULL (et
son inverseIS NOT NULL). La requête suivante sélectionne tous les séjours pour lesquels on connaît le
nombre de places.

SELECT *
FROM Sejour
WHERE nbPlaces IS NOT NULL

La présence deNULL est une source de problèmes : dans la mesure du possible il faut l’éviter en
spécifiant la contrainteNOT NULL ou en donnant une valeur par défaut.

6.2 Requêtes sur plusieurs tables

Les requêtes SQL décrites dans cette section permettent de manipuler simultanément plusieurs tables et
d’exprimer les opérations binaires de l’algèbre relationnelle : jointure, produit cartésien, union, intersection,
différence.

6.2.1 Jointures

La jointure est une des opérations les plus utiles (et donc une des plus courantes) puisqu’elle permet
d’exprimer des requêtes portant sur des données réparties dans plusieurs tables. La syntaxe pour exprimer
des jointures avec SQL est une extension directe decelle étudiée précédemment dans le cas des sélections
simples : on donne simplement la liste des tables concernées dans la clauseFROM, et on exprime les critères
de rapprochement entre ces tables dans la clauseWHERE.

Prenons l’exemple de la requête suivante :donner le nom des clients avec le nom des stations où ils
ont séjourné. Le nom du client est dans la tableClient, l’information sur le lien client/station dans la
tableSejour. Deux tuples de ces tables peuvent être joints s’ils concernent le même client, ce qui peut
s’exprimer à l’aide de l’identifiant du client. On obtient la requête :

SELECT nom, station
FROM Client, Sejour
WHERE id = idClient

On peut remarquer qu’il n’y a pas dans ce cas d’ambiguité sur les noms des attributs :nom et id
viennent de la tableClient, tandis questation et idClient viennent de la tableSejour. Il peut
arriver (il arrive de fait fréquemment) qu’un même nom d’attribut soit partagé par plusieurs tables impli-
quées dans une jointure. Dans ce cas on résout l’ambiguité en préfixant l’attribut par le nom de la table.

Exemple : afficher le nom d’une station, son tarif hebdomadaire, ses activités et leurs prix.

SELECT nomStation, tarif, libelle, prix
FROM Station, Activite
WHERE Station.nomStation = Activite.nomStation

Comme il peut être fastidieux de répéter intégralement le nom d’une table, on peut lui associer un
synonyme et utiliser ce synonyme en tant que préfixe. La requête précédente devient par exemple :2

SELECT S.nomStation, tarif, libelle, prix
FROM Station S, Activite A
WHERE S.nomStation = A.nomStation

2. Au lieu deStation S, la norme SQL2 préconiseStation AS S, mais leAS est parfois inconnu ou optionnel.



CHAPITRE 6. LE LANGAGE SQL 71

Bien entendu, on peut effectuer des jointures sur un nombre quelconque de tables, et les combiner avec
des sélections. Voici par exemple la requête qui affiche le nom des clients habitant Paris, les stations où ils
ont séjourné avec la date, enfin le tarif hebdomadaire pour chaque station.

SELECT nom, station, debut, tarif
FROM Client, Sejour, Station
WHERE ville = ’Paris’
AND id = idClient
AND station = nomStation

Il n’y a pas d’ambiguité sur les noms d’attributsdonc il est inutile en l’occurence d’employer des
synonymes. Il existe en revanche une situation où l’utilisation des synonymes est indispensable : celle ou
l’on souhaite effectuer une jointure d’une relation avec elle-même.

Considérons la requête suivante :Donner les couples de stations situées dans la même région. Ici toutes
les informations nécessaires sont dans la seule tableStation, mais on construitun tupledans le résultat
avecdeux tuplespartageant la même valeur pour l’attributrégion.

Tout se passe comme s’il on devait faire la jointure entre deux versions distinctes de la tableStation.
Techniquement, on résout le problème en SQL en utilisant deux synonymes distincts.

SELECT s1.nomStation, s2.nomStation
FROM Station s1, Station s2
WHERE s1.region = s2.region

On peut imaginer ques1 ets2 sont deux ’curseurs’ qui parcourent indépendamment la tableStation
et permettent de constituer des couples de tuplesauxquels on applique la condition de jointure.

Interprétation d’une jointure

L’interprétation d’une jointure est une généralisation de l’interprétation d’un ordre SQL portant sur
une seule table. Intuitivement, on parcourt tous les tuples définis par la clauseFROM, et on leur applique
la condition exprimée dans leWHERE. Finalement on ne garde que les attributs spécifiés dans la clause
SELECT.

Quels sont les tuples définis par leFROM? Dans le cas d’une seule table, il n’y a pas de difficulté.
Quand il y a plusieurs tables, on peut donner (au moins) deux définitions équivalentes :

1. Boucles imbriquées. On considère chaque synonyme de table (ou par défaut chaque nom de table)
comme unevariable tuple. Maintenant on construit des boucles imbriquées, chaque boucle corres-
pondant à une des tables duFROM et permettant à la variable correspondante d’itérer sur le contenu
de la table.

A l’intérieur de l’ensemble des boucles, on applique la clauseWHERE.

2. Produit cartésien. On construit le produit cartésien des tables duFROM, en préfixant chaque attribut
par le nom ou le synonyme de sa table pour éviter les ambiguités.

On est alors ramené à la situation où il y a une seule table (le résultat du produit cartésien) et on
interprête l’ordre SQL comme dans le cas des requêtes simples.

La première interprétation est proche de ce que l’on obtiendrait si on devait programmer une requête
avec un langage comme le C ou Pascal, la deuxième s’inspire de l’algèbre relationnelle.

6.2.2 Union, intersection et différence

L’expression de ces trois opérations ensemblistes en SQL est très proche de l’algèbre relationnelle.
On construit deux requêtes dont les résultats ont même arité (même nombre de colonnes et mêmes types
d’attributs), et on les relie par un des mot-cléUNION, INTERSECT ouEXCEPT.

Philippe Rigaux (rigaux@lri.fr),Cours de bases de données, 2003

6.3. REQUÊTES IMBRIQUÉES 72

Trois exemples suffiront pour illustrer ces opérations.

1. Donnez tous les noms de région dans la base.

SELECT region FROM Station
UNION
SELECT region FROM Client

2. Donnez les régions où l’on trouve à la fois des clients et des stations.

SELECT region FROM Station
INTERSECT
SELECT region FROM Client

3. Quelles sont les régions où l’on trouve des stations mais pas des clients ?

SELECT region FROM Station
EXCEPT
SELECT region FROM Client

La norme SQL2 spécifie que les doublons doivent être éliminés du résultat lors des trois opérations
ensemblistes. Le coût de l’élimination de doublons n’étant pas négligeable, il se peut cependant que certains
systèmes fassent un choix différent.

L’union ne peut être exprimée autrement qu’avecUNION. En revancheINTERSECT peut être exprimée
avec une jointure, et la différence s’obtient, souvent de manière plus aisée, à l’aide des requêtes imbriquées.

6.3 Requêtes imbriquées

Jusqu’à présent les conditions exprimées dans leWHERE consistaient en comparaisons de valeurs sca-
laires. Il est possible également avec SQL d’exprimer des conditions sur desrelations. Pour l’essentiel, ces
conditions consistent en l’existence d’au moins un tuple dans la relation testée, ou en l’appartenance d’un
tuple particulier à la relation.

La relation testée est construite par une requêteSELECT ... FROM ... WHERE que l’on appelle
sous-requête ourequête imbriquéepuisqu’elle apparaît dans la clauseWHERE

6.3.1 Conditions portant sur des relations

Une première utilisation des sous-requêtes est d’offrir une alternative syntaxique à l’expression de
jointures. Les jointures concernées sont celles pour lesquelles le résultat est constitué avec des attributs
provenant d’une seule des deux tables, l’autre ne servant que pour exprimer des conditions.

Prenons l’exemple suivant : on veut les noms des stations où ont séjourné des clients parisiens. On peut
obtenir le résultat avec une jointure classique.

SELECT station
FROM Sejour, Client
WHERE id = idClient
AND ville = ’Paris’

Ici, le résultat,station, provient de la tableSEJOUR. D’où l’idée de séparer la requête en deux
parties : (1) on constitue avec une sous-requête lesids des clients parisiens, puis (2) on utilise ce résultat
dans la requête principale.

SELECT station



CHAPITRE 6. LE LANGAGE SQL 73

FROM Sejour
WHERE idClient IN (SELECT id FROM Client

WHERE ville = ’Paris’)

Le mot-cléIN exprime clairement la condition d’appartenance deidClient à la relation formée par
la requête imbriquée. On peut remplacer leIN par un simple ’=’si on est sûr que la sous-requête ramène
un et un seul tuple. Par exemple :

SELECT nom, prenom
FROM Client
WHERE region = (SELECT region FROM Station

WHERE nomStation = ’Santalba’)

est (partiellement) correct car la recherche dans la sous-requête s’effectue par la clé. En revanche il se peut
qu’aucun tuple ne soit ramené, ce qui génère une erreur.

Voici les conditions que l’on peut exprimer sur une relation

�

construite avec une requête imbriquée.

1. EXISTS R. RenvoieTRUE si

�

n’est pas vide,FALSE sinon.

2.

�

IN R où est un tuple dont le type est celui de

�

. TRUE si

�

appartient à

�

, FALSE sinon.

3.

�
�

�

� ANY R, où �
�

� est un comparateur SQL (� , � , � , etc.). RenvoieTRUE si la comparaison
avecau moins undes tuples de la relation unaire

�

renvoieTRUE.

4.

�
�

�

� ALL R, où �
�

� est un comparateur SQL (� , � , � , etc.). RenvoieTRUE si la comparaison
avectousles tuples de la relation unaire

�

renvoieTRUE.

De plus, toutes ces expressions peuvent être préfixées parNOT pour obtenir la négation. Voici quelques
exemples.

– Où (station, lieu) ne peut-on pas faire du ski ?

SELECT nomStation, lieu
FROM Station
WHERE nomStation NOT IN (SELECT nomStation FROM Activite

WHERE libelle = ’Ski’)

– Quelle station pratique le tarif le plus élevé ?

SELECT nomStation
FROM Station
WHERE tarif >= ALL (SELECT tarif FROM Station)

– Dans quelle station pratique-t-on une activité au même prix qu’à Santalba?

SELECT nomStation, libelle
FROM Activite
WHERE prix IN (SELECT prix FROM Activite

WHERE nomStation = ’Santalba’)

Ces requêtes peuvent s’exprimer sans imbrication (exercice), parfois de manière moins élégante ou
moins concise. La différence, en particulier, s’exprime facilement avecNOT IN ouNOT EXISTS.

Philippe Rigaux (rigaux@lri.fr),Cours de bases de données, 2003

6.4. AGRÉGRATION 74

6.3.2 Sous-requêtes correllées

Les exemples de requêtes imbriquées donnés précédemment pouvait être évalués indépendamment de
la requête principale, ce qui permet au système (s’il le juge nécessaire) d’exécuter la requête en deux
phases. Il peut arriver que la sous-requête soit basée sur une ou plusieurs valeurs issues des relations de la
requête principale. On parle alors derequêtes correllées.

Exemple :quels sont les clients (nom, prénom) qui ont séjourné à Santalba.

SELECT nom, prenom
FROM Client
WHERE EXISTS (SELECT ’x’ FROM Sejour

WHERE station = ’Santalba’
AND idClient = id)

Leid dans la requête imbriquée n’appartient pas à la tableSejourmais à la tableClient référencée
dans leFROM de la requête principale.

Remarque : on peut employer unNOT IN à la place duNOT EXISTS (exercice), de même que l’on
peut toujours employerEXISTS à la place deIN. Voici une des requêtes précédentes où l’on a appliqué
cette transformation, en utilisant de plus des synonymes.
Dans quelle station pratique-t-on une activité au même prix qu’à Santalba?

SELECT nomStation
FROM Activite A1
WHERE EXISTS (SELECT ’x’FROM Activite A2

WHERE nomStation = ’Santalba’
AND A1.libelle = A2.libelle
AND A1.prix = A2.prix)

Cette requête est elle-même équivalente à une jointure sans requête imbriquée.

6.4 Agrégration

Toutes les requêtes vues jusqu’à présent pouvaient être interprétées comme une suite d’opérations ef-
fectuéestuple à tuple. De même le résultat était toujours constitué de valeurs issues de tuples individuels.
Les fonctionnalitésd’agrégationde SQL permettent d’exprimer des conditionssur des groupes de tuples,
et de constituer le résultat paragrégation de valeursau sein de chaque groupe.

La syntaxe SQL fournit donc :

1. Le moyen de partitioner une relation engroupesselon certains critères.

2. Le moyen d’exprimer des conditions sur ces groupes.

3. Des fonctions d’agrégation.

Il existe un groupe par défaut : c’est la relation toute entière. Sans même définir de groupe, on peut
utiliser les fonctions d’agrégation.

6.4.1 Fonctions d’agrégation

Ces fonctions s’appliquent à une colonne, en général de type numérique. Ce sont :

1. COUNT qui compte le nombre de valeursnon nulles.

2. MAX etMIN.

3. AVG qui calcule la moyenne des valeurs de la colonne.



CHAPITRE 6. LE LANGAGE SQL 75

4. SUM qui effectue le cumul.

Exemple d’utilisation de ces fonctions :

SELECT COUNT(nomStation), AVG(tarif), MIN(tarif), MAX(tarif)
FROM Station

Remarque importante : on ne peut pas utiliser simultanément dans la clauseSELECT des fonctions
d’agrégation et des noms d’attributs (sauf dans le cas d’unGROUP BY, voir plus loin). La requête suivante
est incorrecte (pourquoi?).

SELECT nomStation, AVG(tarif)
FROM Station

A condition de respecter cette règle, on peut utiliser les ordres SQL les plus complexes. Exemple :
Combien de places a réservé Mr Kerouac pour l’ensemble des séjours ?.

SELECT SUM (nbPlaces)
FROM Client, Sejour
WHERE nom = ’Kerouac’
AND id = idClient

6.4.2 La clauseGROUP BY

Dans les requêtes précédentes, on appliquait la fonction d’agrégation à l’ensemble du résultat d’une
requête (donc éventuellement à l’ensemble de la table elle-même). Une fonctionnalité complémentaire
consiste àpartitionerce résultat en groupes, et à appliquer la ou les fonction(s) à chaque groupe.

On construit les groupes en associant les tuples partageant la même valeur pour une ou plusieurs co-
lonnes.

Exemple : afficher les régions avec le nombre de stations.

SELECT region, COUNT(nomStation)
FROM Station
GROUP BY region

Donc ici on constitue un groupe pour chaque région. Puis on affiche ce groupe sous la forme d’un tuple,
dans lequel les attributs peuvent être de deux types :

1. les attributsdont la valeur est constante pour l’ensemble du groupe, soit précisément les attributs du
GROUP BY. Exemple ici l’attributregion ;

2. le résultat d’une fonction d’agrégation appliquée au groupe : iciCOUNT(nomStation).

Bien entendu il est possible d’exprimer des ordres SQL complexes et d’appliquer unGROUP BY au
résultat. De plus, il n’est pas nécessaire de faire figurer tous les attributs duGROUP BY dans la clause
SELECT.

Exemple : on souhaite consulter le nombre de places reservées,par client.

SELECT nom, SUM (nbPlaces)
FROM Client, Sejour
WHERE id = idClient
GROUP BY id, nom

L’interprétation est simple : (1) on exécute d’abord la requêteSELECT ... FROM ... WHERE,
puis (2) on prend le résultat et on le partitione, enfin (3) on calcule le résultat des fonctions.

A l’issue de l’étape (2), on peut imaginer une relation qui n’est pas en première forme normale : on
y trouverait des tuples avec les attributs duGROUP BY sous forme de valeur atomique, puis des attributs
de typeensemble(donc interdits dans le modèle relationnel). C’est pour se ramener en 1FN que l’on doit
appliquer des fonctions d’agrégation à ces ensembles.

Exercice : pourquoi grouper surid, nom? Quels sont les autres choix possibles et leurs inconvé-
nients ?

Philippe Rigaux (rigaux@lri.fr),Cours de bases de données, 2003

6.5. MISES-À-JOUR 76

6.4.3 La clauseHAVING

Finalement, on peut faire porter des conditions sur les groupes avec la clauseHAVING. La clause
WHERE ne peut exprimer des conditions que sur les tuples pris un à un.

Exemple : on souhaite consulter le nombre de places reservées, par client,pour les clients ayant réservé
plus de 10 places.

SELECT nom, SUM (nbPlaces)
FROM Client, Sejour
WHERE id = idClient
GROUP BY nom
HAVING SUM(nbPlaces) >= 10

On voit que la condition porte ici sur une propriété de l’ensemble des tuples du groupe, et pas de chaque
tuple pris individuellement. La clauseHAVING est donc toujours exprimée sur le résultat de fonctions
d’agrégation.

6.5 Mises-à-jour

Les commandes de mise-à-jour (insertion, destruction,modification) sont considérablement plus simples
que les requêtes.

6.5.1 Insertion

L’insertion s’effectue avec la commandeINSERT dont la syntaxe est la suivante :

INSERT INTO R( A1, A2, ... An) VALUES (v1, v2, ... vn)

R est le nom d’une relation, et lesA1, ... An sont les noms des attributs dans lequels on souhaite
placer une valeur.Les autres attributs seront donc àNULL (ou à la valeur par défaut). Tous les attributs
spécifiésNOT NULL (et sans valeur par défaut) doivent donc figurer dans une clauseINSERT.

Les v1, ... vn sont les valeurs des attributs. Exemple de l’insertion d’un tuple dans la table
Client.

INSERT INTO Client (id, nom, prenom)
VALUES (40, ’Moriarty’, ’Dean’)

Donc, à l’issue de cette insertion, les attributsville etregion seront àNULL.
Il est également possible d’insérer dans une table le résultat d’une requête. Dans ce cas la partie

VALUES ... est remplacée par la requête elle-même. Exemple : on a créé une tableSites (lieu,
region) et on souhaite y copier les couples(lieu, region) déjà existant dans la tableStation.

INSERT INTO Sites (lieu, region)
SELECT lieu, region FROM Station

Bien entendu le nombre d’attributs et le type de ces derniers doivent être cohérents.

6.5.2 Destruction

La destruction s’effectue avec la clauseDELETE dont la syntaxe est :

DELETE FROM R
WHERE condition



CHAPITRE 6. LE LANGAGE SQL 77

R est bien entendu la table, etcondition est toute condition valide pour une clauseWHERE. En
d’autres termes, si on effectue, avant la destruction, la requête

SELECT * FROM R
WHERE condition

on obtient l’ensemble des lignes qui seront détruites parDELETE. Procéder de cette manière est un des
moyens de s’assurer que l’on va bien détruire ce que l’on souhaite....

Exemple : destruction de tous les clients dont le nom commence par ’M’.

DELETE FROM Client
WHERE nom LIKE ’M%’

6.5.3 Modification

La modification s’effectue avec la clauseUPDATE. La syntaxe est proche de celle duDELETE :

UPDATE R SET A1=v1, A2=v2, ... An=vn
WHERE condition

R est la relation, lesAi sont les attributs, lesvi les nouvelles valeurs etcondition est toute condition
valide pour la clauseWHERE. Exemple : augmenter le prix des activités de la station Passac de 10%.

UPDATE Activite
SET prix = prix * 1.1
WHERE nomStation = ’Passac’

Une remarque importante : toutes les mises-à-jour ne deviennent définitives qu’à l’issue d’une valida-
tion parcommit. Entretemps elles peuvent être annulées parrollback. Voir le cours sur la concurrence
d’accès.

6.6 Exercices

Exercice 11 Reprendre les expressions algébriques du premier exercice du chapitre algèbre, et les expri-
mer en SQL.

Exercice 12 Donnez l’expression SQL des requêtes suivantes, ainsi que le résultat obtenu avec la base du
chapitre “Le langage SQL”.

1. Nom des stations ayant strictement plus de 200 places.

2. Noms des clients dont le nom commence par ’P’ ou dont le solde est supérieur à 10 000.

3. Quelles sont les régions dont l’intitulé comprend (au moins) deux mots ?

4. Nom des stations qui proposent de la plongée.

5. Nom des clients qui sont allés à Santalba.

6. Donnez les couples de clients qui habitent dans la même région. Attention : un couple doit apparaître
une seule fois.

7. Nom des régions qu’a visité Mr Pascal.

8. Nom des stations visitées par des européens.

9. Qui n’est pas allé dans la station Farniente ?

10. Quelles stations ne proposent pas de la plongée ?

Philippe Rigaux (rigaux@lri.fr),Cours de bases de données, 2003

6.6. EXERCICES 78

11. Combien de séjours ont eu lieu à Passac ?

12. Donner, pour chaque station, le nombre de séjours qui s’y sont déroulés.

13. Donner les stations où se sont déroulés au moins 3 séjours.

14.

� � �

Les clients qui sont allés danstoutesles stations.

Exercice 13 (Valeurs nulles)On considère la table suivante :

STATION

NomStation Capacité Lieu Région Tarif
Gratuite 80 Guadeloupe Antilles
NullePart 150 2000

1. Donnez les résultats des requêtes suivantes (rappel : le’||’ est la concaténation de chaînes de
caractères.).

(a) SELECT nomStation FROM Station
WHERE tarif >200

(b) SELECT tarif * 3 FROM Station
WHERE nomStation LIKE ’%l%’ AND lieu LIKE ’%’

(c) SELECT ’ Lieu = ’ || lieu FROM Station
WHERE capacite >= 100 OR tarif >= 1000

(d) SELECT ’ Lieu = ’ || lieu FROM Station
WHERE NOT (capacite <100 AND tarif <1000)

2. Les deux dernières requêtes sont-elles équivalentes (i.e. donnent-elles le même résultat quel que soit
le contenu de la table) ?

3. Supposons que l’on ait conservé une logique bivaluée (avecTRUE et FALSE) et adopté la règle
suivante : toute comparaison avec unNULL donneFALSE. Obtient-on des résultats équivalents ?
Cette règle est-elle correcte ?

4. Même question, en supposant que toute comparaison avecNULL donneTRUE.

Exercice 14 On reprend la requête constituant la liste des stations avec leurs activités, légèrement modi-
fiée.

SELECT S.nomStation, tarif, libelle, prix
FROM Station S, Activites A, Sejour
WHERE S.nomStation = A.nomStation

1. La tableSejour est-elle nécessaire dans leFROM?

2. Qu’obtient-on dans les trois cas suivants : (1) la tableSejour contient 1 tuple, (2) la tableSejour
contient 100 000 tuples, (3) la tableSejour est vide.

3. Soit trois tablesR, S etT ayant chacune un seul attributA. On veut calculerR � (S � T).

(a) La requête suivante est-elle correcte ? Expliquez pourquoi.
SELECT R.A FROM R, S, T WHERE R.A=S.A OR R.A=T.A

(b) Donnez la bonne requête.


