
Clausal Form Transformation in MaxSAT ∗

Chu Min Li
MIS, Université de Picardie

Felip Manyà
IIIA-CSIC

Joan Ramon Soler
IIIA-CSIC

Abstract

Some clausal form transformation algorithms used in
SAT solving cannot be used in MaxSAT solving because
they preserve satisfiability but do not preserve the minimum
number of unsatisfied formulas. In this paper we define
three different MaxSAT clausal form transformations, in-
spired on the transformations applied in SAT, that derive
a multiset of clauses ψ from a multiset of arbitrary proposi-
tional formulas φ in such a way that the minimum number
of unsatisfied clauses in ψ is equal to the minimum number
of unsatisfied formulas in φ.

1 Introduction

There has been tremendous progress in theoretical and

applied aspects of the MaxSAT problem over the last

decade. As a result, there are now a number of competi-

tive solvers that are able to solve challenging optimization

problems in different areas (see e.g. [1, 2, 3, 4, 5, 6, 7, 9,

10, 11, 12, 13, 14, 18, 19, 20, 21, 22, 23] and the references

therein).

MaxSAT solvers require the input to be a multiset of

clauses, and return an assignment that minimizes the num-

ber of unsatisfied clauses in the input multiset. However,

many problems in real-world applications are encoded as

a set of propositional formulas which are not necessarily

clauses. Such encodings cannot be solved with modern

MaxSAT solvers. Thus, some kind of clausal form trans-

formation is needed to solve them.

In SAT, there are a number of algorithms that transform

a set of arbitrary propositional formulas into a satisfiabil-

ity equivalent set of clauses [24, 25]. Thus, SAT solvers

requiring the input in clausal form can decide the satisfia-

bility of a set of propositional formulas by using those algo-

rithms. Unfortunately, some clausal form transformations

used in SAT are not valid in MaxSAT. The reason is that

they do not preserve the minimum number of unsatisfied

∗This work was supported by the MINECO-FEDER project RASO

TIN2015-71799-C2-1-P.

formulas in the input set of formulas. It is therefore impor-

tant to analyze if existing SAT clausal form transformations

are valid in MaxSAT, as well as to investigate how they can

be adapted to deal with MaxSAT instances when they are

not valid.

In this paper we address the problem of deriving a multi-

set of clauses ψ from a multiset of arbitrary propositional

formulas φ in such a way that the minimum number of

unsatisfied clauses in ψ is equal to the minimum num-

ber of unsatisfied formulas in φ. Thus, by deriving such

cost-preserving multisets, we provide a way of solving the

MaxSAT problem of a multiset of arbitrary propositional

formulas with MaxSAT solvers in which the input is re-

quired to be a multiset of clauses.

We define three different MaxSAT clausal form transfor-

mations. The first transformation adds an additional step

to the direct SAT clausal form transformation based on ap-

plying logical equivalences. The second transformation is a

variant of the first one that has the advantage of producing

more compact encodings. The third transformation avoids

the combinatorial explosion of the other transformations by

introducing auxiliary variables to rename subformulas.

As in SAT, we can make the distinction between

MaxSAT and non-clausal MaxSAT. The former is to find an

assignment that minimizes the number of clauses that can

be unsatisfied in a given multiset of clauses. The latter is to

find an assignment that minimizes the number of formulas

that can be unsatisfied in a given multiset of arbitrary propo-

sitional formulas. In this paper, it is clear from the context

when we refer to MaxSAT or non-clausal MaxSAT.

MaxSAT is also defined as the problem of finding an as-

signment that maximizes the number of clauses that can be

satisfied in a given multiset of clauses. This definition is

equivalent to the one in the previous paragraph, because the

assignments that maximize the number of satisfied clauses

are also the assignments that minimize the number of unsat-

isfied clauses. We prefer the minimization version because

modern MaxSAT solvers find optimal solutions by minimiz-

ing the number of unsatisfied clauses.

The paper is structured as follows. Section 2 defines ba-

sic concepts. Section 3 defines and discuss different ways

of transforming multisets of propositional formulas into

132

2019 IEEE 49th International Symposium on Multiple-Valued Logic (ISMVL)

2378-2226/19/$31.00 ©2019 IEEE
DOI 10.1109/ISMVL.2019.00031

MaxSAT clausal forms. Section 4 gives the conclusions.

2 Preliminaries

Given a set of variables {x1, . . . , xn}, a literal is a vari-

able xi or its negation ¬xi. A weighted clause is a pair

(c, w), where c is a disjunction of literals and w, its weight,

is a positive integer or infinity. If its weight is infinity, it

is a hard clause (we omit infinity weights for simplicity);

otherwise it is a soft clause. A Weighted Partial MaxSAT

instance is a multiset of weighted clauses.

We represent MaxSAT instances using multisets instead

of sets because repeated clauses cannot be collapsed into

one of such clauses as in SAT. Clauses can remain repre-

sented by the set of its literals because repeated literals can

be collapsed into one literal without affecting the preserva-

tion of the minimum number of unsatisfied clauses.

A truth assignment assigns to each variable either 0 or 1.

It satisfies literal xi (¬xi) if xi evaluates to 1 (0), weighted

clause (c, w) if it satisfies a literal of c, and a multiset of

clauses if it satisfies all its clauses. The weight w is the

penalty of violating clause c. When all clauses have the

same weight, their weights are omitted.

The Weighted Partial MaxSAT problem, or WPMaxSAT,

for an instance φ is to find an assignment that satisfies

the hard clauses and minimizes the sum of the weights of

the unsatisfied soft clauses. The most common subprob-

lems of WPMaxSAT are the following: Weighted MaxSAT

(WMaxSAT), which is WPMaxSAT without hard clauses;

Partial MaxSAT (PMaxSAT), which is WPMaxSAT when

all the soft clauses have the same weight, and MaxSAT,

which is PMaxSAT without hard clauses.

3 Clausal form transformation

This section defines three new MaxSAT clausal form

transformations. For ease of presentation, we first consider

only unweighted formulas. In the last subsection, we ex-

plain how such transformations can be extended to deal with

weighted, soft and hard formulas.

3.1 The direct MaxSAT clausal form transforma-
tion

For each formula in a multiset of propositional formu-

las φ, we can derive its conjunctive normal form (CNF) with

the procedure below, where the uppercase letters A, B and

C denote propositional formulas.

1. Remove all the occurrences of the implications using

the following rules:

(A→ B) � (¬A ∨B)

(A↔ B) � (¬A ∨B) ∧ (A ∨ ¬B)

2. Reduce the scope of negation until negations appear

only in front of literals using the following rules:

¬¬A� A

¬(A ∨B) � (¬A ∧ ¬B)

¬(A ∧B) � (¬A ∨ ¬B)

3. Derive a multiset of conjunctions of clauses using the

following rules:

A ∨ (B ∧ C) � (A ∨B) ∧ (A ∨ C)
(A ∧B) ∨ C � (A ∨ C) ∧ (B ∨ C)

4. Remove clauses containing a literal and its comple-

mentary, because they are tautological.

In SAT, the obtained conjunction of clauses obtained in

step 4 is usually represented by a set of clauses, where each

clause is interchangeably represented by the disjunction of

its literals and the set of its literals. In the following, we

refer to such a set of clauses as direct SAT clausal form.

Example 1. Let φ = {(¬x1 ↔ x1) ∧ (¬x2 ↔ x2),¬x1 ∨
x2} be a multiset of propositional formulas, containing

the formula (¬x1 ↔ x1) ∧ (¬x2 ↔ x2) and the for-

mula ¬x1 ∨ x2, which is already in CNF. Applying the

above procedure, we get that the CNF of the first formula

is x1 ∧ ¬x1 ∧ x2 ∧ ¬x2. Thus, the SAT clausal form

of φ is {{x1}, {¬x1}, {x2}, {¬x2}, {¬x1, x2}}, which is

{x1,¬x1, x2,¬x2,¬x1 ∨x2} when clauses are represented

by disjunctions of literals instead of sets of literals.

If we look at the resulting multiset of clauses of Ex-

ample 1 as a MaxSAT instance, then an exact MaxSAT

solver will conclude that the minimum number of unsat-

isfied clauses in the clausal form of φ is 2, because we

can derive a contradiction from {x1} and {¬x1}, and an-

other from {x2} and {¬x2}. However, the minimum num-

ber of unsatisfied formulas in φ is 1. Hence, the described

SAT clausal form transformation is not valid in MaxSAT,

because it preserves logical equivalence between the input

multiset of propositional formulas and the resulting multi-

set of clauses but does not preserve the minimum number of

unsatisfied formulas. In other words, it is not cost preserv-
ing.

To overcome this drawback we add an additional step to

the previous procedure. We start by considering the CNF of

each input formula as a conjunction of clauses C1 ∧ C2 ∧
· · ·∧Cm and then impose that exactly one contradiction can

be derived when at least one of such clauses is unsatisfied.

To this end, we must derive a multiset of clauses from C1 ∧
C2 ∧ · · · ∧ Cm by applying the following cost preserving

rules:

133

R1: A ∧B � {A,¬A ∨B}.

R2: ¬(A ∨B) � {¬A,A ∨ ¬B}.

R3: {A,B} ∨ C � {A ∨ C,B ∨ C}.

In the following, we refer to the multiset of clauses obtained

by applying R1, R2 and R3 as direct MaxSAT clausal form.

The correctness of these rules is easy to prove. The next

proposition proves the correctness of R1. Note that trans-

forming A ∧B into {A,B} is not cost preserving.

Proposition 1. LetA andB be propositional formulas. The
minimum number of formulas that can be unsatisfied in A∧
B is equal to the minimum number of formulas that can be
unsatisfied in {A,¬A ∨B}.

Proof Assume that I is an assignment that unsatisfies A ∧
B. Then, I unsatisfies exactly one formula of {A,¬A∨B}
becauseA and ¬A cannot be simultaneously unsatisfied and

{A,¬A ∨ B} is only satisfied when A and B evaluate to

true.

Assume now that I is an assignment that unsatisfies

{A,¬A ∨ B}. Then, either I unsatisfies A or I satisfies

A and unsatisfies B. In both case, I unsatisfies A ∧B.

Since the number of unsatisfied formulas is preserved for

every assignment, it follows that the minimum number of

unsatisfied formulas is also preserved. �

Example 2. Given the formula (x1∨x2)∧ (x3∨x4), which

is already in CNF, we convert it to a cost preserving multiset

of clauses as follows:

(x1 ∨ x2) ∧ (x3 ∨ x4) =R1

{x1 ∨ x2,¬(x1 ∨ x2) ∨ (x3 ∨ x4)} =R2

{x1 ∨ x2, {¬x1, x1 ∨ ¬x2} ∨ (x3 ∨ x4)} =R3

{x1 ∨ x2,¬x1 ∨ x3 ∨ x4, x1 ∨ ¬x2 ∨ x3 ∨ x4}

Note that the direct MaxSAT clausal form is larger than the

direct SAT clausal form.

3.2 The improved MaxSAT clausal form transfor-
mation

A way of improving the previous transformation is by in-

troducing auxiliary variables in the direct SAT clausal form.

As a result, we obtain a more compact MaxSAT clausal

form that is a Partial MaxSAT instance.

Definition 2. Let φ = {A1, . . . , Am, . . . , An} be a multi-

set of propositional formulas such that A1, . . . , Am are not

clauses and Am+1, . . . , An are clauses. Let yA1 , . . . , yAm

be auxiliary propositional variables. Let CF (Ai) =
{Ci

1, . . . , C
i
ri} be the multiset of clauses of the direct SAT

clausal form of Ai for i = 1, . . . ,m. The improved

MaxSAT clausal form of φ is the Partial MaxSAT instance

that has as hard clauses the multiset

m⋃
i=1

{Ci
1 ∨ ¬yAi , . . . , C

i
ri ∨ ¬yAi} (1)

and as soft clauses the multiset

m⋃
i=1

yAi
∪

n⋃
j=m+1

Aj . (2)

Example 3. Given the multiset of propositional formulas

{x1 ∧ (¬x1 ∨ x2), (x3 ∨ x2) ∧ (¬x3 ∨ x2),¬x1 ∨ ¬x2},

whose formulas are in CNF, we derive the partial MaxSAT

instance that contains the following hard clauses:

x1 ∨ ¬y1
¬x1 ∨ x2 ∨ ¬y1
x3 ∨ x2 ∨ ¬y2
¬x3 ∨ x2 ∨ ¬y2

and the following soft clauses:

y1
y2
¬x1 ∨ ¬x2

The following proposition states that the minimum num-

ber of propositional formulas that can be unsatisfied in

the input multiset is equal to the the minimum number of

soft clauses that can be unsatisfied in the resulting Partial

MaxSAT instance.

Proposition 3. The improved MaxSAT clausal form trans-
formation is cost preserving.

Proof It follows from the fact that all the occurrences of

the auxiliary variables yAi in the hard part of the improved

MaxSAT clausal form have negative polarity. Then, when

at least one clause of the direct SAT clausal form of the

propositional formula Ai is unsatisfied, yAi
must be set to

false to satisfy the hard part and the unit soft clause yAi

becomes unsatisfied. In this way, an optimal assignment of

the input multiset of propositional formulas unsatisfies Ai

iff an optimal assignment of the improved MaxSAT clausal

form unsatisfies the unit clause yAi
, which is the single soft

clauses related to Ai. �

The main problem of the two preceding transformations

is that they can produce multisets of clauses whose size is

exponential in the size of the corresponding input proposi-

tional formulas due to the application of the distributivity

rules.

134

3.3 The Tseitin-style MaxSAT clausal form trans-
formation

The way of obtaining a clausal form from a propositional

formulaAwith the Tseitin transformation [25] in SAT relies

on adding an auxiliary variable yρ for each subformula ρ of

A that is not a literal. Each auxiliary variable yρ renames

a subformula ρ, depending on its top-most connective, by

adding one of the following equivalences:

• yρ ↔ yB ◦ yC if ρ = B ◦ C and ◦ ∈ {∧,∨,↔,→}
• yρ ↔ ¬yB if ρ = ¬B

where B and C are subformulas of ρ, and yB (yC) is equal

to B (C) if B (C) is a literal.

More precisely, given a propositional formulaA that it is

not a clause, the Tseitin transformation derives the follow-

ing clausal form:

{yA} ∪

⎛
⎜⎜⎜⎜⎜⎝

⋃

ρ ∈ SF (A)
ρ
∈ Lit(A)

Def(A, ρ)

⎞
⎟⎟⎟⎟⎟⎠

(3)

where yA is the auxiliary variable associated to A, SF (A)
is the set of subformulas of A, Lit(A) is the set of literals

occurring in A, and Def(A, ρ) is the definition of subfor-

mula ρ in A (see Definition 4).

Definition 4. Given a propositional formula A and a sub-

formula ρ of A that is not a literal, the definition of subfor-

mula ρ in A, denoted by Def(A, ρ), is defined as follows:

• If ρ = B ∧ C, then

Def(A, ρ) = {¬yρ ∨ yB ,¬yρ ∨ yC , yρ ∨¬yB ∨¬yC}

• If ρ = B ∨ C, then

Def(A, ρ) = {¬yρ ∨ yB ∨ yC , yρ ∨ ¬yB , yρ ∨ ¬yC}

• If ρ = B → C, then

Def(A, ρ) = {¬yρ ∨ ¬yB ∨ yC , yρ ∨ yB , yρ ∨ ¬yC}

• If ρ = B ↔ C, then

Def(A, ρ) = {yρ ∨ yB ∨ yC , yρ ∨ ¬yB ∨ ¬yC ,
¬yρ ∨ ¬yB ∨ yC ,¬yρ ∨ yB ∨ ¬yC}

• If ρ = ¬B, then

Def(A, ρ) = {¬yρ ∨ ¬yB , yρ ∨ yB}

Example 4. The Tseitin-style SAT clausal form transforma-

tion of the propositional formula (¬x1 ↔ x1) ∧ (¬x2 ↔
x2) of Example 1 is as follows:

{y1,
¬y1 ∨ y2,¬y1 ∨ y3, y1 ∨ ¬y2 ∨ ¬y3,
¬y2 ∨ x1,¬y2 ∨ ¬x1,
¬y3 ∨ x2,¬y3 ∨ ¬x2}

where y1 denotes y(¬x1↔x1)∧(¬x2↔x2), y2 denotes

y(¬x1↔x1) and y3 denotes y(¬x2↔x2). Note that the second

line corresponds to y1 ↔ y2 ∧ y3, the thirth line to y2 ↔
(¬x1 ↔ x1) and the fourth line to y3 ↔ (¬x2 ↔ x2).

The following definition describes a Tseitin-style clausal

form transformation for MaxSAT.

Definition 5. Let φ = {A1, . . . , Am, . . . , An} be a mul-

tiset of propositional formulas such that A1, . . . , Am are

not clauses and Am+1, . . . , An are clauses, and let T (Ai)
be the multiset of clauses derived by applying Equation 3

for i = 1, . . . ,m. The Tseitin-style MaxSAT clausal form

transformation of φ is the Partial MaxSAT instance that has

as hard clauses the multiset

m⋃
i=1

(T (Ai) \ {yAi
}) (4)

and as soft clauses the multiset

m⋃
i=1

yAi
∪

n⋃
j=m+1

Aj . (5)

Example 5. The Tseitin-style MaxSAT clausal form trans-

formation of φ = {x1∧x2, x3∧x4,¬x1∨¬x3,¬x2∨¬x4}
is the Partial MaxSAT instance that has the following hard

clauses:

¬y1 ∨ x1
¬y1 ∨ x2
y1 ∨ ¬x1 ∨ ¬x2
¬y2 ∨ x3
¬y2 ∨ x4
y2 ∨ ¬x3 ∨ ¬x4

and the following soft clauses:

y1
y2
¬x1 ∨ ¬x3
¬x2 ∨ ¬x4

Proposition 6. The Tseitin-style MaxSAT clausal form
transformation is cost preserving.

135

Proof It follows from the following fact: In the multiset of

clauses T (Ai) \ {yAi}, for every pair of clauses of the form

yρ∨D and ¬yρ∨D′ inDef(A, ρ), whereD andD′ are dis-

junctions of literals, it holds that there is a literal l inD such

that ¬l is in D′, and there is a literal l′ in D′ such that ¬l′ is

in D. This implies that, for each auxiliary variable yρ, the

block of clauses of the form yρ∨D and the block of clauses

of the form ¬yρ ∨D′ cannot be simultaneously unsatisfied.

Thus, by setting adequately the auxiliary variables, we can

build a satisfying assignment of T (Ai) \ {yAi
}. When the

satisfaction of T (Ai) \ {yAi
} forces yAi

to be true, then

Ai is satisfied; and when it forces yAi to be false, then Ai

is unsatisfied. Therefore, the minimum number of unsatis-

fied soft clauses in the Tseitin-style MaxSAT clausal form is

equal to the minimum number of unsatisfied formulas in the

input multiset of propositional formulas. Note that the soft

unit clause yAi
is the single soft clause related toAi and the

variable yAi does not appear in the Tseitin transformations

of the rest of formulas of the input multiset. �

Taking into account the argument in the proof of Propo-

sition 6 that states that, for every auxiliary variable yρ, the

block of clauses of the form yρ∨D and the block of clauses

of the form ¬yρ ∨D′ cannot be simultaneously unsatisfied,

it turns out that, an optimal assignment of the input multiset

of formulas unsatisfies Ai iff an optimal assignment of the

(SAT) Tseitin clausal form unsatisfies yAi
. Hence, in con-

trast to the direct transformation, the Tseitin transformation

preserves the minimum number of unsatisfied formulas.1

Proposition 7. The Tseitin transformation is cost preserv-
ing.

However, from a practical point of view, our preliminary

tests indicate that using the Tseitin-style MaxSAT clausal

form transformation is more efficient than using directly the

Tseitin transformation.

3.4 Dealing with weights

If we associate a weight to each propositional formula,

this weight can be easily incorporated into the clausal form

transformations defined so far. In the case of the di-

rect MaxSAT clausal form transformation, we associate the

weight of the formula to each clause related to that formula;

it works because at most one of such clauses can be unsat-

isfied in the derived MaxSAT instance.The same happens if

we use directly the Tseitin transformation. In the case of the

improved and Tseitin-style MaxSAT clausal form transfor-

mations, we associate the weight of the formula Ai to the

soft unit clause yAi
, which is the single soft clause related

to Ai.

1It has not been reported before, to the best of our knowledge, that the

Tseitin transformation is cost preserving.

If we consider hard formulas, we can add as hard clauses

any SAT clausal form transformation of the hard formulas.

We do not need to use any MaxSAT clausal form transfor-

mations because hard clauses are always satisfied in any op-

timal solution.

Example 6. Given the multiset of propositional formulas

φ = {x1∧ (¬x1∨x2), (x3∨x2)∧ (¬x3∨x2),¬x1∨¬x2}
of Example 3, if we assign a weight of 3 to the first formula

of φ, a weight of 2 to the second formula and a weight of 5

to the third formula, we get the improved MaxSAT clausal

form consisting of the following hard clauses:

x1 ∨ ¬y1
¬x1 ∨ x2 ∨ ¬y1
x3 ∨ x2 ∨ ¬y2
¬x3 ∨ x2 ∨ ¬y2

and the following soft clauses:

(y1, 3)
(y2, 2)
(¬x1 ∨ ¬x2, 5)

Example 7. Given the multiset of propositional formulas

φ = {x1 ∧ x2, x3 ∧ x4,¬x1 ∨ ¬x3,¬x2 ∨ ¬x4} of Ex-

ample 5, if we assign a weight of 2 to the first two formulas

and a weight of 5 to the last two formulas, and introduce the

hard constraint x1 ↔ x4, we get the Tseitin-style MaxSAT

clausal form consisting of the following hard clauses:

¬y1 ∨ x1
¬y1 ∨ x2
y1 ∨ ¬x1 ∨ ¬x2
¬y2 ∨ x3
¬y2 ∨ x4
y2 ∨ ¬x3 ∨ ¬x4
y3
y3 ∨ x1 ∨ x4
y3 ∨ ¬x1 ∨ ¬x4
¬y3 ∨ ¬x1 ∨ x4
¬y3 ∨ x1 ∨ ¬x4

and the following soft clauses:

(y1, 2)
(y2, 2)
(¬x1 ∨ ¬x3, 5)
(¬x2 ∨ ¬x4, 5)

4 Concluding remarks

We have defined three MaxSAT clausal form transforma-

tions, called direct, improved and Tseitin-style transforma-

tions. The proposed transformations preserve the minimum

136

number of unsatisfied formulas. Moreover, we have shown

that the Tseitin transformation is cost preserving. To the

best of our knowledge, this is the first contribution towards

non-clausal MaxSAT solving. Thanks to the presented re-

sults, non-clausal MaxSAT instances can be solved with ex-

isting clausal MaxSAT solvers.

As future work, we plan to extend the results on clause

MaxSAT tableaux [15] to obtain a complete tableau calcu-

lus for non-clausal MaxSAT. Another interesting research

line is to compare non-clausal MinSAT with MinSAT [16,

17]. From the multiple-valued logic perspective, it could

be interesting to extend the results of this paper to derive

cost-preserving signed clausal forms [8].

References

[1] A. Abramé and D. Habet. On the resiliency of unit propa-

gation to Max-Resolution. In Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
2015, Buenos Aires, Argentina, pages 268–274, 2015.

[2] C. Ansótegui, J. Gabàs, and J. Levy. Exploiting subproblem

optimization in SAT-based MaxSAT algorithms. J. Heuris-
tics, 22(1):1–53, 2016.

[3] C. Ansótegui, I. Izquierdo, F. Manyà, and J. T. Jiménez. A

Max-SAT-based approach to constructing optimal covering

arrays. In Proceedings of the 16th International Conference
of the Catalan Association for Artificial Intelligence, CCIA
2013, Vic, Spain, volume 256 of Frontiers in Artificial Intel-
ligence and Applications, pages 51–59. IOS Press, 2013.

[4] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Effi-

cient encodings from CSP into SAT, and from MaxCSP into

MaxSAT. Multiple-Valued Logic and Soft Computing, 19(1-

3):3–23, 2012.

[5] J. Argelich, C. M. Li, F. Manyà, and J. Planes. The first

and second Max-SAT evaluations. Journal on Satisfiability,
Boolean Modeling and Computation, 4:251–278, 2008.

[6] J. Argelich and F. Manyà. Exact Max-SAT solvers for over-

constrained problems. Journal of Heuristics, 12(4–5):375–

392, 2006.

[7] F. Bacchus, A. Hyttinen, M. Järvisalo, and P. Saikko. Re-

duced cost fixing for maximum satisfiability. In Proceed-
ings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, IJCAI, Stockholm, Sweden, pages

5209–5213, 2018.

[8] B. Beckert, R. Hähnle, and F. Manyà. The SAT problem

of signed CNF formulas. In D. Basin, M. D’Agostino,

D. Gabbay, S. Matthews, and L. Viganò, editors, Labelled
Deduction, volume 17 of Applied Logic Series, pages 61–

82. Kluwer, Dordrecht, 2000.

[9] M. Bofill, M. Garcia, J. Suy, and M. Villaret. MaxSAT-based

scheduling of B2B meetings. In Proceedings of the12th In-
ternational Conference on Integration of AI and OR Tech-
niques in Constraint Programming, CPAIOR, Barcelona,
Spain, pages 65–73, 2015.

[10] M. L. Bonet, J. Levy, and F. Manyà. Resolution for Max-

SAT. Artificial Intelligence, 171(8–9):240–251, 2007.

[11] F. Heras, A. Morgado, and J. Marques-Silva. MaxSAT-

based encodings for Group MaxSAT. AI Communications,

28(2):195–214, 2015.
[12] M. Koshimura, T. Zhang, H. Fujita, and R. Hasegawa.

Qmaxsat: A partial max-sat solver. JSAT, 8(1/2):95–100,

2012.
[13] C. M. Li and F. Manyà. MaxSAT, hard and soft constraints.

In A. Biere, H. van Maaren, and T. Walsh, editors, Hand-
book of Satisfiability, pages 613–631. IOS Press, 2009.

[14] C. M. Li, F. Manyà, N. O. Mohamedou, and J. Planes.

Resolution-based lower bounds in MaxSAT. Constraints,

15(4):456–484, 2010.
[15] C. M. Li, F. Manyà, and J. R. Soler. A clause tableaux

calculus for MaxSAT. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
2016, New York, USA, pages 766–772, 2016.

[16] C. M. Li, Z. Zhu, F. Manyà, and L. Simon. Minimum satisfi-

ability and its applications. In Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence, IJCAI-
2011, Barcelona, Spain, pages 605–610, 2011.

[17] C. M. Li, Z. Zhu, F. Manyà, and L. Simon. Optimizing with

minimum satisfiability. Artificial Intelligence, 190:32–44,

2012.
[18] H. Lin and K. Su. Exploiting inference rules to compute

lower bounds for MAX-SAT solving. In Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence, IJCAI-2007, Hyderabad, India, pages 2334–2339,

2007.
[19] I. Lynce, V. M. Manquinho, and R. Martins. Parallel maxi-

mum satisfiability. In Handbook of Parallel Constraint Rea-
soning, pages 61–99. Springer, 2018.

[20] V. M. Manquinho, J. Marques-Silva, and J. Planes. Algo-

rithms for weighted Boolean optimization. In Proceedings
of the 12th International Conference on Theory and Appli-
cations of Satisfiability Testing, SAT-2009, Swansea, UK,

pages 495–508. Springer LNCS 5584, 2009.
[21] F. Manyà, S. Negrete, C. Roig, and J. R. Soler. A MaxSAT-

based approach to the team composition problem in a class-

room. In Autonomous Agents and Multiagent Systems - AA-
MAS 2017 Workshops, Visionary Papers, São Paulo, Brazil,
Revised Selected Papers, pages 164–173. Springer LNCS

10643, 2017.
[22] R. Martins, S. Joshi, V. M. Manquinho, and I. Lynce. Incre-

mental cardinality constraints for MaxSAT. In Principles
and Practice of Constraint Programming - 20th Interna-
tional Conference, CP, Lyon, France, pages 531–548, 2014.

[23] N. Narodytska and F. Bacchus. Maximum satisfiability us-

ing core-guided MaxSAT resolution. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence,
Québec City, Canada, pages 2717–2723, 2014.

[24] D. A. Plaisted and S. Greenbaum. A structure-preserving

clause form translation. Journal of Symbolic Computation,

2:293–304, 1986.
[25] G. Tseitin. Studies in Constructive Mathematics and Mathe-

matical Logic, Part II, chapter On the Complexity of Deriva-

tions in the Propositional Calculus, pages 115–125. Steklov

Mathematical Institute, 1968.

137

