
Exploiting Many-Valued Variables in MaxSAT ∗

Josep Argelich
Universitat de Lleida

Chu Min Li
MIS, Université de Picardie

Felip Manyà
IIIA-CSIC

Abstract

Solving combinatorial optimization problems by reduc-
ing them to MaxSAT has shown to be a competitive prob-
lem solving approach. Since a lot of optimization prob-
lems have many-valued variables, we propose to exploit
the domain information of the many-valued variables to en-
hance MaxSAT-based problem solving: first, we define a
new way of encoding weighted maximum constraint sat-
isfaction problems to both Boolean MaxSAT and many-
valued MaxSAT; and second, we define a variable selection
heuristic that takes into account the domain information
and allow us to easily implement a many-valued MaxSAT
solver. Moreover, the empirical results provide evidence of
the good performance of the new encodings and the new
branching heuristic on a representative set of instances.

1 Introduction

There has been tremendous progress in theoretical and

applied aspects of the MaxSAT problem over the last

decade. As a result, there are now a number of competi-

tive solvers that are able to solve challenging optimization

problems in different areas (see e.g. [1, 2, 9, 16] and the

references therein for previous and related work).

Given that solving combinatorial optimization problems

by reducing them to MaxSAT has shown to be a competitive

generic problem solving approach for a number of domains,

and that many problems are more naturally represented with

many-valued variables instead of Boolean variables, we be-

lieve that it is worth to investigate the extension of existing

Boolean MaxSAT results to the many-valued framework.

In this paper we propose to exploit the domain in-

formation of many-valued variables to enhance MaxSAT-

based problem solving: first, we define a new way of en-

coding Weighted Maximum Constraint Satisfaction Prob-

lems (WMaxCSP) to both Boolean MaxSAT and many-

∗This work was supported by the Generalitat de Catalunya grant

AGAUR 2014-SGR-118, and the MINECO-FEDER project RASO

TIN2015-71799-C2-1-P/2-P. The third author was supported by Mobility

Grant PRX16/00215 of the Ministerio de Educación, Cultura y Deporte.

valued MaxSAT; and second, we define a variable selec-

tion heuristic that takes into account the domain information

and allows us to easily implement a many-valued MaxSAT

solver. Moreover, the empirical results provide evidence of

the good performance of the new encodings and the new

branching heuristic on a representative set of instances.

The paper is structured as follows. Section 2 defines

some basic concepts. Section 3 presents new encodings

from WMaxCSP to many-valued MaxSAT, and new encod-

ings from WMaxCSP to Boolean MaxSAT. Section 4 de-

scribes Mv-MaxSatz. Section 5 reports on the empirical

investigation. Section 6 gives the conclusions.

2 Preliminaries

Given a set of variables {x1, . . . , xn}, a Boolean literal

is a variable xi or its negation ¬xi. A many-valued literal

is an expression of the form xj = i or xj �= i, where i be-

longs to a truth value set or domain N such that |N | ≥ 2.

A weighted (Boolean/many-valued) clause is a pair (c, w),
where c is a disjunction of (Boolean/many-valued) liter-

als and w, its weight, is a positive integer or infinity. If

its weight is infinity, it is a hard clause (we omit infinity

weights for simplicity); otherwise it is a soft clause. A

(Boolean/many-valued) Weighted Partial MaxSAT instance

is a multiset of weighted (Boolean/many-valued) clauses.

A Boolean assignment assigns to each variable either 0

or 1, and a many-valued assignment assigns to each variable

an element of N . A Boolean assignment satisfies xi (¬xi)

if xi evaluates to 1 (0); and a many-valued assignment satis-

fies xj = i if xj evaluates to i; otherwise it satisfies xj �= i.
A (Boolean/many-valued) assignment satisfies a weighted

clause (c, w) if it satisfies a literal of c, and satisfies a mul-

tiset of clauses if it satisfies all its clauses.

The (Boolean/many-valued) Weighted Partial MaxSAT

problem, or WPMaxSAT, for an instance φ is to find a

(Boolean/many-valued) assignment that satisfies the hard

clauses and minimizes the sum of the weights of the un-

satisfied soft clauses. The most common subproblems

of WPMaxSAT are the following: Weighted MaxSAT

(WMaxSAT), which is WPMaxSAT without hard clauses;

Partial MaxSAT (PMaxSAT), which is WPMaxSAT when

2017 IEEE 47th International Symposium on Multiple-Valued Logic

2378-2226/17 $31.00 © 2017 IEEE

DOI 10.1109/ISMVL.2017.42

155

all the soft clauses have the same weight, and MaxSAT,

which is PMaxSAT without hard clauses.

The (Boolean/many-valued) Weighted Partial MinSAT

problem, or WPMinSAT, is to find a (Boolean/many-

valued) assignment that satisfies the hard clauses and maxi-

mizes the sum of the weights of the unsatisfied soft clauses.

It is the dual problem of WPMaxSAT, and is used in Sec-

tion 3 to define more efficient MaxSAT encodings. The

most common subproblems of WPMinSAT, which are de-

fined as in the WPMaxSAT case, are WMinSAT, PMinSAT

and MinSAT [14, 15].

A Constraint Satisfaction Problem (CSP) instance is a

triple 〈X ,D, C〉, where X = {X1, . . . , Xn} is a set of

variables, D = {d(X1), . . . , d(Xn)} is a set of finite do-

mains, and C = {C1, . . . , Cm} is a set of constraints.

Each Ci = 〈Si, Ri〉 in C is a relation Ri over a subset

of Si = {Xi1 , . . . , Xik} ⊆ X , called the scope of Ci.

Ri may be represented extensionally as a subset of the

Cartesian product d(Xi1) × · · · × d(Xik). The tuples be-

longing to Ri represent the allowed values and are called

goods, and the rest of tuples represent the forbidden values

and are called nogoods. An assignment v for a CSP in-

stance 〈X ,D, C〉 is a mapping that assigns to each variable

Xi ∈ X an element v(Xi) ∈ d(Xi). It satisfies a constraint

〈{Xi1 , . . . , Xik}, Ri〉 ∈ C iff 〈v(Xi1), . . . , v(Xik)〉 ∈ Ri.

The CSP for an instance P is to find a satisfying assignment

for P .

A Weighted MaxCSP (WMaxCSP) instance is defined

as a triple 〈X ,D, C〉, where X and D are variables and do-

mains as in CSP, and C is a set of weighted constraints. A

weighted constraint 〈C,w〉 is just a classical constraint C
plus a weight w over a finite set of natural numbers. The

cost of an assignment v is the sum of the weights of all con-

straints violated by v. An optimal solution of WMaxCSP

for an instance P is an assignment for P with minimal cost.

3 Encodings from WMaxCSP to Many-
Valued WMaxSAT

WMaxCSP is a framework for modeling optimization

problems, and a remarkable collection of practical prob-

lems is available under this formalism. Because of that, it is

important to define efficient encodings from WMaxCSP to

WPMaxSAT, as was done from CSP to SAT.

We first define the many-valued counterparts of the di-

rect and minimal support encodings from WMaxCSP to

Boolean WPMaxSAT of [5], and then the new hybrid en-

codings. All the mentioned encodings are correct: solving

a WMaxCSP instance is equivalent to solving the instance

derived by any of our encodings. It is important to high-

light that the minimal support encoding is only valid for

binary constraints whereas the direct encoding is valid for

constraints involving an arbitrary number of variables.

In the following, we associate a many-valued variable xi

with each CSP variable Xi. Besides, we assume that all the

CSP variables have the same domain d(X), and so the truth

value set N = d(X). If the CSP variables have different

domains, then N =
⋃n

i=1 d(Xi), and we should add the

unit clauses xi �= j for all j such that j ∈ N and j �∈ d(Xi).
We note that, for encoding WMaxCSP, hard clauses are

needed in the Boolean case but not in the many-valued case.

The hard clauses state that exactly one of the Boolean vari-

ables associated with a given CSP variable is true. Be-

cause of that we talk about encodings from WMaxCSP to

Boolean WPMaxSAT, and encodings from WMaxCSP to

many-valued WMaxSAT.

Definition 1. The many-valued WMaxSAT direct encod-
ing (dir) of a WMaxCSP instance 〈X ,D, C〉 has a clause

(x1 �= i1 ∨ · · · ∨ xm �= im, w) for each nogood (X1 =
i1, . . . , Xm = im) of each constraint 〈C,w〉 of C with

scope {X1, . . . , Xm}.

The correctness of the encoding follows from the fact

that there is a one-to-one mapping between CSP and many-

valued assignments, and from the fact that the encoding

forces the violation of exactly one clause for each violated

constraint, and all the clauses are satisfied when the con-

straint is satisfied. So, minimizing the sum of the weights

of the violated clauses is equivalent to minimizing the sum

of the weights of the violated constraints. Moreover, from

an optimal many-valued interpretation we derive an optimal

CSP interpretation by assigning the value i to the CSP vari-

able X iff the many-valued interpretation satisfies x = i.

Example 1. Let 〈X ,D, C〉 be the WMaxCSP instance

where X = {X,Y }, d(X) = d(Y) = {1, 2, 3}, and

C = {〈X �= Y, 3〉}. The many-valued WMaxSAT di-

rect encoding contains the clauses (x �= 1 ∨ y �= 1, 3),
(x �= 2 ∨ y �= 2, 3), and (x �= 3 ∨ y �= 3, 3).

In the support encodings from CSP to SAT and from

WMaxCSP to Boolean WPMaxSAT, which are only valid

for binary constraints, there are clauses that encode the sup-

port for a value instead of encoding conflicts via nogoods.

The support for a value i of a variable X across a binary

constraint with scope {X,Y } is the set of values of Y which

allow X = i. If v1, . . . , vk are the supporting values of vari-

able Y for X = i, the clause ¬xi ∨ yv1
∨ · · · ∨ yvk

(called

support clause) is added. There is one support clause for

each value in the domain and for each pair of variables X,Y
involved in a constraint. In the support encoding, a clause

in each direction is used: one for the pair X,Y and one for

Y,X . However, in the minimal support encoding, the added

clauses are the support clauses either for all the domain val-

ues of either X or Y . We focus on the minimal support

encoding because it performed better in [5] and in our tests.

156

Definition 2. The many-valued WMaxSAT minimal sup-
port encoding (sup) of a binary WMaxCSP instance

〈X ,D, C〉 contains, for each constraint 〈C,w〉 of C with

scope {X,Y }, either the clause (x �= i∨y = v1∨· · ·∨y =
vn, w) for each i ∈ d(X), where v1, . . . , vn is the support

for i, or the clause (y �= j ∨ x = u1 ∨ · · · ∨ x = um, w) for

each j ∈ d(Y), where u1, . . . , um is the support for j.

The many-valued WMaxSAT minimal support encoding

also forces the violation of one clause for each violated con-

straint. Observe that we have to select the support clauses

either for the variable X or for the variable Y . In the ex-

periments, we select the variable which produces clauses of

smaller size: we give a score of 16 to unit clauses, a score

of 4 to binary clauses, a score of 1 to ternary clauses and a

score of 0 to the rest of clauses, and then select the variable

with the higher sum of scores.

Example 2. Let 〈X ,D, C〉 be the WMaxCSP instance

where X = {X,Y }, d(X) = d(Y) = {1, 2, 3}, and

C = {〈X �= Y, 2〉}. The many-valued WMaxSAT

minimal support encoding contains the clauses

(x �= 1 ∨ y = 2 ∨ y = 3, 2), (x �= 2 ∨ y = 1 ∨ y = 3, 2),
and (x �= 3 ∨ y = 1 ∨ y = 2, 2). We could also de-

fine this encoding by adding the support clauses

for the domain values of Y instead of X:

(y �= 1 ∨ x = 2 ∨ x = 3, 2), (y �= 2 ∨ x = 1 ∨ x = 3, 2),
and (y �= 3 ∨ x = 1 ∨ x = 2, 2).

The experiments about mappings from WMaxCSP to

Boolean WPMaxSAT instances described in the literature

indicate that both the encoding size and the inference

achieved with a particular encoding are decisive in the per-

formance of the encoding [5]. To produce encodings of

smaller size whenever possible, we take a different ap-

proach: we do not apply the same encoding to the whole

WMaxCSP [6]. Instead of that, we choose the most conve-

nient encoding for each individual constraint, and refer to

such encodings as hybrid encodings. For example, the con-

straint X �= Y has a linear number of literal occurrences

in the domain size for the direct encoding whereas it has a

quadratic number for the minimal support encoding. In con-

trast, the constraint X = Y has a quadratic number of literal

occurrences for the direct encoding and a linear number for

the minimal support encoding.

Our first hybrid encoding, called binary hybrid encoding,

combines the direct and minimal support encodings, and is

only valid for binary constraints. It relies on the following

observation: When the number of nogoods (#nogoods) is

low, we get smaller encodings with the direct encoding, but

when the number of goods (#goods) is low, we get smaller

encodings with the minimal support encoding. On the other

hand, the minimal support encoding outperforms the direct

encoding on a wide range of benchmarks [5], presumably

due to the inference achieved. So, we propose a hybrid

encoding that gives priority to the minimal support encod-

ing over the direct encoding but prefers the direct encoding

when the number of nogoods is much smaller. We control

this situation with a parameter k in the definition below; k
was set to 0.3 in our experiments.

Definition 3. The many-valued WMaxSAT binary hy-
brid encoding (hyb2) of a binary WMaxCSP instance

〈X ,D, C〉 contains, for each constraint 〈C,w〉 of C with

scope {X,Y }, the many-valued WMaxSAT direct encoding

of 〈C,w〉 if #nogoods < k × #goods , where k ∈ (0, 1);
otherwise, it contains the many-valued WMaxSAT minimal

support encoding of 〈C,w〉.

Example 3. Let 〈X ,D, C〉 be the WMaxCSP instance

where X = {X,Y, Z}, d(X) = d(Y) = d(Z) =
{1, . . . , 7}, C = {〈X �= Y, 2〉, 〈X = Z, 3〉}. The many-

valued WMaxSAT binary hybrid encoding uses the direct

encoding for the constraint X �= Y because #nogoods =
7 and #goods = 42 (#nogoods/#goods = 0.16 <
0.3), and the minimal support encoding for the constraint

X = Z because #nogoods = 42 and #goods = 7
(#nogoods/#goods = 6 ≥ 0.3). Hence, the encoding

contains the clauses (x �= 1 ∨ y �= 1, 2), (x �= 2 ∨ y �=
2, 2), . . . , (x �= 7 ∨ y �= 7, 2), (x �= 1 ∨ z = 1, 3), (x �=
2 ∨ z = 2, 3), . . . , (x �= 7 ∨ z = 7, 3).

Next we define the n-ary hybrid encoding, which is valid

for non-binary constraints too. Recall that the only avail-

able option for non-binary constraints is the direct encod-

ing. The idea behind this new encoding is to exploit the

complementarity between MaxSAT and MinSAT with the

ultimate goal of producing an encoding with as few n-ary

clauses as possible.

The first observation is that the many-valued WMinSAT

counterpart encoding of the many-valued WMaxSAT direct

encoding adds a clause for every good instead of adding a

clause for every nogood [7]. This means that, for a given

constraint, the many-valued WMinSAT direct encoding is

smaller than the many-valued WMaxSAT encoding when

the number of goods is smaller than the number of nogoods.

Since the goal of WMinSAT is to maximize the sum of the

weights of the violated clauses, the many-valued WMinSAT

direct encoding is correct because it violates exactly one

clause for each satisfied constraint, and no clause is violated

if the constraint is violated. Thus, maximizing the sum of

the weights of the violated clauses is equivalent to maximize

the sum of the weights of the satisfied constraints. In other

words, minimizing the sum of the weights of the satisfied

clauses is equivalent to minimize the sum of the weights of

the violated constraints.

On the other hand, any many-valued WMinSAT in-

stance can be transformed into an equivalent many-valued

157

WMaxSAT instance as follows [8, 18]: replace each clause

c = (l1 �= i1 ∨ l2 �= i2 ∨ · · · ∨ lm �= im, w) by the set of

clauses S = {(l1 = i1, w), (l1 �= i1∨l2 = i2, w), . . . , (l1 �=
i1 ∨ l2 �= i2 ∨ · · · ∨ lm = im, w)}. It holds that an as-

signment satisfies c iff it violates exactly one clause of S,

and violates c iff it satisfies all the clauses of S. So, for

a constraint with k goods and weight w, an assignment vi-

olates k − 1 clauses of the above transformation for each

satisfied constraint, and violates k clauses for each violated

constraint. Therefore, the difference of the sum of weights

of violated clauses between violating and satisfying a con-

straint is w. Thus, if a WMaxCSP instance P is first trans-

lated into a many-valued WMinSAT instance Pminsat and

then Pminsat is translated into a many-valued WMaxSAT

instance Pmaxsat using the above transformation, it turns

out that any optimal many-valued assignment of Pmaxsat is

an optimal CSP assignment of P , and vice versa. Observe

that the minimum sum of weights of the violated clauses in

Pmaxsat can be different from the minimum sum of weights

of the violated constraints in P . We just need to calculate

the weights in P after instantiating its variables with an op-

timal assignment.

Definition 4. The many-valued WMaxSAT n-ary hy-
brid encoding (hybN) of a WMaxCSP instance 〈X ,D, C〉
contains, for each constraint 〈C,w〉 of C with scope

{X1, . . . , Xn}, the encoding with the smaller number of n-

ary clauses between the many-valued WMaxSAT direct en-

coding of 〈C,w〉 and the encoding obtained after transform-

ing the many-valued WMinSAT direct encoding of 〈C,w〉
into many-valued WMaxSAT.

Example 4. Let 〈X ,D, C〉 be the WMaxCSP instance

where X = {X,Y }, d(X) = d(Y) = {1, . . . , 8}, and

C = {〈X = Y, 5〉}. The many-valued WMaxSAT direct en-

coding has 56 clauses ({(x �= i∨y �= j, 5) | i, j ∈ d(X), i �=
j}) while the many-valued WMinSAT direct encoding has

8 clauses ({(x �= i ∨ y �= i, 5) | i ∈ d(X)}). The trans-

formation into WMaxSAT of the WMinSAT encoding pro-

duces 16 clauses ({(x = i, 5), (x �= i ∨ y = i, 5) | i ∈
d(X)}). Thus, the last encoding is selected. Observe that if

C = {〈X �= Y, 5〉}, then we should select the many-valued

WMaxSAT direct encoding.

The direct and minimal support encodings from

WMaxCSP to Boolean WPMaxSAT were defined in [5],

but no Boolean hybrid MaxSAT encoding has been defined

so far. To obtain the direct and minimal support encodings

from WMaxCSP to Boolean WPMaxSAT from their many-

valued counterparts, as well as the new Boolean binary and

n-ary hybrid encodings, we must associate the Boolean lit-

eral xi with the many-valued literal x = i, and the Boolean

literal ¬xi with the many-valued literal x �= i. Besides, for

each CSP variable X with domain {1, . . . ,m}, the follow-

ing hard clauses must be added: (i) x1 ∨ · · · ∨ xm (ALO

clause), and (ii) {¬xi ∨ ¬xj |1 ≤ i < j ≤ m}(AMO

clauses). The ALO (at-least-one) and AMO (at-most-one)

clauses ensure that exactly one of the Boolean variables as-

sociated with a CSP variable evaluates to true in each feasi-

ble assignment.

4 The Solver Mv-MaxSatz

Mv-MaxSatz is a many-valued WPMaxSAT solver built

on top of the Boolean WPMaxSAT solver MaxSatz [10, 13].

We converted a Boolean WPMaxSAT solver into a many-

valued WPMaxSAT solver because it is much easier than

developing a solver from scratch, and because in this way

new solving Boolean WPMaxSAT techniques may be easily

incorporated into many-valued WPMaxSAT.

Given an input many-valued WPMaxSAT instance, Mv-

MaxSatz works as follows: (i) It generates the correspond-

ing Boolean WPMaxSAT encoding as explained at the end

of the previous section, and records the set of Boolean

variables associated with each many-valued variable; (ii) it

finds an optimal Boolean WPMaxSAT solution with Mv-

MaxSatz; and (iii) it returns an optimal solution to the input

many-valued WPMaxSAT instance, derived from the solu-

tion in the previous step.

MaxSatz implements the branch-and-bound scheme, and

the search space is formed by a tree representing all

the possible truth assignments. We refer to [10, 13]

for a detailed description, due to lack of space. Its

main characteristic is that it computes lower bounds by

detecting disjoint inconsistent subsets with unit propa-

gation [11, 12], and its goal is to minimize the num-

ber of violated clauses. MaxSatz selects the branching

variables applying the following heuristic: Let hard(l)
(soft(l)) be the number of occurrences of literal l in hard

(soft) clauses, and let score(l) = 2× hard(l) + soft(l).
It chooses a variable x with the highest value of

score(x)× score(¬x) + score(x) + score(¬x).
Mv-MaxSatz differs in two aspect from MaxSatz: (i) It

updates the state of the set of Boolean variables associated

with a many-valued variable by removing the Boolean vari-

ables which are instantiated to false; in this way, the solver

knows the current domain of each many-valued variable;

and (ii) it considers the domain information in the branch-

ing heuristic: Firstly, it creates a candidate set of Boolean

variables formed by the variables that encode many-valued

variables of minimum domain size. Secondly, it applies the

original variable selection heuristic of MaxSatz only to the

Boolean variables belonging to the candidate set. So, Mv-

MaxSatz is able to exploit the structural information about

the domain that is hidden in standard Boolean encodings.

As we show in the experiments, this new heuristic allows

one to achieve significant speed-ups. A similar approach to

build many-valued solvers was applied in [3, 4, 6].

158

Table 1. Results for binary WMaxCSPs solved with MaxSatz and Mv-MaxSatz comparing encodings
hyb2 and sup. Instances have 25 variables of domain size 5, a number of constraints ranging from 230
to 280, and a random number of goods per constraint ranging from 1 to 24. Timeout: 1800 seconds.
Mean time in seconds.

(n, d, c) # Mv-MaxSatz (hyb2) Mv-MaxSatz (sup) MaxSatz (hyb2) MaxSatz (sup)

(25, 5, 230) 100 910 (68) 1027 (63) 1152 (49) 1203 (48)

(25, 5, 240) 100 1055 (41) 1083 (28) 1342 (32) 1204 (28)

(25, 5, 250) 100 1021 (22) 1187 (23) 1308 (20) 1330 (20)

(25, 5, 260) 100 1228 (16) 1111 (10) 1253 (8) 1256 (7)

(25, 5, 270) 100 1276 (9) 1286 (7) 1443 (1) 1621 (2)

(25, 5, 280) 100 1546 (3) 0 (0) 1223 (1) 1276 (2)

Total instances 600 159 131 111 107

Table 2. Results for binary WMaxCSPs solved with MaxSatz and Mv-MaxSatz comparing encodings
hybN and dir. Instances have 22 variables of domain size 5, a number of constraints ranging from 150
to 200, and a random number of goods per constraint ranging from 1 to 24. Timeout: 1800 seconds.
Mean time in seconds.

(n, d, c) # Mv-MaxSatz (hybN) Mv-MaxSatz (dir) MaxSatz (hybN) MaxSatz (dir)

(22, 5, 150) 100 22 (100) 57 (100) 500 (98) 1786 (1)

(22, 5, 160) 100 36 (100) 107 (100) 628 (91) 0 (0)

(22, 5, 170) 100 67 (100) 201 (99) 820 (70) 0 (0)

(22, 5, 180) 100 109 (100) 322 (100) 1142 (51) 0 (0)

(22, 5, 190) 100 162 (100) 519 (97) 1244 (24) 0 (0)

(22, 5, 200) 100 24 (100) 661 (97) 1334 (10) 0 (0)

Total instances 600 600 593 344 1

5 Empirical Investigation

We compared the performance of the following encod-

ings from WMaxCSP to Boolean WPMaxSAT and many-

valued WMaxSAT: direct encoding (dir), minimal sup-

port encoding (sup), binary hybrid encoding (hyb2) and n-

ary hybrid encoding (hybN). The Boolean encodings were

solved with MaxSatz and the many-valued encodings were

solved with Mv-MaxSatz. Experiments were executed on a

cluster with Intel Xeon CPU E5-2620 @ 2GHz processors

with 4GB of RAM.

We solved sets of 100 binary and ternary WMaxCSP in-

stances generated using the so-called model B [17], con-

sidering that all the constraints have the same weight.

For an instance with n variables of domain size d, we

choose a random subset of exactly c constraints with scope

{X1, . . . , Xk}, with a random number of nogoods ranging

from 1 to dk − 1.

In the tables showing the experimental results, the first

column displays the input parameters of the generators, the

second column displays the number of tested instances, and

the rest of columns display, for the encoding and solver in-

dicated in the first row, the mean CPU time needed to solve

an instance among the instances solved within a cutoff time

of 1800 seconds, followed by the total number of solved

instances in parentheses. The best results are in bold.

Tables 1 and 2 show the results for binary WMaxCSPs,

and Table 3 for ternary WMaxCSPs. Table 1 does not show

results for the direct encoding and encoding hybN because

no instance was solved within the cutoff time. As we men-

tioned above, the minimal support encoding is generally

quite superior to the direct encoding. Because of that, we

solved the instances in Table 2, which are easier, to com-

pare encoding hybN with the direct encoding on binary con-

straints.

We draw the following conclusions from the results:

i) Many-valued MaxSAT outperforms Boolean MaxSAT.

For binary WMaxCSP, 48 and 256 additional instances in-

stances are solved if we take the best results for each case

(Tables 1 and 2). For ternary WMaxCSPs, 396 additional

instances are solved (Table 3). It is clear that the ex-

ploitation of the domain information is decisive for get-

159

Table 3. Results for ternary WMaxCSPs solved with MaxSatz and Mv-MaxSatz comparing encodings
hybN and dir. Instances have 18 variables of domain size 5, a number of constraints ranging from 100
to 150, and a random number of goods per constraint ranging from 1 to 124. Timeout: 1800 seconds.
Mean time in seconds.

(n, d, c) # Mv-MaxSatz (hybN) Mv-MaxSatz (dir) MaxSatz (hybN) MaxSatz (dir)

(18, 5, 100) 100 317 (98) 645 (96) 1463 (10) 0 (0)

(18, 5, 110) 100 444 (95) 874 (63) 1617 (1) 0 (0)

(18, 5, 120) 100 871 (92) 1125 (31) 0 (0) 0 (0)

(18, 5, 130) 100 985 (62) 1343 (11) 0 (0) 0 (0)

(18, 5, 140) 100 1151 (37) 1278 (4) 0 (0) 0 (0)

(18, 5, 150) 100 1386 (23) 0 (0) 0 (0) 0 (0)

Total instances 600 407 205 11 0

ting faster solvers. It is also worth noticing that the cost of

our approach to building many-valued solvers from Boolean

solvers is very low.

ii) The hybrid encoding hyb2 produces significant speed-

ups. In the Boolean (many-valued) case, 5 (28) additional

instances are solved.

iii) The hybrid encoding hybN has a highly competitive

performance profile. For binary WMaxCSPs, it solves 343

instances more than the direct encoding in the Boolean case.

For ternary WMaxCSPs, it solves 202 instances more than

the direct encoding in the many-valued case.

6 Concluding Remarks

We showed that many-valued MaxSAT-based problem

solving can be more competitive than Boolean MaxSAT-

based problem solving. Besides, we provided an efficient

approach to easily build a many-valued MaxSAT solver

from a Boolean MaxSAT solver. We also defined origi-

nal hybrid encodings from WMaxCSP to both many-valued

MaxSAT and Boolean MaxSAT, which are much more effi-

cient than the corresponding direct and support encodings.

References

[1] A. Abramé and D. Habet. On the resiliency of unit propaga-

tion to Max-Resolution. In Proc. of IJCAI, pages 268–274,

2015.
[2] C. Ansótegui, J. Gabàs, and J. Levy. Exploiting subproblem

optimization in SAT-based MaxSAT algorithms. J. Heuris-
tics, 22(1):1–53, 2016.

[3] C. Ansótegui, J. Larrubia, C. M. Li, and F. Manyà. Exploit-

ing multivalued knowledge in variable selection heuristics

for sat solvers. Annals of Mathematics and Artificial Intelli-
gence, 49(1-4):191–205, 2007.

[4] C. Ansótegui, J. Larrubia, and F. Manyà. Boosting Chaff’s

performance by incorporating CSP heuristics. In Proc. of
CP, pages 96–107, 2003.

[5] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Effi-

cient encodings from CSP into SAT, and from MaxCSP into

MaxSAT. Multiple-Valued Logic and Soft Computing, 19(1-

3):3–23, 2012.
[6] J. Argelich, C. M. Li, F. Manyà, and Z. Zhu. Many-valued

MinSAT solving. In Proc. of ISMVL, pages 32–37, 2014.
[7] J. Argelich, C. M. Li, F. Manyà, and Z. Zhu. MinSAT versus

MaxSAT for Optimization Problems. In Proc. of CP, pages

133–142, 2013.
[8] A. Kügel. Natural Max-SAT encoding of Min-SAT. In

Proc. of LION 6, 2012.
[9] C. M. Li and F. Manyà. MaxSAT, hard and soft constraints.

In A. Biere, H. van Maaren, and T. Walsh, editors, Hand-
book of Satisfiability, pages 613–631. IOS Press, 2009.

[10] C. M. Li, F. Manyà, N. O. Mohamedou, and J. Planes.

Resolution-based lower bounds in MaxSAT. Constraints,

15(4):456–484, 2010.
[11] C. M. Li, F. Manyà, and J. Planes. Exploiting unit propa-

gation to compute lower bounds in branch and bound Max-

SAT solvers. In Proc. of CP, pages 403–414, 2005.
[12] C. M. Li, F. Manyà, and J. Planes. Detecting disjoint incon-

sistent subformulas for computing lower bounds for Max-

SAT. In Proc. of AAAI, pages 86–91, 2006.
[13] C. M. Li, F. Manyà, and J. Planes. New inference rules

for Max-SAT. Journal of Artificial Intelligence Research,

30:321–359, 2007.
[14] C. M. Li, Z. Zhu, F. Manyà, and L. Simon. Minimum satis-

fiability and its applications. In Proc. of IJCAI, pages 605–

610, 2011.
[15] C. M. Li, Z. Zhu, F. Manyà, and L. Simon. Optimizing with

minimum satisfiability. Artificial Intelligence, 190:32–44,

2012.
[16] A. Morgado, F. Heras, M. Liffiton, J. Planes and J. Marques-

Silva. Iterative and core-guided MaxSAT solving: A survey

and assessment. Constraints, 18(4):478–534, 2013.
[17] B. Smith and M. Dyer. Locating the phase transition in bi-

nary constraint satisfaction problems. Artificial Intelligence,

81:155–181, 1996.
[18] Z. Zhu, C. M. Li, F. Manyà, and J. Argelich. A New En-

coding from MinSAT into MaxSAT. In Proc. of CP, pages

455–463, 2012.

160

