
Many-Valued MinSAT Solving∗

Josep Argelich
Univ. de Lleida

Chu Min Li
MIS, Univ. de Picardie

Felip Manyà
IIIA-CSIC

Zhu Zhu
MIS, Univ. de Picardie

Abstract

Solving combinatorial optimization problems via their
reduction to Boolean MinSAT is an emerging generic prob-
lem solving approach. In this paper we extend MinSAT with
many-valued variables, and refer to the new formalism as
Many-Valued MinSAT. For Many-Valued MinSAT, we de-
scribe an exact solver, Mv-MinSatz, which builds on the
Boolean branch-and-bound solver MinSatz, and exploits
the domain information of many-valued variables. More-
over, we also define efficient and robust encodings from op-
timization problems with many-valued variables to MinSAT.
The empirical results provide evidence of the good perfor-
mance of the new encodings, and of Many-Valued MinSAT
over Boolean MinSAT on relevant optimization problems.

1 Introduction

Boolean MinSAT is the problem of finding a truth as-

signment that minimizes the number of satisfied clauses in

a Boolean CNF formula, and Boolean MaxSAT is the prob-

lem of finding a truth assignment that maximizes the num-

ber of satisfied clauses. Despite the similarity between these

two problems, both the solving techniques and the encod-

ings applied in MinSAT [13, 14, 6] are quite different from

those applied in MaxSAT [5, 10]. Actually, MinSAT and

MaxSAT are complementary rather than competing generic

approaches for solving optimization problems.

In this paper we define Many-Valued MinSAT as the

problem of minimizing the number of satisfied clauses in a

many-valued CNF formula. The main advantage of Many-

Valued MinSAT w.r.t. Boolean MinSAT, from a problem

solving perspective, is that the domain information of prob-

lems containing many-valued variables is not hidden in the

encoding, and this information is relevant because solvers

can define more powerful variable selection heuristics using

∗This work has been partially funded by the Generalitat de Catalunya

under grant AGAUR 2009-SGR-1434, and the Ministerio de Economı́a y

Competividad research projects AT CONSOLIDER CSD2007-0022, IN-

GENIO 2010, and TASSAT (TIN2010-20967-C04-01/03) (funded by the

Ministerio de Ciencia y Tecnologı́a until 2011).

that variable domain information. Since creating a Many-

Valued MinSAT solver from scratch would be very costly, in

our first contribution, we create an exact Many-Valued Min-

SAT solver, Mv-MinSatz, by adapting the Boolean MinSAT

solver MinSatz [14] to deal with many-valued CNF formu-

las, and exploit variable domain information.

In our second contribution, we define improved en-

codings from optimization problems with many-valued

variables to Boolean/Many-Valued MinSAT. In particular,

we define two new and robust encodings from Weighted

MaxCSP to Weighted Partial MinSAT. The first encod-

ing selects, for each constraint, the most efficient encod-

ing from Weighted MaxCSP to Weighted Partial MinSAT,

and is valid for binary constraints. The second encoding is

a new direct encoding that combines the direct encodings

from Weighted MaxCSP to both Weighted Partial MinSAT

and Weighted Partial MaxSAT, and is valid for non-binary

constraints too. The new encodings, in contrast to existing

encodings, may select a different encoding for each con-

straint, and it is in this sense that we will say that they are

hybrid.

In our third contribution, we report on an experimental

investigation conducted to evaluate the previous contribu-

tions. The results obtained provide empirical evidence that

our new hybrid encodings outperform the existing encod-

ings, and Many-Valued MinSAT outperforms Boolean Min-

SAT on relevant optimization problems.

The paper is structured as follows. Section 2 defines

basic concepts. Section 3 surveys recent work on Min-

SAT solving. Section 4 shows how to map Many-Valued

WPMinSAT to Boolean WPMinSAT. Section 5 describes

Mv-MinSatz. Section 6 presents existing encodings from

Weighted MaxCSP to Weighted Partial MinSAT, and de-

fines two original hybrid encodings. Section 7 reports on

the conducted empirical investigation. Section 8 concludes

and points out future research directions.

2 Preliminaries

Given a set of variables {x1, . . . , xn}, A Boolean literal

is a variable xi or its negation ¬xi. A many-valued literal

is an expression of the form xj = i or xj �= i, where i

2014 IEEE 44th International Symposium on Multiple-Valued Logic

0195-623X/14 $31.00 © 2014 IEEE

DOI 10.1109/ISMVL.2014.14

32

belongs to a domain N such that |N | ≥ 2. A weighted

(Boolean/Many-Valued) clause is a pair (c, w), where c is

a disjunction of (Boolean/Many-Valued) literals and w, its

weight, is a natural number or infinity. If its weight is infin-

ity, it is hard (we omit infinity weights for simplicity); oth-

erwise it is soft. A (Boolean/Many-Valued) Weighted Par-

tial MinSAT (MaxSAT) instance is a multiset of weighted

(Boolean/Many-Valued) clauses.

A Boolean assignment assigns to each variable either 0

or 1, and a many-valued assignment assigns to each variable

an element of N . A Boolean assignment satisfies xi if xi

evaluates to 1, and satisfies ¬xi if xi evaluates to 0; and

a many-valued assignment satisfies xj = i if xj evaluates

to i; otherwise satisfies xj �= i. A (Boolean/many-valued)

assignment satisfies a weighted clause (c, w) if it satisfies at

least one literal of c, and satisfies a multiset of clauses if it

satisfies all its clauses.

The (Boolean/Many-Valued) Weighted Partial MinSAT

(MaxSAT) problem, or WPMinSAT (WPMaxSAT), for an

instance φ consists in finding a (Boolean/Many-Valued) as-

signment in which the sum of weights of the satisfied soft

clauses is minimal (maximal), and all the hard clauses are

satisfied.

Subproblem notation: Weighted MinSAT (MaxSAT),

or WMinSAT (WMaxSAT), is WPMinSAT (WPMaxSAT)

without hard clauses. Partial MinSAT (MaxSAT), or PMin-

SAT (PMaxSAT), is WPMinSAT (WPMaxSAT) when all

the soft clauses have the same weight. MinSAT (MaxSAT)

is PMinSAT (PMaxSAT) without hard clauses.

A Constraint Satisfaction Problem (CSP) instance is a

triple 〈X ,D, C〉, where X = {X1, . . . , Xn} is a set of

variables, D = {d(X1), . . . , d(Xn)} is a set of finite do-

mains, and C = {C1, . . . , Cm} is a set of constraints.

Each Ci = 〈Si, Ri〉 in C is a relation Ri over a subset

of Si = {Xi1 , . . . , Xik} ⊆ X , called the scope of Ci.

Ri may be represented extensionally as a subset of the

Cartesian product d(Xi1) × · · · × d(Xik). The tuples be-

longing to Ri represent the allowed values and are called

goods, and the rest of tuples represent the forbidden values

and are called nogoods. An assignment v for a CSP in-

stance 〈X ,D, C〉 is a mapping that assigns to each variable

Xi ∈ X an element v(Xi) ∈ d(Xi). It satisfies a constraint

〈{Xi1 , . . . , Xik}, Ri〉 ∈ C iff 〈v(Xi1), . . . , v(Xik)〉 ∈ Ri.

The CSP for an instance P consists in finding a satisfying

assignment for P .

A Weighted MaxCSP (WMaxCSP) instance is defined

as a triple 〈X ,D, C〉, where X and D are variables and do-

mains as in CSP, and C is a set of weighted constraints. A

weighted constraint 〈C,w〉 is just a classical constraint C
plus a weight w over natural numbers. The cost of an as-

signment v is the sum of the weights of all constraints vio-

lated by v. An optimal solution is an assignment with min-

imal cost.

3 Related Work

The work on MinSAT for solving optimization prob-

lems may be divided into four categories: (I) Transfor-

mations between MinSAT and MaxSAT: Reductions from

MinSAT to PMaxSAT were defined in [12], but these re-

ductions do not generalize to WPMinSAT. This drawback

was overcome with the definition of the natural encod-

ing [9], which was improved in [16]. Reductions of WP-

MinSAT to Group MaxSAT were evaluated in [7]. (II) En-

codings from WMaxCSP to WPMinSAT: Efficient encod-

ings were defined in [6]. (III) Branch-and-bound solvers:

The only existing WPMinSAT solver, MinSatz [13, 14],

is based on MaxSatz [11], and implements upper bounds

that exploit clique partition algorithms and MaxSAT tech-

nology. (IV) SAT-based solvers: There exist two WPMin-

SAT solvers of this class [3, 7]. They differ with SAT-based

MaxSAT solvers in the way of relaxing soft clauses. A

closely related problem has been recently analyzed in [8].

4 Mapping Many-Valued WPMinSAT to
Boolean WPMinSAT

For mapping a Many-Valued WPMinSAT instance φ to

an equivalent Boolean WPMinSAT instance φ′, we define

the following algorithm:

1. For each many-valued variable x occurring in φ, we

identify its domain d(x) = {v1, . . . , vn}, and define

an associated set of Boolean variables {xv1
, . . . , xvn

}.
The intended meaning of Boolean literal xvi is that it

is satisfied iff many-valued literal x = vi is satisfied.

2. For each variable x occurring in φ, we add hard

clauses in φ′ encoding that (i) at least one (ALO) of

the Boolean variables in {xv1 , . . . , xvn} must be true,

and (ii) at most one (AMO) of the Boolean variables

in {xv1
, . . . , xvn

} must be true. The ALO clause of

{xv1
, . . . , xvn

} is xv1
∨· · ·∨xvm

, and the AMO clauses

are the set of clauses {¬xvi
∨ ¬xvj

|vi, vj ∈ d(x), i <
j}. Adding the ALO and AMO clauses ensures that

exactly one variable is true in each assignment.

3. For each many-valued hard clause xj1 = vi1 ∨ · · · ∨
xjm = vim occurring in φ, we add in φ′ the Boolean

hard clause xj1vi1

∨ · · · ∨ xjmvim
.

4. For each many-valued soft clause (xl1 = vi1 ∨ · · · ∨
xlk = vik , w) occurring in φ, we add in φ′ the Boolean

soft clause (xl1vi1
∨ · · · ∨ xlkvik

, w).

This mapping is used by our Many-Valued WPMinSAT

solver. Actually, it uses both the generated Boolean in-

stance, and the information concerning the sets of Boolean

33

variables of step 1 that encode a many-valued variable.

Such sets are decisive for exploiting the variable domain

information. It is worth noticing that there are other al-

ternatives to encode the ALO and AMO constraints (see

e.g. [4, 5]).

5 The solver Mv-MinSatz

Mv-MinSatz is a Many-Valued MinSAT solver built on

top of the Boolean solver MinSatz [13, 14]. Given an input

Many-Valued MinSAT instance, Mv-MinSatz works as fol-

lows: (i) It generates both a Boolean MinSAT instance, and

the sets of Boolean variables associated with each many-

valued variable using the algorithm of Section 4; (ii) it finds

an optimal Boolean MinSAT solution with the modified ver-

sion of MinSatz explained below; and (iii) it returns an op-

timal solution to the input Many-Valued MinSAT instance,

derived from the solution in the previous step.

MinSatz implements the branch-and-bound scheme, and

the search space is formed by a tree representing all the

possible truth assignments. We refer to [13, 14] for

a detailed description, due to lack of space. Its main

characteristic is that it implements upper bounds that ex-

ploit clique partition algorithms and MaxSAT technol-

ogy, and its goal is to maximize the number of falsi-

fied clauses (recall that MaxSAT solvers work by min-

imizing that number). MinSatz selects the branching

variables applying the following heuristic: Let hard(l)
(soft(l)) be the number of occurrences of literal l in hard

(soft) clauses, and let score(l) = 2× hard(l) + soft(l).
It chooses a variable x with the highest value of

score(x)× score(¬x) + score(x) + score(¬x).
Our modified version of MinSatz differs in two aspect

from MinSatz: (i) It updates the state of the set of Boolean

variables associated with a many-valued variable by remov-

ing the Boolean variables which are instantiated to false; in

this way, the solver knows the current domain of each many-

valued variable; and (ii) it considers the domain information

in the branching heuristic: Firstly, it creates a candidate set

of Boolean variables formed by the variables that encode

many-valued variables of minimum domain size. Secondly,

it applies the original variable selection heuristic of Min-

Satz only to the Boolean variables belonging to the candi-

date set. So, MinSatz is able to exploit the structural infor-

mation about the domain that is hidden in standard Boolean

encodings. As we show in the experiments, this new heuris-

tic allows one to achieve significant speed-ups. In [1, 2], a

similar approach was applied in SAT.

6 Encodings from WMaxCSP to Many-
Valued WPMinSAT

WMaxCSP is a framework for modeling optimization

problems, and a remarkable collection of practical prob-

lems is available under this formalism. Because of that, it is

important to define efficient encodings from WMaxCSP to

WPMinSAT, as was done for WPMaxSAT [5].

We first define the many-valued counterparts of the direct

and minimal support encodings from WMaxCSP to WP-

MinSAT of [6], and then the new hybrid encodings. The

Boolean versions of the encodings are obtained by applying

the mapping of Section 4. All the mentioned encodings are

correct: Solving a WMaxCSP instance is equivalent to solv-

ing the instance derived by any of our encodings. The min-

imal support encoding is valid for binary constraints, and

the direct encoding is valid for non-binary constraints too.

In the following, for each CSP variable Xi, we associate a

many-valued variable xi.

Definition 1. The WPMinSAT direct encoding of a

WMaxCSP instance 〈X ,D, C〉 has a soft clause (x1 �=
i1∨· · ·∨xm �= im, w) for each good (X1 = i1, . . . , Xm =
im) of each constraint of C with scope {X1, . . . , Xm} and

weight w.

Since WPMinSAT maximizes the sum of weights of fal-

sified soft clauses, we force the violation of one soft clause

for each satisfied constraint, because of that we negate the

goods instead of the nogoods as is done in WPMaxSAT en-

codings of WMaxCSP [5]. Notice that if a constraint is vi-

olated, all the derived clauses are satisfied.

Example 1. Given a WMaxCSP instance where X =
{X,Y }, d(X) = d(Y) = {1, 2, 3}, and C = {X = Y }
with weight 3. The Many-Valued WPMinSAT direct en-

coding contains the soft clauses (x �= 1 ∨ y �= 1, 3),
(x �= 2 ∨ y �= 2, 3), and (x �= 3 ∨ y �= 3, 3). While WP-

MaxSAT needs a quadratic number of binary soft clauses in

the domain size for encoding the equality constraint, WP-

MinSAT just needs a linear number of clauses.

In the support encoding from CSP to SAT, besides the

ALO and AMO clauses, there are clauses that encode the

support for a value instead of encoding conflicts. The sup-

port for a value i of a variable X across a binary constraint

with scope {X,Y } is the set of values of Y which allow

X = i. If v1, . . . , vk are the supporting values of variable

Y for X = i, the clause ¬xi ∨ yv1 ∨ · · · ∨ yvk
(called sup-

port clause) is added. There is one support clause for each

value in the domain and for each pair of variables X,Y in-

volved in a constraint. In the support encoding, a clause

in each direction is used: one for the pair X,Y and one

for Y,X , while in the minimal support encoding [5], the

34

added clauses are the support clauses either for all the do-

main values of either X or Y . We focus on the minimal

support encoding because it performed much better in our

tests. We need now to define the negative support for a value

j of a CSP variable X across a binary constraint with scope

{X,Y } as the set of values of Y which forbid X = j.

Definition 2. The WPMinSAT minimal support encod-
ing of a WMaxCSP instance 〈X ,D, C〉 contains, for each

constraint with scope {X,Y } and weight w, either the soft

clause (x �= i∨y = v1∨· · ·∨y = vn, w) for each i ∈ d(X),
where v1, . . . , vn is the negative support for i, or the soft

clause (y �= j ∨ x = u1 ∨ · · · ∨ x = um, w) for each

j ∈ d(Y), where u1, . . . , um is the negative support for j.

In the WPMaxSAT encoding [5], the support clauses in-

clude the positive support instead of the negative one. We

have now a violated clause per satisfied constraint. In the

experiments, we select the variable that produces clauses of

smaller size: We give a score of 16 to unit clauses, a score

of 4 to binary clauses and a score of 1 to ternary clauses,

and select the variable with higher sum of scores.

Example 2. Given a WMaxCSP instance where X =
{X,Y }, d(X) = d(Y) = {1, 2, 3}, and C = {X �= Y }
with weight 2. The Many-Valued WPMinSAT minimal sup-

port encoding contains the soft clauses (x �= 1 ∨ y = 1, 2),
(x �= 2 ∨ y = 2, 2), and (x �= 3 ∨ y = 3, 2). We could

also define this encoding by adding the clauses with (x =
1 ∨ y �= 1, 2), (x = 2 ∨ y �= 2, 2), and (x = 3 ∨ y �= 3, 2)
if we add the support clauses for the domain values of Y
instead of X . The length of the clauses of the WPMaxSAT

encoding is linear in the domain size for the inequality con-

straint whereas in WPMinSAT all the clauses are binary.

Our experience with solving WPMinSAT/WPMaxSAT

instances indicates that both the encoding size and the in-

ference achieved with a particular encoding are decisive for

performance. To produce encodings of smaller size when-

ever possible, we take a novel approach: we do not apply

the same encoding to the whole WCSP. Instead of that, we

choose the most convenient encoding for each individual

constraint, and refer to such encodings as hybrid encodings.

We first define the binary hybrid encoding. Since it com-

bines the direct and minimal support encodings, it is only

valid for binary constraints. It relies on the following ob-

servation: When the number of goods (#goods) is low, we

get smaller encodings with the direct encoding while when

the number of nogoods (#nogoods) is low, we get smaller

encodings with the minimal support encoding. On the other

hand, the minimal support encoding outperforms the direct

encoding on a wide range of benchmarks [5, 6], presum-

ably due to the inference achieved. So, we propose a hybrid

encoding that gives priority to the minimal support encod-

ing over the direct encoding but prefers the direct encod-

ing when there is a reduced #goods: In practice, we use

k < 0.3 in the definition below.

Definition 3. The WPMinSAT binary hybrid encoding
(2HE) of a binary WMaxCSP instance contains, for each

constraint with scope {X,Y } and weight w, as soft clauses

the minimal support encoding of the constraint if #goods >
k ×#nogoods, where k ∈ (0, 1]; otherwise, it contains the

direct encoding.

We define now the n-ary hybrid encoding, which is valid

for non-binary constraints too. Recall that the only avail-

able option for non-binary constraints is the direct encod-

ing. The idea behind this new encoding is to combine the

WPMinSAT and WPMaxSAT encodings, depending on the

size of the derived encoding, because WPMinSAT adds

a clause for every good, and WPMaxSAT adds a clause

for every nogood. Of course, to get a valid encoding the

WPMaxSAT clauses should be transformed into equivalent

WPMinSAT clauses without increasing a lot the encoding

complexity. To do it, we use the natural flow network en-

coding (NFNE) [16]1. For example, if we consider the

constraint X �= Y with weight 5 and d(X) = d(Y) =
{1, 2, 3, 4, 5, 6, 7, 8}, the WPMinSAT direct encoding has

56 clauses ({x �= i ∨ y �= j | i, j ∈ d(X), i �= j}) while

the WPMaxSAT encoding has 8 clauses ({(x �= i ∨ y �=
i, 5) | i ∈ d(X)}). Now, we apply the NFNE to the WP-

MaxSAT instance and get the WPMinSAT encoding ({(x =
i, 5), (x �= i ∨ y = i, 5) | i ∈ d(X)}), which contains 16

clauses, and is a valid WPMinSAT encoding of X �= Y . On

the other hand, if we consider the constraint X = Y , we

would instead add the WPMinSAT direct encoding.

Definition 4. The WPMinSAT n-ary hybrid encoding
(nHE) of a WMaxCSP instance contains, for each con-

straint with scope {X1, . . . , Xn} and weight w, the encod-

ing with a small number of clauses between the direct en-

coding, and the encoding resulting of applying the NFNE

to the WPMaxSAT direct encoding of the constraint under

consideration.

7 Empirical Investigation

We compared the performance of the direct encoding

(dir), the minimal support encoding (sup), the network flow

natural network encoding (NFNE), and the new hybrid en-

codings (2HE, and nHE) of random WMax-CSP instances

with both the last available version of MinSatz, and our

1NFNE states that a Many-Valued WPMaxSAT instance can be trans-

formed into Many-Valued WPMinSAT by replacing each WPMaxSAT

clause (l1 = i1 ∨ l2 = i2 ∨ · · · ∨ lm = im, w) with (l1 �= i1, w), (l1 =
i1 ∨ l2 �= i2, w), . . . , (l1 = i1 ∨ l2 = i2 ∨ · · · ∨ lm �= im, w).

35

(n,d, c) # Mv-MinSatz (2HE) Mv-MinSatz (sup) MinSatz (2HE) MinSatz (sup)

(25,5,230) 100 100.38(100) 101.74(100) 328.57(100) 376.01(100)

(25,5,240) 100 153.03(100) 153.33(100) 479.23(99) 559.92(99)

(25,5,250) 100 216.89(100) 215.23(100) 640.63(96) 700.95(94)

(25,5,260) 100 313.07(100) 307.88(100) 857.06(91) 936.52(88)

(25,5,270) 100 447.39(100) 453.17(100) 1027.93(73) 1040.89(63)

(25,5, 280) 100 592.09(98) 637.36(98) 1009.07(48) 1054.19(42)

Total 600 598 598 507 486

Table 1. Results for binary WMaxCSPs solved with MinSatz and Mv-MinSatz comparing encoding
2HE and the minimal support encoding. Instances have 25 variables of domain size 5, a number of
constraints ranging from 230 to 280, and a random number of goods per constraint ranging from 1
to 24. Timeout: 1800 seconds. Mean time in seconds.

(n,d, c) # Mv-MinSatz (nHE) MinSatz (nHE) Mv-MinSatz (dir) MinSatz (dir)

(22,5,150) 100 88.97(100) 137.25(100) 351.47(100) 401.47(100)

(22,5,160) 100 125.12(100) 207.72(100) 565.61(99) 630.57(96)

(22,5,170) 100 235.73(100) 391.38(100) 864.90(86) 913.70(77)

(22,5,180) 100 391.45(99) 607.57(99) 1182.61(54) 1201.39(41)

(22,5,190) 100 623.69(100) 869.79(93) 1292.21(20) 1319.35(12)

(22,5,200) 100 840.61(93) 1096.21(82) 1450.77(8) 1654.88(2)

Total 600 592 574 367 328

Table 2. Results for binary WMaxCSPs solved with MinSatz and Mv-MinSatz comparing encoding
nHE and the direct encoding. Instances have 22 variables of domain size 5, a number of constraints
ranging from 150 to 200, and a random number of goods per constraint ranging from 1 to 24. Timeout:
1800 seconds. Mean time in seconds.

solver Mv-MinSatz. We solved sets of 100 binary and

ternary WMaxCSP instances generated using the so-called

model B [15]. For an instance with n variables of domain

size d, we choose a random subset of exactly c constraints

with scope {X1, . . . , Xk}, with a random number of no-

goods ranging from 1 to dk − 1. Experiments were per-

formed on a cluster with Intel Xeon CPU E5-2620 @ 2GHz

processors with 4GB of RAM.

In the tables showing the experimental results, the first

column displays the input parameters of the generators, the

second column displays the number of tested instances, and

the rest of columns display, for the encoding and solver in-

dicated in the first row, the mean CPU time needed to solve

an instance among the instances solved within a cutoff time

of 1800 seconds, followed by the total number of solved

instances in parentheses. The best results are in bold.

Tables 1 and 2 show the results for binary WMaxCSPs,

and Table 3 for ternary WMaxCSPs. Table 1 does not show

results with the direct encoding, encoding nHE, and encod-

ing NFNE because no instance was solved within the cutoff

time. As we mentioned above, the minimal support encod-

ing is generally quite superior to the direct encoding. Be-

cause of that, we solved the instances in Table 2, which are

easier, to compare encoding nHE with the direct encoding.

Encoding NFNE was not competitive with any of the previ-

ous encodings.

The results obtained allow us to draw some conclusions:

• Many-Valued WPMinSAT outperforms Boolean WP-

MinSAT thanks to the exploitation of the domain infor-

mation. For example, the number of additional solved

instances for binary WMaxCSP is 91 and 18 instances

(Tables 1 and 2), and for ternary WMaxCSPs is 50 in-

stances (Table 3). It is also worth noticing that the cost

of our approach to building many-valued solvers from

Boolean solvers is very low compared with the cost of

building a many-valued solver from scratch.

• The hybrid encoding nHE has a very good perfor-

mance profile. It solves more than 200 (100) addi-

tional instances in Table 2 (Table 3). This is specially

important for dealing with non-binary constraints be-

cause support encodings are only valid for binary con-

straints, and the only available option for non-binary

36

(n,d, c) # Mv-MinSatz (nHE) MinSatz (nHE) Mv-MinSatz (dir) MinSatz (dir)

(18,5,100) 100 756.55(92) 859.77(88) 1062.93(74) 1067.02(68)

(18,5,110) 100 1043.15(80) 1157.68(66) 1317.40(51) 1345.19(43)

(18,5,120) 100 1219.65(49) 1404.61(37) 1474.57(14) 1585.15(11)

(18,5,130) 100 1367.58(24) 1375.42(12) 1467.86(4) 1498.17(3)

(18,5,140) 100 1561.98(9) 1578.97(4) 0.00(0) 0.00(0)

(18,5,150) 100 1551.30(3) 0.00(0) 0.00(0) 0.00(0)

Total 600 257 207 143 125

Table 3. Results for ternary WMaxCSPs solved with MinSatz and Mv-MinSatz comparing encoding
nHE and the direct encoding. Instances have 18 variables of domain size 5, a number of constraints
ranging from 100 to 150, and a random number of goods per constraint ranging from 1 to 124.
Timeout: 1800 seconds. Mean time in seconds.

constraints is the direct encoding. Moreover, this en-

coding can be adapted to WPMaxSAT: We should ap-

ply the NFNE to the WPMinSAT clauses instead of the

WPMaxSAT clauses.

• The hybrid encoding 2HE does not produce so signifi-

cant speed-ups as encoding nHE, but it allows to solve

21 additional instances in the Boolean case.

8 Concluding Remarks

We have studied for the first time Many-Valued WPMin-

SAT, described how to easily build a many-valued solver

from a Boolean WPMinSAT solver, and provided empiri-

cal evidence of the superiority of Many-Valued WPMinSAT

over Boolean WPMinSAT on the tested instances. We have

also defined original hybrid encodings from WMaxCSP to

WPMinSAT. In particular, we would like to highlight the

good results achieved with encoding nHE, as well as the fact

that this encoding can be easily adapted to WPMaxSAT.

Since Boolean formalisms are a de facto standard in the

SAT community, in order to apply the contributions of this

paper to existing Boolean encodings, we propose to in-

vestigate methods for automatically detecting finite-domain

variables that are hidden in Boolean encodings.

References

[1] C. Ansótegui, J. Larrubia, C. M. Li, and F. Manyà. Exploit-

ing multivalued knowledge in variable selection heuristics

for SAT solvers. Annals of Mathematics and Artificial Intel-
ligence, 49(1-4):191–205, 2007.

[2] C. Ansótegui, J. Larrubia, and F. Manyà. Boosting Chaff’s

performance by incorporating CSP heuristics. In Proceed-
ings of CP-2003, pages 96–107, 2003.

[3] C. Ansótegui, C. M. Li, F. Manyà, and Z. Zhu. A SAT-based

approach to MinSAT. In Proceedings of CCIA-2012, pages

185–189, 2012.

[4] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. New in-

sights into encodings from MaxCSP into partial MaxSAT.

In Proceedings of ISMVL-2010, 2010.
[5] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Effi-

cient encodings from CSP into SAT, and from MaxCSP into

MaxSAT. Multiple-Valued Logic and Soft Computing, 19(1-

3):3–23, 2012.
[6] J. Argelich, C. M. Li, F. Manyà, and Z. Zhu. MinSAT versus

MaxSAT for optimization problems. In Proceedings of CP
2013, pages 133–142, 2013.

[7] F. Heras, A. Morgado, J. Planes, and J. Marques-Silva. Itera-

tive SAT solving for minimum satisfiability. In Proceedings
of ICTAI 2012, pages 922–927, 2012.

[8] A. Ignatiev, A. Morgado, J. Planes, and J. Marques-Silva.

Maximal falsifiability - definitions, algorithms, and appli-

cations. In Proceedings of LPAR-2013, pages 439–456.

Springer, LNAI 8312, 2013.
[9] A. Kügel. Natural Max-SAT encoding of Min-SAT. In Pro-

ceedings of the Learning and Intelligent Optimization Con-
ference, LION 6, 2012.

[10] C. M. Li and F. Manyà. MaxSAT, hard and soft constraints.

In A. Biere, H. van Maaren, and T. Walsh, editors, Hand-
book of Satisfiability, pages 613–631. IOS Press, 2009.

[11] C. M. Li, F. Manyà, and J. Planes. New inference rules

for Max-SAT. Journal of Artificial Intelligence Research,

30:321–359, 2007.
[12] C. M. Li, F. Manyà, Z. Quan, and Z. Zhu. Exact Min-

SAT solving. In Proceedings of SAT-2010, pages 363–368.

Springer LNCS 6175, 2010.
[13] C. M. Li, Z. Zhu, F. Manyà, and L. Simon. Minimum satis-

fiability and its applications. In Proceedings of IJCAI-2011,

pages 605–610, 2011.
[14] C. M. Li, Z. Zhu, F. Manyà, and L. Simon. Optimizing with

minimum satisfiability. Artificial Intelligence, 190:32–44,

2012.
[15] B. Smith and M. Dyer. Locating the phase transition in bi-

nary constraint satisfaction problems. Artificial Intelligence,

81:155–181, 1996.
[16] Z. Zhu, C. M. Li, F. Manyà, and J. Argelich. A new encoding

from MinSAT into MaxSAT. In Proceedings of CP 2012,

pages 455–463, 2012.

37

