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a b s t r a c t 

When searching for a maximum clique in a graph G , branch-and-bound algorithms in the literature usu- 

ally focus on the minimization of the number of branches generated at each search tree node. We call 

dynamic strategy this minimization without any constraint, because it induces a dynamic vertex order- 

ing in G during the search. In this paper, we introduce a static strategy that minimizes the number of 

branches subject to the constraint that a static vertex ordering in G must be kept during the search. 

We analyze the two strategies and show that they are complementary. From this complementarity, we 

propose a new algorithm, called MoMC, that combines the strengths of the two strategies into a single 

algorithm. The reported experimental results show that MoMC is generally better than the algorithms 

implementing a single strategy. 

© 2017 Elsevier Ltd. All rights reserved. 

1

 

h  

d  

f  

i  

2  

h  

a  

s  

B  

P  

B  

C  

L  

g  

a  

a  

a  

F  

w  

f

R  

d

 

a  

c  

s  

A  

c  

A  

s  

i  

c  

b  

t

 

s  

i  

c  

d  

s  

t  

t  

h

0

. Introduction 

The maximum clique problem (MaxClique) is a relevant NP-

ard problem with real-world applications in fields such as fault

iagnosis ( Berman and Pelc, 1990 ), bioinformatics and chemoin-

ormatics ( Barnes et al., 2005; Ravetti and Moscato, 2008 ), cod-

ng theory ( Etzion and Östergård, 1998 ), economics ( Boginski et al.,

006 ), and social network analysis ( Balasundaram et al., 2011 ). A

uge amount of effort has been devoted to solve MaxClique and,

s a result, there exist two main types of algorithms (also called

olvers when the algorithms are implemented): heuristic (e.g.,

enlic and Hao, 2013; Grosso et al., 2008; Pullan and Hoos, 2006;

ullan et al., 2011 ) and exact, including algorithms based on the

ranch-and-Bound (BnB) scheme (e.g., Babel and Tinhofer, 1990 ;

arraghan and Pardalos, 1990; Fahle, 2002; Konc and Janeži ̌c, 2007;

i et al., 2013; Li and Quan, 2010a; 2010b; Östergård, 2002; Ré-

in, 2003; Segundo et al., 2011; Tomita and Kameda, 2007; Tomita

nd Seki, 2003; Tomita et al., 2010 ). See Wu and Hao (2015) for

 recent survey. In addition to the previous algorithms, there are

lso other related approaches that can be used to solve MaxClique.

or example, the dynamic programming algorithm using Boolean-

idth in Sharmin (2014) and the branch-and-cut algorithms in
∗ Corresponding author. 
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ebennack et al. (2012) , which solve the equivalent maximum in-

ependent set (MIS) problem. 

In this paper we focus on BnB MaxClique algorithms. Given

 graph G = (V, E) , the objective of these algorithms is to find a

lique of maximum size in G by efficiently traversing the search

pace formed by all the proper subsets of the set of vertices V .

t each node of the search space, and knowing that the largest

lique found so far has size r , the algorithm partitions V into a set

 , such that the subgraph induced by A has a maximum clique of

ize not greater than r , and a set B = { b 1 , b 2 , . . . , b | B | } of branch-

ng vertices. Then, the algorithm recursively searches for a clique

ontaining b i ∈ B , of size greater than r , in the subgraphs induced

y { b i , b i +1 , . . . , b | B | } ∪ A for i = | B | , | B | − 1 , . . . , 1 . The algorithm re-

urns the largest clique found after traversing all the search space. 

The main issue addressed in our work is the generation of the

ets A and B in such a way that the set of branching vertices B

s minimized. The common approach in the literature, which we

all dynamic strategy , minimizes B as much as possible, inducing a

ynamic vertex ordering over the vertices of G . In this paper, we

how how to reduce the cardinality of B by applying incremen-

al MaxSAT reasoning, and introduce a static strategy that reduces

he cardinality of B subject to the constraint that the vertices of

 are smaller than the vertices of A w.r.t. a static ordering de-

ned at the beginning of the search and kept during the search

rocess. Then, we compare the performance of the static strat-

gy with the dynamic strategy. The comparison suggests that the

http://dx.doi.org/10.1016/j.cor.2017.02.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.02.017&domain=pdf
mailto:chu-min.li@u-picardie.fr
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mailto:felip@iiia.csic.es
http://dx.doi.org/10.1016/j.cor.2017.02.017


2 C.-M. Li et al. / Computers and Operations Research 84 (2017) 1–15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A graph with χ ( G ) = 3 and ω( G ) = 2. 
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dynamic and static strategies are complementary. So, we propose

to combine them for developing BnB MaxClique algorithms. 

This paper develops further the work reported in Li et al.

(2015) , which is an extended abstract that roughly describes two

BnB MaxClique algorithms: DoMC, which implements a dynamic

strategy when minimizing the set of branching vertices B , and

SoMC, which implements a static strategy. It also shows that SoMC

dominates DoMC. The analysis of the poor performance of DoMC

led us to describe two new variants in this paper: DoMC2 and

SoMC2. They improve DoMC and SoMC by efficiently handling the

adjacency matrix and integrating an incremental upper bound. The

conducted experiments indicate that DoMC2 and SoMC2, with the

new solving techniques, are complementary. Consequently, we de-

velop MoMC, which is a highly competitive algorithm combining

techniques of both DoMC2 and SoMC2. 

The paper is organized as follows. Section 2 presents the pre-

liminaries. Section 3 describes algorithm DoMC 0 , a basic BnB al-

gorithm for MaxClique. Sections 4 and 5 describe DoMC and

SoMC, respectively, and detail the incremental MaxSAT reason-

ing that those algorithms implement. Section 6 empirically com-

pares the functions used by DoMC 0 , DoMC and SoMC to gen-

erate the set of branching vertices B . Section 7 describes algo-

rithms DoMC2 0 , DoMC2 and SoMC2, which are improved vari-

ants of DoMC 0 , DoMC and SoMC, respectively. Section 8 describes

algorithm MoMC, which combines the strengths of DoMC2 and

SoMC2. Section 9 analyzes the experimental investigation, consid-

ering harder instances and more algorithms than the ones reported

in Li et al. (2015) . Section 10 contains the concluding remarks. 

2. Preliminaries 

In this section, we define some basic concepts about graphs,

and then the MaxClique and graph coloring problems. Finally, we

define the MaxSAT problem, two MaxSAT encodings of MaxClique,

and introduce unit propagation and failed literal detection. 

2.1. Graph problems 

Let G = (V, E) be an undirected graph, where V is a set of n ver-

tices { v 1 , v 2 , . . . , v n } and E is a set of m edges. Two vertices v i and

v j of V are adjacent if edge (v i , v j ) ∈ E. The set of adjacent ver-

tices of a vertex v in G is denoted by �(v ) = { v ′ | (v , v ′ ) ∈ E} and

are called the neighbors of v . The cardinality of �(v ) , denoted by

| �(v ) | , is the degree of v . Let V 

′ be a subset of V , the subgraph

of G induced by V 

′ , denoted by G [ V 

′ ], is defined as G [ V ′ ] = (V ′ , E ′ ) ,
where E ′ = { (v i , v j ) ∈ E| v i , v j ∈ V ′ } . The density of a graph with n

vertices and m edges is 2 m/ (n (n − 1)) . An independent set of ver-

tices is a subset D of V in which no two vertices are adjacent. An

independent set partition of V is a partition of the vertices of V

into independent sets such that each vertex belongs to exactly one

independent set. 

A clique in a graph G is a subset C of V such that every two

vertices in C are adjacent. The cardinality of C , denoted by | C |, is

the size of the clique. The Maximum Clique problem (MaxClique

for short) for G is to find a clique of maximum size ω( G ) in G .

Note that a graph can have several different maximum cliques. 

The graph coloring problem (GCP) for an undirected graph G

is to assign a color to each vertex of G in such a way that adja-

cent vertices are assigned different colors. The chromatic number

of G , denoted by χ ( G ), is the minimum number of colors needed

to color G . It holds that χ ( G ) is an upper bound of ω( G ); i.e., ω( G )

≤ χ ( G ). Recall that coloring a graph is equivalent to partitioning

its vertices into independent sets in such a way that each inde-

pendent set is formed by all vertices with the same color. In the

following, we assume that colors are represented by consecutive
ntegers starting with 1. Given a vertex v i and a graph coloring al-

orithm, function color( v i ) returns the color assigned to v i by the

lgorithm. 

.2. MaxSAT and its relation with MaxClique 

A literal is a propositional variable x or its negation x̄ , a clause

s a disjunction of literals, and a conjunctive normal form (CNF)

ormula is a conjunction of clauses. A CNF formula is also repre-

ented as the set of its clauses, and a clause as the set of its lit-

rals. A truth assignment is a mapping of each propositional vari-

ble to true (1) or false (0). A truth assignment I satisfies a literal

 ( ̄x ) if variable x is assigned the value 1 (0), satisfies a clause c

i.e., I(c) = 1 ) if it satisfies at least one of its literals, and satisfies

 CNF formula if it satisfies all its clauses. A partial MaxSAT in-

tance is a set of clauses in which some clauses are declared to be

ard and the other are declared to be soft. Given a partial MaxSAT

nstance, the partial MaxSAT problem is to find a truth assignment

hat satisfies all the hard clauses and the maximum number of soft

lauses. 

MaxClique can be reduced to partial MaxSAT. Given a graph

 = (V, E) , we define a propositional variable x i for each vertex

 i ∈ V with the intended meaning that x i is true (false) if v i be-

ongs (does not belong) to the maximum clique C , and derive the

artial MaxSAT instance φ that contains (i) a hard clause x̄ i ∨ x̄ j for

ach pair of non-adjacent vertices v i and v j , stating that v i and v j 
annot be both in C , and (ii) a soft unit clause x i for each vertex

 i ∈ V . Maximizing the number of satisfied soft clauses while sat-

sfying all hard clauses gives C . Given an optimal assignment of φ,

he derived maximum clique is formed by all vertices for which

he variables are assigned the value 1, which means true. Li and

uan (2010b) improved this naive encoding by computing a parti-

ion of G into independent sets, and instead of adding a soft clause

or every vertex, they added a soft clause for each independent set

n the partition, which is the disjunction of the variables for the

ertices in the independent set. Note that at most one vertex in

ach independent set can belong to C . In the rest of the paper, we

lways use the improved encoding, and refer to it as the Partial

axSAT encoding of MaxClique. 

xample 1 (from Li and Quan (2010b) ) . Consider the graph in

ig. 1 , whose vertices can be partitioned into three independent

ets: { v 1 , v 4 , v 6 }, { v 2 , v 3 }, { v 5 }. The naive encoding is formed by

he hard clauses: { ̄x 1 ∨ x̄ 4 , x̄ 1 ∨ x̄ 5 , x̄ 1 ∨ x̄ 6 , x̄ 2 ∨ x̄ 3 , x̄ 2 ∨ x̄ 5 , x̄ 2 ∨ x̄ 6 ,

¯ 3 ∨ x̄ 4 , x̄ 4 ∨ x̄ 6 , x̄ 5 ∨ x̄ 6 }, and the soft clauses { x 1 , x 2 , x 3 , x 4 , x 5 , x 6
. The improved encoding is like the naive encoding but with the

ollowing soft clauses: { x 1 ∨ x 4 ∨ x 6 , x 2 ∨ x 3 , x 5 }. 

Deciding the satisfiability of a CNF formula is an NP-complete

roblem. So, to detect contradictions in a set of clauses within a

easonable time, we apply unit propagation and failed literal de-

ection, which have polynomial time complexity. Note that these

wo methods are incomplete because they do not guarantee the

etection of all the contradictions in any set of clauses. 
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Algorithm 1: MC (G, P, O 0 , C, C max ) , a generic BnB algorithm 

for MaxClique. 

Input : G = (V, E) , a candidate set P , an ordering O 0 over P , 

the current growing clique C, and the largest clique 

C max found so far in G . 

Output : C ∪ C ′ , where C ′ is a maximum clique of G [ P ] , the 

subgraph of G induced by P , if | C ∪ C ′ | > | C max | ; C max 

otherwise. 

1 begin 

2 if P = ∅ then 

3 return C; 

4 B ← GetBranches (G [ P ] , | C max | − | C| , O 0 ) ; 

5 if B = ∅ then 

6 return C max ; 

7 A ← P \ B ; 
8 Let B = { b 1 , b 2 , . . . , b | B | } and b 1 < b 2 < · · · < b | B | w.r.t. O 0 ; 

9 for i := | B | downto 1 do 

10 C 1 ← 

MC (G, �(b i ) ∩ ({ b i +1 , . . . , b | B | } ∪ A ) , O 0 , C ∪ { b i } , C max ) ; 

11 if | C 1 | > | C max | then 

12 C max ← C 1 ; 

13 return C max ; 
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(  
The unit resolution rule states that a CNF formula containing a

nit clause x i ( ̄x i ) is satisfiable iff the CNF formula obtained by re-

oving all the occurrences of x̄ i ( x i ) is satisfiable. Unit propagation

UP) applies the unit resolution rule until the empty clause is de-

ived (in this case the formula is declared to be unsatisfiable), or a

aturation state is reached. 

Given a CNF formula φ, a literal l fails if UP determines that

∪ { l } is unsatisfiable. Given a clause c = l 1 ∨ · · · ∨ l k , if φ ∪ { l i } fails

or i = 1 , . . . , k, then the CNF formula φ ∪ { c } is unsatisfiable. 

. DoMC 0 : a basic BnB algorithm for MaxClique 

The search space of a BnB algorithm that finds a maximum

lique in a graph G = (V, E) is formed by all the subsets of V . The

ain difference among the existing BnB MaxClique algorithms lies

n the way the search space is explored. 

BnB MaxClique algorithms maintain a global variable C max that

tores the largest clique found so far in G . At every search tree

ode, they try to find a clique of size greater than | C max | , stop-

ing the search when the search space is exhausted and backtrack-

ng when the search space below the current node does not con-

ain any clique of size greater than | C max | . To this end, the algo-

ithms partition the set of vertices V into two sets, A and B , in

uch a way that the size of a maximum clique in A is not greater

han | C max | , and B = V \ A = { b 1 , b 2 , . . . , b | B | } is called the set of

ranching vertices. If B is empty, the search is pruned. Otherwise,

he algorithms recursively search for a maximum clique contain-

ng b i ∈ B in the subgraphs induced by { b i , b i +1 , . . . , b | B | } ∪ A for

 = | B | , | B | − 1 , . . . , 1 . State-of-the-art BnB MaxClique algorithms fo-

us on the minimization of B to reduce the search space. 

For determining A and B , and reducing the cardinality of B , BnB

lgorithms like MCS ( Tomita et al., 2010 ), MaxCliqueDyn ( Konc and

aneži ̌c, 2007 ) and MaxCLQ ( Li and Quan, 2010a; 2010b ) compute

n independent set partition of V using a greedy graph coloring

lgorithm that successively assigns the smallest possible color to

ach vertex in V based on a predefined ordering, ensuring that

djacent vertices are assigned different colors. Then, A = { v | v ∈
 and color(v ) ≤ | C max |} and B = V \ A . Since a clique of size | C max |
eeds at least | C max | colors to be colored and A can be colored us-

ng | C max | colors, the size of a maximum clique in G [ A ] is never

reater than | C max | . 
In MCS, the cardinality of B is further reduced, during the col-

ring process, using a procedure called Re-NUMBER , that re-colors

ome vertices in order to increase the number of vertices with a

olor not greater than | C max | . Recently, an approach inspired by

onstraint programming techniques has been proposed to reduce

he branching in BnB MaxClique algorithms McCreesh and Prosser

2014) . 

In this paper, we present several functions to minimize B . Each

unction, when implemented in the generic BnB scheme MC de-

cribed in Algorithm 1 , results in a different BnB MaxClique solver.

he template of these functions is GetBranches( G , r , O 0 ), where O 0 

s a predefined vertex ordering and r is an integer related to | C max | .
ll the functions return a set B of branching vertices by showing

hat A = V \ B does not contain any clique of size greater than r .

or finding a maximum clique in a graph G , the initial call to algo-

ithm MC should be MC( G , V , O 0 , ∅ , ∅ ). The candidate set P , which

s initialized to V , contains vertices that may potentially be added

o the current growing clique C . 

Algorithm 2 defines the first function GetBranches of this pa-

er, called GetBranches d 0 . It was inspired by the way of computing

 and B in the BnB algorithms MCS, BBMCL ( Segundo and Tapia,

014 ) and IncMaxCLQ ( Li et al., 2013 ). Given a vertex ordering O 0 ,

etBranches d 0 returns a set of branching vertices by maximizing

he number of vertices that are colored with a color not greater

han r . Re-NUMBER works as follows: when a vertex v cannot be
olored with a color not greater than r during the coloring process,

he procedure checks whether there exists a vertex u , and two col-

rs c 1 and c 2 not greater than r , such that u is the only neighbor of

 colored with c 1 but u might be colored with c 2 . In this case, u is

e-colored with c 2 and v is colored with c 1 , obtaining in this way

n additional vertex in A and reducing the number of branching

ertices in B . 

xample 2. Consider the graph in Fig. 2 , and assume that the ver-

ex ordering O 0 is v 1 < v 2 < v 3 < · · · < v 10 , | C max | = 2 and | C| = 0 .

etBranches d 0 ( G , 2, O 0 ) successively inserts v 10 , v 9 , v 8 and v 7 into

wo independent sets D 1 = { v 10 , v 8 } and D 2 = { v 9 , v 7 } . Then, ver-

ex v 6 cannot be inserted into D 1 and D 2 , because it is adjacent

o v 8 in D 1 and to v 9 in D 2 . The Re-NUMBER procedure is ap-

lied to move v 8 from D 1 to D 2 , and to insert v 6 into D 1 . Af-

erwards, GetBranches d 0 ( G , 2, O 0 ) fails to insert v 5 , v 4 , v 3 and v 2 
ven with the Re-NUMBER procedure, before inserting v 1 into D 1 .

inally, GetBranches d 0 ( G , 2, O 0 ) returns B d0 = { v 2 , v 3 , v 4 , v 5 } , and

 d0 = { v 1 , v 6 , v 7 , v 8 , v 9 , v 10 } . Note that v 1 in A d 0 is smaller than all

he branching vertices in B d 0 w.r.t. O 0 , while the other vertices in

 d 0 are greater than all vertices in B d 0 w.r.t. O 0 . 

The vertex ordering O 0 is a key component of efficient BnB

axClique algorithms. A typical vertex ordering v 1 < v 2 < v 3 <
· · < v n , proposed in Carraghan and Pardalos (1990) and called de-

eneracy ordering in Eppstein and Darren (2011) , is computed as

ollows: v 1 is the vertex with the smallest degree in G , v 2 is the

ertex with the smallest degree in G after removing v 1 , and so on.

he degeneracy ordering (or a refinement of it) has shown to be

ffective in computing good quality upper bounds in many state-

f-the-art BnB algorithms. In MCR ( Tomita and Kameda, 2007 ),

CS, and BBMC ( Segundo et al., 2011 ), the ordering is derived at

he beginning of the search in a preprocessing step, and is then

sed to compute A and B in every recursive call of the algorithm

i.e., in every search tree node). In MaxCliqueDyn and MaxCLQ, the

rdering is dynamically re-computed in the search tree nodes near

he tree root to better minimize B there. 

Another effective vertex ordering, proposed in Li et al.

2013) and called MIS ordering , is computed by repeatedly find-
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Algorithm 2: GetBranches d 0 ( G , r , O 0 ), for a BnB algorithm 

searching for a maximum clique containing more than r ver- 

tices in G . 

Input : a graph G = (V, E) , an integer r and a vertex ordering 

O 0 over V 

Output : a set B d0 of branching vertices 

1 begin 

2 B d0 ← ∅ ; � ← ∅ ; /* � will be an independent set 

partition of V */ 

3 while V is not empty do 

4 v ← the greatest vertex of V w.r.t. the ordering O 0 ; 

5 remove v from V ; 

6 if there is an independent set D in � in which v is not 

adjacent to any vertex then 

7 insert v into D ; 

8 else 

9 if | �| < r then 

10 create a new independent set D = { v }; � ← � ∪ 

{ D }; 

11 else 

12 /* Re-NUMBER */ 

13 if there is a D in which v has only one adjacent 

vertex u , and u can be inserted into another 

independent set D 

′ then 

14 insert u into D 

′ ; insert v into D ; 

15 else 

16 insert v into B d0 ; 

17 return B d0 ; 

Fig. 2. The graph for Examples 2, 4, 6 and 7 . 
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ing a maximum independent set S i in G and removing S i from G

for i = 1 , 2 , . . . until G becomes empty. Then, the MIS ordering is

defined as follows: given two vertices v i and v j , v i < v j iff v i ∈ S p
and v j ∈ S q and ( p > q or ( p = q and v i < v j w.r.t. the degeneracy

ordering)). 

IncMaxCLQ automatically switches between the degeneracy or-

dering and the MIS ordering as follows: 

1. If the density of G is smaller than 0.7, then O 0 is the degen-

eracy ordering, because computing the MIS ordering is hard

in this case. 

2. Otherwise, compute the MIS ordering by searching for suc-

cessive maximum cliques S 1 , S 2 , . . . , in the complementary

graph G of G as follows. First, sort the vertices of G in the

degeneracy ordering. Second, search for the first maximum

clique S of G using IncMaxCLQ, and then search for the sec-
1 
ond maximum clique S 2 using IncMaxCLQ in the reduced G

after removing the vertices of S 1 , and so on, until G becomes

empty. The obtained S 1 , S 2 , . . . are the successive maximum

independent sets of G . If there are at least two maximum

independent sets containing exactly one vertex, then O 0 is

the degeneracy ordering, otherwise O 0 is the MIS ordering.

Since the search is performed in the complementary graphs,

whose densities are below 0.3, computing the MIS ordering

takes less than one second in all the graphs considered in

the experiments. Thus, the overhead of computing the MIS

ordering is negligible compared with the total solving time. 

In the following, when we mention algorithm DoMC 0 , we re-

er to algorithm MC implementing function GetBranches d 0 . DoMC 0 

tands for “Dynamic ordering MaxClique solver”, because the ver-

ices in B d 0 are not always smaller than the vertices in A d0 =
 \ B d0 w.r.t. O 0 , so that the ordering between them should be dy-

amically re-defined. 

. DoMC: a BnB algorithm for MaxClique with incremental 

axSAT reasoning 

We first present a state-of-the-art approach to improve an up-

er bound of ω( G ) based on applying MaxSAT reasoning. Then, we

efine a new way of applying MaxSAT reasoning that, besides im-

roving the quality of the upper bound, enables to reduce the car-

inality of the set of branching vertices. As a result, we describe a

ew and improved variant of GetBranches: GetBranches d . 

.1. MaxSAT reasoning to improve an upper bound of ω( G ) 

Algorithms such as MCQ ( Tomita and Seki, 2003 ), MCR ( Tomita

nd Kameda, 2007 ), MaxCliqueDyn ( Konc and Janeži ̌c, 2007 ), MCS

 Tomita et al., 2010 ) and MaxCLQ ( Li and Quan, 2010a; 2010b )

ompute a partition of the set of vertices V of a graph G

nto r independent sets and use r as an upper bound of ω( G ).

evertheless, this upper bound may not be tight enough, even

hen r is the chromatic number of the graph. For example,

{ v 1 , v 4 , v 6 } , { v 2 , v 3 } , { v 5 }} is an optimal independent set partition

f the vertices of the graph in Fig. 1 , but its maximum cliques have

ize two. 

A subset of q independent sets is said conflicting if the q inde-

endent sets cannot form a clique of size q . A suitable approach to

mprove that upper bound r is to apply MaxSAT reasoning to de-

ect disjoint conflicting subsets of independent sets ( Li et al., 2013;

i and Quan, 2010a; 2010b ), which was shown to be very effective

n MaxCLQ and IncMaxCLQ. It holds that ( Li and Quan, 2010b ): 

roposition 1. Let G be a graph that can be partitioned into r inde-

endent sets. If t disjoint conflicting subsets of independent sets can

e detected, then ω( G ) ≤ r - t. 

roof. Let G be partitioned into � = { D 1 , D 2 , . . . , D r } , where each

 i (1 ≤ i ≤ r ) is an independent set, let �1 , �2 , . . . , �t be the

 detected disjoint conflicting subsets of �, and let C be a maxi-

um clique of G . Without loss of generality, let us write �i (1 ≤
 ≤ t ) as { S i 1 , S i 2 , . . . , S i | �i | } and let | �1 | + | �2 | + · · · + | �t | = p

ith p ≤ r and �1 ∪ �2 ∪ · · · ∪ �t = { D 1 , D 2 , . . . , D p } . Since �i is

onflicting, 
∑ | �i | 

j=1 
| C ∩ S i j | ≤ | �i | − 1 , because there exists some j

uch that | C ∩ S i j | = 0 . So, 
∑ t 

i =1 

∑ | �i | 
j=1 

| C ∩ S i j | ≤ ∑ t 
i =1 (| �i | − 1) =

p − t, and | C| = 

∑ r 
j=1 | C ∩ D j | = 

∑ t 
i =1 

∑ | �i | 
j=1 

| C ∩ S i j | + 

∑ r 
j= p+1 | C ∩

 j | ≤ (p − t) + (r − p) = r − t . �
Given a graph G = (V, E) and an independent set partition of V ,

e first create the partial MaxSAT encoding defined in Section 2 ,

nd then apply failed literal detection to identify disjoint conflict-

ng subsets of independent sets. Actually, the MaxSAT encoding
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Table 1 

Collecting the clauses making x̄ 3 ∨ ̄x 4 empty in Example 3 . 

Treated clause Treated Vars. New reasons in Q Vars. already treated 

x̄ 3 ∨ ̄x 4 
x̄ 3 ∨ ̄x 4 x 3 , x 4 x 2 ∨ x 3 , x 1 ∨ x 4 ∨ x 6 
x 2 ∨ x 3 x 2 x̄ 2 ∨ ̄x 5 x 3 
x 1 ∨ x 4 ∨ x 6 x 1 , x 6 x̄ 1 ∨ ̄x 5 , ̄x 5 ∨ ̄x 6 x 4 
x̄ 2 ∨ ̄x 5 x 5 x 5 x 2 
x̄ 1 ∨ ̄x 5 x 1 , x 5 
x̄ 5 ∨ ̄x 6 x 5 , x 6 
x 5 x 5 
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s implicit in MaxCLQ and IncMaxCLQ. The vertices are directly

reated as propositional variables, and the independent sets as soft

lauses. In addition, the non-adjacency relations between vertices

each vertex is associated with the list of its non-adjacent vertices

uring the preprocessing) represent the hard clauses. In this way,

nce G is partitioned into independent sets, failed literal detection

an be applied to the obtained MaxSAT instance. 

A clause C containing w + 1 literals has more possibilities to be

atisfied than a clause C ′ containing w literals, because C is satis-

ed when any of its w + 1 literals is satisfied. Hence, C is consid-

red to be weaker than C ′ . A unit clause l has only one possibility

o be satisfied and is considered to be the strongest case, because

he satisfaction of l assigns a fixed value to the variable in l , re-

oves l̄ from the clauses containing l̄ , and derives a unit clause if

 ̄is removed from a clause with two literals. The unit clause is then

ecorded as the reason for the value of the variable. Unit propaga-

ion consists in repeatedly satisfying unit clauses until an empty

lause is found, or there are no more unit clauses. 

xample 3 (from Li and Quan (2010b) ) . Consider the graph G in

ig. 1 , and the partial MaxSAT encoding in Example 1 . We apply

nit propagation to prove that G has no clique of size three be-

ause the set formed by the three independent sets is conflicting.

he satisfaction of the unit clause x 5 sets x 5 = 1 , and the clause

 5 is recorded as the reason for x 5 = 1 . Since x 5 = 1 cannot satisfy

he hard clauses x̄ 1 ∨ x̄ 5 , x̄ 2 ∨ x̄ 5 and x̄ 5 ∨ x̄ 6 , the occurrences of x̄ 5 
re removed from these clauses and they become unit clauses. In

ther words, there is only one way to satisfy these hard clauses af-

er setting x 5 to 1. They are then satisfied and recorded as the rea-

on for x 1 = 0 , x 2 = 0 and x 6 = 0 , respectively. Since x 1 = 0 , x 2 = 0

nd x 6 = 0 cannot satisfy the soft clauses x 1 ∨ x 4 ∨ x 6 and x 2 ∨ x 3 , the

ccurrences of x 1 , x 2 and x 6 are removed from the two clauses

nd they become unit clauses. The satisfaction of the new unit

lauses sets x 4 = 1 and x 3 = 1 , and the two clauses are recorded

s the reason for x 4 = 1 and x 3 = 1 , respectively. However, x 4 = 1

nd x 3 = 1 do not satisfy the hard clause x̄ 3 ∨ x̄ 4 , which becomes

mpty. This contradiction implies that the set of clauses involved

n the derivation of the empty clause cannot be satisfied simulta-

eously, because the clauses can only be satisfied in a unique way

efore reaching the empty clause. We now collect all the clauses

nvolved in the derivation of the empty clause with unit propaga-

ion and push them into a queue Q , starting with the clause x̄ 3 ∨ x̄ 4 
hat became empty. 

In a real implementation of unit propagation, literals are

arked as removed but are not physically deleted. So, we eas-

ly find the two literals x̄ 3 and x̄ 4 occurring in the empty clause.

he reasons for x 3 = 1 and x 4 = 1 are x 2 ∨ x 3 and x 1 ∨ x 4 ∨ x 6 , re-

pectively, and both clauses are pushed into Q . We now process

he second clause in Q : x 2 ∨ x 3 . The reason for x 2 = 0 is x̄ 2 ∨ x̄ 5 ,

hich is pushed into Q , and the reason for x 3 = 1 is x 2 ∨ x 3 , which

s ignored because it is already in Q . Next, we process the third

lause in Q : x 1 ∨ x 4 ∨ x 6 . The reasons for x 1 = 0 , x 4 = 1 and x 6 = 0

re x̄ 1 ∨ x̄ 5 , x 1 ∨ x 4 ∨ x 6 and x̄ 5 ∨ x̄ 6 , respectively, thus x̄ 1 ∨ x̄ 5 and

¯ 5 ∨ x̄ 6 are pushed into Q ( x 1 ∨ x 4 ∨ x 6 is already in Q and is ignored).

e process the fourth clause in Q : x̄ 2 ∨ x̄ 5 . The reason for x 2 = 0 is

¯ 2 ∨ x̄ 5 , which is ignored because it is already in Q , and the reason

or x 5 = 1 is x 5 , which is pushed into Q . We process the fifth clause

n Q : x̄ 1 ∨ x̄ 5 . The reasons for x 1 = 0 and x 5 = 1 are already in Q ,

nd are both ignored. We process the sixth clause in Q : x̄ 5 ∨ x̄ 6 .

he reasons for x 5 = 1 and x 6 = 0 are already in Q , and are both

gnored. Finally, we process the last clause in Q : x 5 . The reason for

 5 = 1 is already in Q , and is ignored. Hence, the set of clauses

nvolved in the derivation of the empty clause with unit propaga-

ion is Q = { ̄x 3 ∨ x̄ 4 , x 2 ∨ x 3 , x 1 ∨ x 4 ∨ x 6 , ̄x 2 ∨ x̄ 5 , ̄x 1 ∨ x̄ 5 , ̄x 5 ∨ x̄ 6 , x 5 } .
ince the hard clauses must be satisfied by any feasible assign-

ent, we conclude that the three soft clauses x ∨ x ∨ x , x ∨ x 
1 4 6 2 3 
nd x 5 cannot be satisfied simultaneously, implying that the upper

ound of ω( G ) is 2, instead of 3. 

Table 1 shows the evolution of Q . Each line gives a processed

lause, the variables whose reason must be pushed into Q , and the

ariables that are ignored because their reason was already pushed

nto Q . Note that unit propagation can be reproduced using the

lauses in the column “New reasons in Q” from bottom to top. 

Failed literal detection consists in adding a unit clause l to a

axSAT instance and then apply unit propagation. If unit propaga-

ion derives an empty clause, then l is a failed literal . Given a soft

lause c , adding a literal l of c to the MaxSAT instance is equiva-

ent to testing one possibility to satisfy c . If l is a failed literal, c

annot be satisfied by l . If all the literals of c are failed (i.e., all

ossibilities to satisfy c fail), the union of the clauses making each

iteral of c failed, together with c , cannot be satisfied simultane-

usly, and all the soft clauses involved in the derived contradic-

ions give a conflicting subset of independent sets. In Example 3 ,

{ v 1 , v 4 , v 6 } , { v 2 , v 3 } , { v 5 }} is a conflicting subset of independent

ets. Once such a subset has been detected, the soft clauses must

e weakened before detecting further conflicts. 

efinition 1. Let φ be a MaxSAT instance, and let U =
 c 1 , c 2 , . . . , c q } be a conflicting subset of soft clauses of φ. Weaken-

ng the clauses in U refers to the following procedure: If q = 2 , re-

lace the clauses c 1 and c 2 with c 1 ∨ c 2 . If q > 2, add a fresh propo-

itional variable z i to each clause c i , for i = 1 , . . . , q, and add the

ard constraint z 1 + z 2 + · · · + z q = 1 to the MaxSAT instance φ. 

For example, weakening the clauses of U = { x 1 ∨ x 4 ∨ x 6 , x 2 ∨
 3 , x 5 } returns U 

′ = { x 1 ∨ x 4 ∨ x 6 ∨ z 1 , x 2 ∨ x 3 ∨ z 2 , x 5 ∨ z 3 , z 1 + z 2 +
 3 = 1 } , whose clauses are weaker and easier to satisfy. It holds

hat: 

roposition 2. Let φ be a MaxSAT instance, and let U =
 c 1 , c 2 , . . . , c q } be a conflicting subset of soft clauses of φ. If the mini-

um number of false soft clauses in φ is s , then the minimum number

f false soft clauses in the MaxSAT instance φ′ obtained from φ after

eakening U is s − 1 . 

roof. Let I be an optimal assignment of φ and let s be the num-

er of soft clauses that I falsifies in φ. Note that s > 0 because U

s conflicting. We prove that s − 1 is the minimum number of false

oft clauses in φ′ , by distinguishing two cases: 

(i) q = 2 : In this case, φ′ = (φ \ { c 1 , c 2 } ) ∪ { c 1 ∨ c 2 } . If I falsi-

fies c 1 and c 2 , then I falsifies c 1 ∨ c 2 and s − 2 soft clauses

of φ�{ c 1 , c 2 }. So, I falsifies s − 1 soft clauses of φ′ . If I falsi-

fies either c 1 or c 2 (but not both), then I falsifies s − 1 soft

clauses of φ�{ c 1 , c 2 } but satisfies c 1 ∨ c 2 . So, I falsifies s − 1

soft clauses of φ′ . 
(ii) q > 2: In this case, φ′ = (φ \ { c 1 , c 2 , . . . , c q } ) ∪

{ z 1 + z 2 + · · · + z q = 1 , c 1 ∨ z 1 , c 2 ∨ z 2 , . . . , c q ∨ z q } . As

z 1 + z 2 + · · · + z q = 1 is a hard constraint, any feasible

assignment of φ′ satisfies exactly one of the literals in

{ z 1 , z 2 , . . . , z q } . If I is extended by setting I(z i ) = 1 for exactly
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Algorithm 3: IncMaxSAT( G , O 0 , A , B ), incremental MaxSAT 

reasoning to reduce the set of branching vertices B . 

Input : a graph G = (V, E) and an ordering O 0 over V . V is 

partitioned into A and B . In addition, A is partitioned 

into independent sets. 

Output : a set of branching vertices. 

1 begin 

2 φ ← Partial MaxSAT encoding of G without including the 

soft clauses for the vertices in B ; 

3 while B is not empty do 

4 b ← the greatest vertex in B w.r.t. O 0 ; 

5 add soft unit clause { b} into φ and push { b} into an 

empty stack S; 

6 while S is not empty and an empty clause is not derived 

do 

7 pop a unit clause u from S; 

8 � ← the only literal in u ; record u as the reason for 

the value of the variable in � satisfying � ; 

9 foreach clause c ∈ φ that contains � do 

10 remove � from c; 

11 if c becomes a unit clause then push c into S; 

12 if c becomes empty then 

13 B ← B \ { b} ; /* Branching on b is not 

necessary */ 

14 /* Search for clauses inducing the conflict */ 

15 push c into an empty queue Q; 

16 for each clause c ′ in the order they were 

pushed in Q do 

17 foreach removed literal � ′ of c ′ do 

18 if the reason r for literal � ′ is not in Q 

then 

19 push r into Q; 

20 restore all removed literals into their clauses; 

21 {{ b} , c 1 , . . . , c q } ← the set of soft clauses in 

Q; 

22 let z b , z c 1 , . . . , z c q be new variables; 

23 φ ← (φ \ {{ b} , c 1 , . . . , c q } ) 
∪ ({ b ∨ z b } ∪ { c 1 ∨ z c 1 , . . . , c q ∨ z c q } ) 
∪ { z b + z c 1 + · · · + z c q = 1 } ; 

24 break the foreach loop; 

25 if no empty clause is derived then return B ; 

26 return B ; 
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one i ∈ { 1 , 2 , . . . , q } such that I(c i ) = 0 , and I(z j ) = 0 for each

j ∈ ({ 1 , 2 , . . . , q } \ { i } ) , then I satisfies the hard constraint

and forces the satisfaction of c i ∨ z i but I(c j ∨ z j ) = I(c j ) for

all j � = i . Thus, I falsifies s − 1 soft clauses of φ′ . 

Note that s is the minimum number of soft clauses that can be

false in φ. By construction of φ′ , it has exactly one false soft clause

less than φ in both cases. So, s − 1 is the minimum number of false

soft clauses in φ′ . �

For instance, in Example 3 , the minimum number of false soft

clauses in the conflicting subset U = { x 1 ∨ x 4 ∨ x 6 , x 2 ∨ x 3 , x 5 } is 1,

because all the hard clauses and the two first soft clauses are sat-

isfied when x 1 = 1 , x 2 = 1 , x 3 = 0 , x 4 = 0 , x 5 = 0 , x 6 = 0 . However,

the minimum number of false soft clauses in the weakened sub-

set U 

′ = { x 1 ∨ x 4 ∨ x 6 ∨ z 1 , x 2 ∨ x 3 ∨ z 2 , x 5 ∨ z 3 , z 1 + z 2 + z 3 = 1 } is 0,

because all the hard clauses, all the weakened soft clauses and z 1 +
z 2 + z 3 = 1 are satisfied when x 1 = 1 , x 2 = 1 , x 3 = 0 , x 4 = 0 , x 5 =
0 , x 6 = 0 , z 1 = 0 , z 2 = 0 , z 3 = 1 . 

Since the clause weakening procedure removes one conflict

from φ, the additional conflicts detected in φ′ are independent of

the removed conflict. If t conflicts are detected among the r soft

clauses, we know that at least t soft clauses cannot be satisfied

by a truth assignment of the original variables, because the t soft

clauses have to be satisfied by t fresh variables (note that each

fresh variable occurs exactly in one clause). As a result, the upper

bound of ω( G ) is improved to r − t . Hard clauses are not weakened

because they must be satisfied by the original variables in every

feasible solution of the MaxSAT instance. 

4.2. Incremental MaxSAT reasoning to reduce the set of branching 

vertices 

We apply incremental MaxSAT reasoning ( Li et al., 2015 ) to re-

duce the set of branching vertices B d 0 . After the coloring process, V

is partitioned into A and B , and A is partitioned into r independent

sets. Then, we define a Boolean variable v for each vertex v ∈ V,

and the following partial MaxSAT encoding: there is a soft clause

for each independent set resulting from the partition of A , and a

hard clause v̄ i ∨ ̄v j for each pair of non-adjacent vertices v i and v j .
For convenience, we directly treat each vertex as a Boolean vari-

able and each independent set as a soft clause. Finally, we add a

vertex of B d 0 as a soft unit clause u , and apply unit propagation

to determine whether the literal in u fails. If so, the vertex is re-

moved from B d 0 , and the soft clauses involved in the conflict are

weakened. This process is repeated until the algorithm fails to de-

tect a conflict or there are no more vertices in B d 0 . If conflicts are

detected for the vertices b i 1 , . . . , b i k , then the subgraph induced by

A ∪ { b i 1 , . . . , b i k } does not contain any clique of size greater than r

and, therefore, b i 1 , . . . , b i k can be removed from B d 0 and added to

A . 

Function IncMaxSAT , defined in Algorithm 3 , implements the

described incremental MaxSAT reasoning approach, and returns a

possibly reduced set of branching vertices. It uses a stack S to

store all the unit clauses of φ, and applies unit propagation un-

til an empty clause is derived or S is empty. If an empty clause is

derived, the soft clauses used to derive the empty clause are col-

lected in lines 15 to 19 by retracing the reason for each falsified

literal in the empty and unit clauses. Example 3 and Table 1 illus-

trate how unit propagation derives an empty clause and how the

clauses used to derive the conflict are collected. Then, the collected

soft clauses are weakened. The constraint z b + z c 1 + · · · + z c q = 1 is

treated as follows: if one of these fresh variables is in a unit clause,

the other variables are negated (i.e. they are assigned false) and are

pushed into S as unit clauses. 

Let n be the number of vertices of graph G . Each vertex v oc-

curs in exactly one soft clause but in O ( n ) hard clauses, because the
umber of non-neighbors of v is in O ( n ) and each non-neighbor u

f v results in a hard clause ū ∨ v̄ . So, unit resolution for one unit

lause { l } requires time O ( n ), and unit propagation for one vertex b

n B has a time complexity in O ( n 2 ); the number of unit clauses

ushed into the stack S during unit propagation is in O ( n ). The

ime complexity of algorithm IncMaxSAT to remove O ( n ) vertices

rom B is in O ( n 3 ). 

As presented in Li and Quan (2010a ; 2010b ), standard MaxSAT

easoning partitions the entire set of vertices V into r independent

ets, and applies unit propagation and failed literal detection to

he MaxSAT encoding that has those r independent sets as soft

lauses. If MaxSAT reasoning detects t conflicts and the obtained

pper bound is not greater than | C max | , the search is pruned. How-

ver, if r − t is not good enough to prune the search, all the effort

pent in MaxSAT reasoning is useless. Initially, incremental MaxSAT

easoning only partitions A , instead of V , and derives a MaxSAT in-

tance φ that has the independent sets of A as soft clauses. Then,
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Algorithm 4: GetBranches d ( G , r , O 0 ), for a BnB algorithm 

searching for a maximum clique containing more than r ver- 

tices in G . 

Input : a graph G = (V, E) , an integer r, and an ordering O 0 

over V 

Output : a set of branching vertices 

1 begin 

2 B d0 ← GetBranches d0 ( G , r, O 0 ); 

3 if B d0 is empty then 

4 return the empty set; 

5 else 

6 A d0 ← V \ B d0 ; 

7 B d ← IncMaxSAT( G , O 0 , A d0 , B d0 ); 

8 return B d ; 
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Algorithm 5: GetBranches s ( G , r , O 0 ) for a BnB algorithm 

searching for a maximum clique containing more than r ver- 

tices in G . 

Input : a graph G = (V, E) , an integer r and an ordering O 0 

over V 

Output : a set of branching vertices 

1 begin 

2 B d ← GetBranches d ( G , r, O 0 ); 

3 if B d is empty then 

4 return the empty set; 

5 else 

6 v ← the greatest vertex in B d w.r.t. the ordering O 0 ; 

7 B s ← { u | u ∈ V , u ≤v w.r.t. O 0 }; 

8 return B s ; 
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t inserts one by one the vertices of B = V \ A as soft unit clauses

nto φ and derives a conflict for each inserted vertex. If incremen-

al MaxSAT reasoning is able to insert all vertices of B into φ, the

earch is pruned. Otherwise, B is generally significantly reduced.

hus, incremental MaxSAT reasoning, unlike standard MaxSAT rea-

oning, almost always has a positive impact. 

Algorithm 4 defines function GetBranches d , which is a new

ariant of GetBranches. It first calls GetBranches d 0 and computes a

et B d 0 of branching vertices. Then, it applies incremental MaxSAT

easoning to B d 0 and obtains a reduced set B d of branching vertices.

xample 4. Consider the graph in Fig. 2 , and assume that the ver-

ex ordering O 0 is v 1 < v 2 < v 3 < · · · < v 10 , | C max | = 2 and | C| = 0 .

etBranches d 0 ( G , 2, O 0 ) returns B d0 = { v 2 , v 3 , v 4 , v 5 }, as illustrated

n Example 2 . Note that D 1 = { v 10 , v 6 , v 1 }, D 2 = { v 9 , v 8 , v 7 } and

 d0 = D 1 ∪ D 2 . 

Function GetBranches d applies incremental MaxSAT reasoning

o reduce B d 0 as follows. IncMaxSAT inserts v 5 into A as a new in-

ependent set D 3 = { v 5 }. The adjacent vertices to v 5 in D 1 are v 10 

nd v 1 . However, v 8 , which is the only adjacent vertex to v 5 in

 2 , is not adjacent to v 10 and v 1 . So the set { D 1 , D 2 , { v 5 }} can-

ot form a clique of size 3 and is conflicting, which is weakened

o { D 1 = { v 10 , v 6 , v 1 , z 1 }, D 2 = { v 9 , v 8 , v 7 , z 2 }, D 3 = { v 5 , z 3 }} together

ith the hard constraint z 1 + z 2 + z 3 = 1 . Then, IncMaxSAT inserts

 4 into A as a new independent set D 4 = { v 4 }. Since v 5 in D 3 is not

djacent to v 4 , z 3 should be 1, forcing z 1 and z 2 to be 0 because

f the hard constraint. The only adjacent vertex to v 4 in D 1 is v 6 ,
hich is not adjacent to v 7 , the only adjacent vertex to v 4 in D 2 .

o, the set { D 1 , D 2 , { v 5 , z 3 }, { v 4 }} cannot form a clique of size 4

nd is conflicting. This set is weakened to { D 1 = { v 10 , v 6 , v 1 , z 1 ,

 4 }, D 2 = { v 9 , v 8 , v 7 , z 2 , z 5 }, D 3 = { v 5 , z 3 , z 6 }, D 4 = { v 4 , z 7 }} together

ith the new hard constraint z 4 + z 5 + z 6 + z 7 = 1 . IncMaxSAT fails

o derive a conflict when inserting vertex v 3 . Finally, GetBranches d 
eturns the set B d = { v 2 , v 3 }, which has two vertices fewer than B d 0 .

In the following, when we mention algorithm DoMC, we refer

o algorithm MC implementing function GetBranches d . 

. SoMC: a BnB algorithm for MaxClique with a static ordering 

or branching 

In the previous GetBranches functions, the only objective is that

 should be as small as possible. Until now, we used a static vertex

rdering O 0 for partitioning the set of vertices V , and minimized B

s much as possible, inducing a dynamic vertex ordering between

ertices in A and vertices in B . We now add a constraint: all the

ertices of B should be smaller than all the vertices of A w.r.t. the

rdering O , so that when the BnB algorithm branches on a vertex
0 
 ∈ B , it is guaranteed that b is smaller than all the vertices in the

andidate set P w.r.t. O 0 . 

Algorithm 5 defines function GetBranches s , which is based on

etBranches d , and simply returns the set B s of vertices that are

maller than or equal to the greatest vertex of B d w.r.t. O 0 . In this

ay, all vertices in B s are smaller than all vertices in A = V \ B s 
.r.t. O 0 . 

xample 5. Consider again Example 4 , where GetBranches d re-

urns the set B d = { v 2 , v 3 } . Since the greatest vertex in B d 
s v 3 , GetBranches s moves the vertex v 1 of A d = V \ B d =
 v 1 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 , v 10 } , which is smaller than v 3 , back into B d ,

nd returns B s = { v 1 , v 2 , v 3 } . It returns the set of vertices that are

maller than or equal to v 3 . 

In the following, when we mention algorithm SoMC, we refer to

lgorithm MC implementing function GetBranches s . SoMC stands

or “Static ordering MaxClique solver”, because the vertex ordering

etween B s and A s = V \ B s is always consistent with the initial or-

ering O 0 . 

In Example 5 , B s contains one more branching vertex than B d :

 1 . However, when SoMC branches on v 2 or v 3 , the candidate set

 does not contain v 1 , as opposed to what happens in DoMC. Our

rst intuition for SoMC could be described as follows. Since v 1 is

he smallest vertex, searching for a maximum clique in G [�(v 1 )]

robably is much easier than in G [�(v 2 )] and in G [�(v 3 )] . So, it

ight be advantageous to branch on v 1 separately, because remov-

ng v 1 from the candidate set P might significantly reduce the com-

lexity of branching on v 2 and v 3 and largely compensate the cost

f branching on v 1 . 

. Comparison of the GetBranches functions 

We conducted experiments to compare the mean number of

ranching vertices of the three GetBranches functions when solv-

ng a subset of DIMACS instances, excluding the instances that are

ither too easy or too hard. We ran DoMC 0 to solve each DIMACS

nstance. At each search tree node, we computed the number of

ranching vertices returned by each GetBranches function. Then,

oMC 0 effectively branched on every vertex in the set returned

y GetBranches d 0 . Finally, the mean number of branching vertices

as computed for every GetBranches function by dividing the total

umber of branching vertices in the search tree by the search tree

ize. 

Table 2 shows the mean number of branching vertices com-

uted by each GetBranches function. The comparison is meaning-

ul because the three functions are called with the same graph

nd the same r , as well as the same vertex ordering O 0 , at ev-

ry search tree node. DoMC was chosen because GetBranches 
0 d 0 
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Table 2 

Mean number of branching vertices of three GetBranches functions over 

a set of DIMACS graphs, excluding the instances that are either too easy 

or too hard. 

Instance GetBranches d 0 GetBranches d GetBranches s 

brock400_1 3 .54 0 .61 0 .86 

brock400_2 3 .44 0 .55 0 .80 

brock400_3 3 .22 0 .52 0 .89 

brock400_4 3 .38 0 .55 0 .95 

C250.9 2 .48 0 .09 0 .16 

DSJC10 0 0_5 5 .64 2 .59 4 .30 

gen200_p0.9_55 1 .73 0 .98 1 .08 

gen400_p0.9_55 1 .90 < 0 .01 < 0 .01 

gen400_p0.9_65 1 .71 0 .02 0 .02 

gen400_p0.9_75 1 .87 0 .23 0 .24 

hamming10-2 1 .00 1 .00 1 .01 

keller5 3 .96 0 .21 0 .26 

MANN_a27 1 .47 1 .10 10 .14 

MANN_a45 2 .29 1 .15 1 .24 

p_hat10 0 0-2 4 .40 0 .53 1 .38 

p_hat1500-1 8 .23 3 .91 7 .65 

p_hat300-3 4 .04 0 .46 1 .00 

p_hat500-2 3 .73 0 .98 2 .34 

p_hat500-3 3 .98 0 .39 1 .01 

p_hat700-2 4 .69 0 .69 1 .68 

p_hat700-3 4 .31 0 .29 0 .77 

san400_0.7_3 3 .06 0 .18 0 .21 

sanr200_0.9 2 .53 0 .10 0 .19 

sanr400_0.7 3 .50 0 .71 1 .03 
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presumably computes the largest set of branching vertices. Thus,

the three GetBranches functions compute the number of branch-

ing vertices for the maximum number of subgraphs: each branch-

ing vertex in DoMC 0 corresponds to a subgraph, and the three Get-

Branches functions are called at each subgraph. 

As expected, GetBranches d 0 computes the largest set of branch-

ing vertices, providing evidence of the positive impact of incre-

mental MaxSAT reasoning. For GetBranches d and GetBranches s , the

mean number of branching vertices is often smaller than one, be-

cause they return an empty set of branching vertices at many

search tree nodes where GetBranches d 0 returns a nonempty set

of branching vertices. GetBranches s computes more branching ver-

tices than GetBranches d but preserves the static vertex ordering O 0 

in the graph. Experimental results reported in Li et al. (2015) indi-

cate that SoMC clearly dominates DoMC. 

7. Improved algorithms: DoMC2 0 , DoMC2 and SoMC2 

A weak point of DoMC 0 , DoMC and SoMC is that they do not

exploit sufficiently the results of the previous search. To overcome

this lack of incrementality we incorporated into them a more ef-

ficient representation of the adjacency matrix, and an incremen-

tal upper bound computation method. As a result, we developed

the new algorithms DoMC2 0 , DoMC2 and SoMC2 that outperform

DoMC 0 , DoMC and SoMC, respectively. 

In this section we first describe how to improve the represen-

tation of the adjacency matrix, and the new incremental upper

bound. Then, we define a new generic algorithm, MC2, that imple-

ments the previously mentioned improvements. Finally, we explain

how to derive DoMC2 0 , DoMC2 and SoMC2 from MC2. 

7.1. Reconstruction of adjacency matrix 

Algorithm MC stores the graph G = (V, E) in an adjacency ma-

trix M of size | V | × | V | where, for each row i and each column j ,

M[ i, j] = 1 if and only if vertex v i and vertex v j are adjacent. Note

that M is usually huge. For example, if G has 10 0 0 vertices, then M

usually needs 1,0 0 0,0 0 0 memory bytes. In general, M is supposed

not to be loaded entirely into the cache memory. 
Ideally, consecutive rows and columns of M correspond to con-

ecutive vertices of G w.r.t. a fixed ordering. If the branching ver-

ices in B are all smaller than the vertices in A , the sub-matrix of

 storing the subgraph induced by A grows incrementally along

ith successive branchings on b | B | , b | B |−1 , . . . , b 1 in B , providing

fficient cache memory utilization. So, static orderings for branch-

ng lead to an incremental increase of the size of the matrix and

rovide better cache memory utilization. However, using the dy-

amic ordering of DoMC, A can contain vertices that are smaller

and greater) than the branching vertices of B . In this case, the

ows and columns of the sub-matrix corresponding to vertices in

 can spread widely in M , producing frequent cache failures. 

xample 6. Refer to Example 5 , where A s =
 v 4 , v 5 , v 6 , v 7 , v 8 , v 9 , v 10 } and B s = { v 1 , v 2 , v 3 } . The sub-matrix

toring the subgraph induced by A s consists of consecutive rows

nd columns of M , and has more chance to be loaded into the

ache memory. Then, v 3 , v 2 and v 1 are added successively to A s ,

ncrementally increasing the sub-matrix and favoring the cache

emory utilization. However, in DoMC, the sub-matrix storing

 d = { v 1 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 , v 10 } does not consist of consecutive

ows and columns of M , and has less chance to be loaded into the

ache memory for successive branchings. 

To overcome this drawback in DoMC, we adapted an optimiza-

ion technique from MCS that reconstructs the adjacency matrix,

o that vertices in A correspond to consecutive rows and columns

n M . However, the reconstruction is time-consuming and is thus

imited to the root in MCS. We extended the reconstruction to the

irect child nodes of the root of the search tree (i.e., when | C | ≤ 1

n Algorithm MC). Our tests show that the reconstruction limited

o such nodes makes DoMC about 5% to 10% faster, and that ap-

lying the reconstruction to additional search tree nodes does not

mprove the performance. 

Observe that although the reconstruction of the adjacency ma-

rix is mainly introduced for DoMC, it is also useful for SoMC, be-

ause after branching on b i in SoMC, the vertices in the candidate

et P = �(b i ) ∩ ({ b i +1 , . . . , b | B | } ∪ A ) are generally not consecutive

n matrix M (though less widely spread than in DoMC). This re-

onstruction makes these vertices consecutive in the matrix and

mproves the effective utilization of the cache memory. 

.2. Incremental upper bound 

In order to exploit the results obtained in previous search, we

se an array called vertexUB [ v i , O ] , as in Li et al. (2013) , to store

n upper bound on the size of a maximum clique containing v i 
n the subgraph induced by v i and all the vertices greater than

 i w.r.t. the ordering O . Formally, let v 1 < v 2 < v 3 < · · · < v n be a

ertex ordering O over the vertices of graph G = (V, E) , and let

 i = { v i , v i +1 , . . . , v n } for i = 1 , . . . , n (i.e., V i contains v i and all ver-

ices greater than v i w.r.t. O ). We store in vertexUB [ v i , O ] an upper

ound on the size of a maximum clique containing v i in G [ V i ]. 

As shown in Li et al. (2013) , vertexUB [ v i , O ] is very effective

n pruning the search. In fact, when a BnB algorithm branches on

 i , its purpose is to search for a maximum clique containing v i in

 [ V i ]. However, if the largest clique found so far in G has size s and

ertexUB[ v i , O ] ≤ s , then the branch can be pruned. 

The following rules are introduced in Li et al. (2013) to define

ertexUB [ v i , O ] . 

Inheritance rule: If vertexUB [ v i , O ] is defined on a set U i and

V i ⊆U i , then vertexUB [ v i , O ] can be defined on V i with the

same value as in U i . 

Incremental rule: We define a function called IncUB (v i , O ) as

follows. If V i ∩ �(v i ) = ∅ , then IncUB (v i , O ) = 1 . Otherwise,

IncUB (v i , O ) = 1 + max u ∈ V ∩ �(v ) v ertexUB [ u, O ] , provided that

i i 
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vertexUB[ u , O ] was already defined for each u ∈ V i ∩ �(v i )
in the previous search. Obviously, vertexUB [ v i , O ] can be de-

fined to be IncUB (v i , O ) . In other words, vertexUB [ v i , O ] can

be defined to be the maximum vertexUB of its neighbors in

V i plus 1, because any clique containing v i is formed by v i 
and some of its neighbors. 

Coloring rule: If V i can be partitioned into r independent sets,

then vertexUB [ v i , O ] can be defined to be r . 

MaxSAT rule: If V i can be partitioned into r independent sets

and t disjoint conflicting subsets of independent sets can be

detected using MaxSAT reasoning, then vertexUB [ v i , O ] can

be defined to be r − t . 

At the beginning of the search, IncMaxCLQ ( Li et al., 2013 ) ini-

ializes vertexUB [ v , O ] for each v in G using the incremental rule.

he inheritance rule is used to initialize vertexUB [ v , O ] for each v
n a subgraph of G . Before branching on v i , IncMaxCLQ applies the

ncremental rule, the coloring rule and the MaxSAT rule. Let UB inc ,

B color and UB MaxSAT be the upper bounds derived from the incre-

ental rule, the coloring rule and the MaxSAT rule, respectively,

nd let β = min (UB inc , UB color , UB MaxSAT ). IncMaxCLQ improves ver-

exUB [ v i , O ] to be min( β , vertexUB [ v i , O ] ). If the improved ver-

exUB [ v i , O ] does not allow IncMaxCLQ to prune the branch, Inc-

axCLQ branches on v i , with a growing clique C and the largest

lique C max found so far, to obtain a clique C 1 which is either a

aximum clique containing v i in G [ V i ] such that | C 1 | > | C max | or

 max if such a clique does not exist. In both cases, IncMaxCLQ ap-

lies the following rule to improve vertexUB [ v i , O ] . 

Branching rule: vertexUB [ v i , O ] can be defined to be | C 1 | − | C|
after a BnB algorithm branches on v i with the growing clique

C to obtain a clique C 1 . 

xample 7. Let O be the ordering v 1 < v 2 < v 3 < · · · < v 10 for the

ertices in the graph G of Fig. 2 . Using the incremental rule, ver-

exUB [ v i , O ] (1 ≤ i ≤ 10) can be initialized as follows: 

• vertexUB [ v 10 , O ] = 1 , because V 10 ∩ �(v 10 ) = ∅ ; 
• vertexUB [ v 9 , O ] = 2 , initialized with 1+ vertexUB [ v 10 , O ] ; 
• vertexUB [ v 8 , O ] = 1 , because V 8 ∩ �(v 8 ) = ∅ ; 
• vertexUB [ v 7 , O ] = 2 , initialized with 1+ vertexUB [ v 10 , O ] ; 
• vertexUB [ v 6 , O ] = 3 , initialized with 1+ vertexUB [ v 9 , O ] ; 
• vertexUB [ v 5 , O ] = 2 , initialized with 1+ vertexUB [ v 10 , O ] ; 
• vertexUB [ v 4 , O ] = 4 , initialized with 1+ vertexUB [ v 6 , O ] ; 
• vertexUB [ v 3 , O ] = 5 , initialized with 1+ vertexUB [ v 4 , O ] ; 
• vertexUB [ v 2 , O ] = 3 , initialized with 1+ vertexUB [ v 7 , O ] ; 
• vertexUB [ v 1 , O ] = 4 , initialized with 1+ vertexUB [ v 2 , O ] . 

At the beginning, the growing clique C is empty. Before branch-

ng on v i , IncMaxCLQ improves vertexUB [ v i , O ] using the incre-

ental rule, the coloring rule and the MaxSAT rule. If the min-

mum value obtained is not sufficient to prune the branch, Inc-

axCLQ branches on v i and applies the branching rule. For in-

tance, the branching on v 3 gives the clique { v 3 , v 6 , v 9 }. Thus

 C max | = 3 and vertexUB [ v 3 , O ] = 3 . Before branching on v 2 , Inc-

axCLQ checks vertexUB [ v 2 , O ] = 3 = | C max | − | C| and prunes the

ranch, because vertexUB [ v 2 , O ] = 3 means that a clique contain-

ng v 2 and larger than 3 does not exist in V 2 = { v 2 , v 3 , . . . , v 10 } . 
Note that vertexUB [ v i , O ] depends on the ordering O . Let O 

′ be

 10 < v 9 < v 8 < · · · < v 1 in G and V ′ 
i 

= { v i , v i −1 , . . . , v 1 } . Using the

ncremental rule, we can define vertexUB [ v 1 , O 

′ ] = 1 (V ′ 1 ∩ �(v 1 ) =
 ) , vertexUB [ v 2 , O 

′ ] = 2 (1+ vertexUB [ v 1 , O 

′ ]) , etc. These values are

ifferent from those obtained for O , meaning that a vertexUB value

btained from an ordering cannot generally be used to prune the

earch in another ordering. 

Nevertheless, given two orderings O and O 

′ , if v i is smaller than

r equal to all the vertices in V i w.r.t. both O and O 

′ , we can define

ertexUB [ v , O 

′ ] = vertexUB [ v , O ] . Formally, we have: 
i i 
Compatibility rule: Let O and O 

′ be two different vertex or-

derings. Let v i be a vertex such that vertexUB [ v i , O ] has

been defined. If it holds that { u | v i < u w.r.t. O 

′ } ⊆ { u | v i < u

w.r.t. O }, then vertexUB [ v i , O 

′ ] can be defined to be ver-

texUB [ v i , O ] . 

In other words, vertexUB [ v i , O ] can be used to prune the search

n the ordering O 

′ if O and O 

′ are compatible at v i . The compatibil-

ty rule is new in this paper. The inheritance rule is a special case

f the compatibility rule when O = O 

′ . 
In this paper, we do not use the coloring rule and the MaxSAT

ule to define vertexUB, because the GetBranches function already

ses graph coloring and MaxSAT reasoning to partition a candidate

et into A and B . We only use the compatibility rule, the incremen-

al rule and the branching rule to define vertexUB, as described in

he next subsection. 

.3. A new generic BnB algorithm 

Algorithm 6 describes the integration of the adjacency matrix

econstruction and the incremental upper bound in Algorithm MC,

iving MC2. MC2 uses the array vertexUB to store, for a vertex or-

ering O and for each vertex v , an upper bound on the size of a

aximum clique containing v in the set { u ∈ P | u ≥ v w.r.t. O } , and

alls function GetBranches to partition P into A and B according to

he initial vertex ordering O 0 (line 3 and line 5), so that A cannot

orm a clique of size greater than | C max | − | C| . Note that O 0 is static

nd is never changed. 

If B is not empty, let A = { a 1 , a 2 , . . . , a | A | } and B =
 b 1 , b 2 , . . . , b | B | } both in increasing order w.r.t. O . MC2 defines

 new vertex ordering O 

′ : b 1 < b 2 < ��� < b | B | < a 1 < a 2 < ���
 a | A | . O 

′ may be different from O because there may exist two

ertices a i and b j such that a i < b j w.r.t. O . So, MC2 should define

ertexUB [ v , O 

′ ] for each vertex in P , because it will branch on

ertices of B w.r.t. O 

′ . 
For each vertex a i in A , since a 1 < a 2 < ��� < a | A | w.r.t. O 

′ 
s consistent with O and A ⊆P , vertexUB[ a i , O 

′ ] can be defined

o be vertexUB[ a i , O ] using the compatibility rule. In addition,

ertexUB[ a i , O 

′ ] can also be defined using the incremental rule.

oreover, the GetBranches function has proved that a maximum

lique in A cannot contain more than | C max | − | C| vertices. So,

ertexUB[ a i , O 

′ ] should not be greater than | C max | − | C| . Therefore,

ertexUB[ a i , O 

′ ] = min(vertexUB[ a i , O ], | C max | − | C| , IncUB( a i , O 

′ ))
line 10). 

For each vertex b i in B , vertexUB[ b i , O 

′ ] is first initialized with

he incremental rule. If vertexUB [ b i , O 

′ ] ≤ | C max | − | C| , the branch-

ng on b i is pruned. Otherwise, if b i is smaller than all vertices

n { b i +1 , . . . , b | B | } ∪ A w.r.t. O and vertexUB [ b i , O ] ≤ | C max | − | C| , the

ranching on b i is also pruned and vertexUB[ b i , O 

′ ] is improved to

ertexUB[ b i , O ] using the compatibility rule (line 19). Otherwise,

C2 has to branch on b i to compute a new clique C 1 which is ei-

her C max or a larger clique (line 22). As a result, vertexUB[ b i , O 

′ ]
s defined to be | C 1 | − | C| (line 23) using the branching rule. 

When MC2 branches on b i to search for a maximum clique in

 

′ = �(b i ) ∩ ({ b i +1 , . . . , b | B | } ∪ A ) , it uses the new ordering O 

′ . Note

hat vertexUB [ v , O 

′ ] was already tightly defined for every vertex v
n { b i +1 , . . . , b | B | } ∪ A and can be used to prune the search in the

ecursive call w.r.t. O 

′ . 
For finding a maximum clique in a graph G = (V, E) , the initial

all of Algorithm 6 should be MC2( G , V , O 0 , ∅ , ∅ , O 0 ). Before the

nitial call, using the incremental rule, vertexUB[ v i , O ] is initialized

o 1 if V i ∩ �(v i ) = ∅ , and to 1 + max u ∈ V i ∩ �(v i ) v ertexUB [ u, O ] other-

ise. 
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Algorithm 6: MC2( G , P , O 0 , C , C max , O ), a new generic BnB 

algorithm for MaxClique. 

Input : G = (V, E) , a candidate set P , an initial vertex ordering 

O 0 over G , the current growing clique C, the largest 

clique C max found so far in G , another vertex ordering 

O in P 

Output : C ∪ C ′ , where C ′ is a maximum clique of G [ P ] , if 

| C ∪ C ′ | > | C max | ; C max otherwise 

1 begin 

2 if P = ∅ then return C; 

3 B ← GetBranches( G [ P ] , | C max | − | C| , O 0 ); 

4 if B = ∅ then return C max ; 

5 A ← P \ B ; 
6 Let A = { a 1 , a 2 , . . . , a | A | } and B = { b 1 , b 2 , . . . , b | B | } in the 

increasing ordering w.r.t. O ; 

7 Define the new vertex ordering O 

′ in P : 

b 1 < b 2 < · · · < b | B | < a 1 < a 2 < · · · < a | A | ; 
8 for i := | A | downto 1 do 

9 /* compatibility rule and incremental rule 

*/ 

10 vertexUB [ a i , O 

′ ] ← min(vertexUB [ a i , O ] , | C max | − | C| , 
11 IncUB (a i , O 

′ ) ); 
12 if | C| ≤ 1 then 

13 reconstruct the adjacency matrix to make the vertices 

of G [ P ] consecutive in the matrix w.r.t. the ordering O 

′ ; 
14 for i := | B | downto 1 do 

15 vertexUB [ b i , O 

′ ] ← IncUB (b i , O 

′ ) ; /* incremental 
rule */ 

16 if vertexUB [ b i , O 

′ ] > | C max | − | C| then 

17 if b i is smaller than all vertices in { b i +1 , . . . , b | B | } ∪ A 

w.r.t. O and vertexUB [ b i , O ] ≤ | C max | − | C| then 

18 /* compatibility rule */ 

19 vertexUB [ b i , O 

′ ] ← vertexUB [ b i , O ] ; 

20 else 

21 P ′ ← �(b i ) ∩ ({ b i +1 , . . . , b | B | } ∪ A ) ; 

22 C 1 ← MC2( G , P ′ , O 0 , C ∪ { b i } , C max , O 

′ ); 
23 vertexUB [ b i , O 

′ ] ← | C 1 | − | C| ; /* branching 
rule */ 

24 if | C 1 | > | C max | then C max ← C 1 ; 

25 return C max ; 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Comparison of three new solvers in terms of search tree sizes in thousands and 

runtimes in seconds on DIMACS graphs, excluding too easy and too hard instances. 

Instance DoMC2 0 DoMC2 SoMC2 

Time Tree Time Tree Time Tree 

brock400_1 333.1 26,829 193.1 1801 128.5 1097 

brock400_2 886.2 79,641 492.0 4605 100.1 907.8 

brock400_3 254.0 21,329 141.6 1289 76.13 745.2 

brock400_4 142.2 9472 74.42 564.2 20.87 202.2 

C250.9 1038 77,526 143.9 1035 193.9 1060 

DSJC10 0 0_5 143.1 8934 155.7 1866 130.8 1389 

gen200_p0.9_55 0.04 2.77 0.04 1.48 0.04 1.48 

gen400_p0.9_55 130.5 9699 1.09 1.83 1.09 1.83 

gen400_p0.9_65 2.71 321.0 0.32 2.15 0.32 2.15 

gen400_p0.9_75 0.48 29.06 0.21 2.78 0.21 2.78 

hamming10-2 7.90 130.8 35.43 130.8 34.88 130.8 

keller5 1392 40,720 253.2 848.4 181.3 745.7 

MANN_a27 0.37 12.60 0.18 8.20 0.25 8.57 

MANN_a45 75.05 238.6 7.84 62.88 10.60 63.15 

p_hat10 0 0-2 52.22 1402 19.69 47.72 26.26 46.15 

p_hat1500-1 2.65 139.7 3.32 45.58 3.42 42.91 

p_hat300-3 0.53 19.13 0.28 1.28 0.32 1.11 

p_hat500-2 0.29 3.54 0.28 0.82 0.28 0.82 

p_hat500-3 33.71 949.1 9.98 25.65 14.45 26.78 

p_hat700-2 1.48 25.56 0.92 1.56 1.08 1.45 

p_hat700-3 498.6 9352 113.7 198.0 157.1 171.0 

san400_0.7_3 0.25 11.07 0.20 0.25 0.20 0.25 

sanr200_0.9 12.40 946.9 1.93 15.29 1.90 11.75 

sanr400_0.7 207.0 20,894 148.4 1660 63.14 568.1 
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7.4. Algorithms DoMC2 0 , DoMC2 and SoMC2 

We obtain the new BnB algorithm DoMC2 0 (resp. DoMC2 and

SoMC2) if function GetBranches is replaced with GetBranches d 0 
(resp. GetBranches d and GetBranches s ) in MC2. Observe that in

SoMC2, the vertex orderings O and O 

′ are always identical to O 0 ,

which is not the case in DoMC2 0 and DoMC2. 

Table 3 compares the performance of algorithms DoMC2 0 ,

DoMC2 and SoMC2 on the instances of Table 2 . We can see that

MaxSAT reasoning makes DoMC2 and SoMC2 significantly better

than DoMC2 0 in terms of both runtime and search tree size, and

that DoMC2 is superior to SoMC2 on some instances whereas

SoMC2 is superior to DoMC2 on other instances. So, the results in-

dicate that DoMC2 and SoMC2 are complementary. 

8. Algorithm MoMC: combining the dynamic and static 

strategies 

SoMC2 and DoMC2 are both based on function GetBranches d ,

although SoMC2 re-inserts some vertices back into the set of
ranching vertices to keep the ordering between the branching

nd non-branching vertices. Since SoMC2 and DoMC2 are com-

lementary, we propose a new function in Algorithm 7 , called

Algorithm 7: GetBranches m 

( G , r , O 0 ), for a BnB algorithm 

searching for a maximum clique containing more than r ver- 

tices in G . 

Input : a graph G = (V, E) , an integer r and a vertex ordering 

O 0 

Output : a set of branching vertices 

1 begin 

2 B d ← GetBranches d ( G , r, O 0 ); 

3 if B d is empty then 

4 return B d ; 

5 else 

6 v ← the greatest vertex in B d w.r.t. O 0 ; 

7 B s ← { u | u ∈ V , u ≤ v w.r.t. O 0 }; 

8 if | B d | / | B s | < α then 

9 return B d ; 

10 else 

11 return B s ; 

etBranches m 

, that combines the performance of SoMC2 and

oMC2. 

Using GetBranches m 

in Algorithm 6 , we obtain a BnB algorithm

alled MoMC (for Mixed ordering MaxClique solver). GetBranches m 

ses a parameter α (0 ≤ α ≤ 1) to control the choice of either

etBranches d or GetBranches s . If α = 0 , GetBranches m 

is simply

etBranches s ; and if α = 1 , GetBranches m 

is GetBranches d . When

 < α < 1, GetBranches m 

dynamically chooses either B d or B s ac-

ording to the ratio | B d |/| B s |. If B d is much smaller than B s (i.e., if

 B d | < α| B s |), B d is returned, inducing a new vertex ordering over

he vertices of G . Otherwise, B s is returned and the branching ver-

ices are all smaller than the non-branching vertices w.r.t. the ini-

ial vertex ordering O ( O 

′ is simply O in this case in MoMC). Our
0 0 
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xperiments show that the solver MoMC achieves the best overall

esults when α = 0 . 6 . 

Observe that GetBranches d is the most time-consuming compu-

ation of GetBranches m 

. The overhead of the other lines is negligi-

le. 

. Experimental analysis 

We conducted experiments to evaluate the algorithms DoMC2 0 ,

oMC2, SoMC2 and MoMC, and compare them with several state-

f-the-art exact algorithms. DoMC2 0 , DoMC2, SoMC2 and MoMC

ere implemented in C and compiled using GNU gcc −O3. Ver-

ices are represented by integers, and we used standard integer ar-

ays in the implementation of the algorithms, except for the adja-

ency matrix which is stored in a 2-dimension array. For example,

e use integer arrays to store the list of neighbors and the list

f non-neighbors of each vertex, the independent sets, vertexUB,

he stack S for unit propagation, the queue Q in the IncMaxSAT al-

orithm, and the stacks to control backtracking. Recall that hard

lauses and soft clauses in the MaxSAT encoding of a MaxClique

nstance are respectively represented by the lists of non-neighbors

nd the independent sets. This implementation might be improved

sing special data structures like bit strings as in BBMC ( Segundo

t al., 2011 ). 

To search for a maximum clique in a graph G , all these algo-

ithms begin by automatically determining the initial vertex order-

ng O 0 , which is either the degeneracy ordering or the MIS order-

ng, in a preprocessing step. The MIS ordering is computed in the

ame manner as IncMaxCLQ does (see Section 3 ). The time spent

or the preprocessing is included in the whole runtime of each al-

orithm. Since the performance of DoMC2 0 is always worse than

he performance of DoMC2 and SoMC2, we do not report its re-

ults in this section. 

The experiments were performed on an Intel Xeon CPU

5460@3.16GHz under Linux with 16 GB of memory and 12 MB

f cache memory (shared by 8 running cores). The dfmax program

compiled using GNU gcc -O3) needs 0.18, 1.04 and 3.95 s to solve

he DIMACS benchmark graphs r30 0.5, r40 0.5 and r50 0.5, respec-

ively, in our machine. 

In the rest of this section, we first describe the benchmarks

sed and the solvers that we compare, and then discuss and an-

lyze the experimental results. 

.1. Benchmarks 

We solved random graphs, DIMACS graphs 1 and BHOSLIB

raphs 2 to evaluate our solvers, which are essential benchmarks 

sed in Prosser (2012) to study MaxClique solvers. DIMACS graphs

nd random graphs are standard benchmarks used to evaluate

tate-of-the-art exact MaxClique solvers ( Carraghan and Pardalos,

990; Fahle, 2002; Konc and Janeži ̌c, 2007; Li and Quan, 2010a;

010b; Östergård, 2002; Régin, 2003; Segundo et al., 2011; Tomita

nd Kameda, 2007; Tomita and Seki, 2003; Tomita et al., 2010 ). 

DIMACS graphs fall into three categories: 

1. Graphs generated using randomness and some properties,

including p_hat ∗, graphs with wide node degree range;

genn_p ∗, graphs with a unique known maximum clique;

brock ∗, graphs with a unique known maximum clique hid-

den in vertices of low degrees; C ∗ and DSJC ∗, uniform ran-

dom graphs; san ∗ and sanr ∗, graphs randomly generated

using different methods. 
1 available at http://cs.hbg.psu.edu/txn131/clique.html . 
2 available at http://www.nlsde.buaa.edu.cn/ ∼kexu/benchmarks/ 

raph-benchmarks.htm . 

g  
2. Crafted graphs with special structures, including: MANN ∗,

Steiner triple graphs; keller ∗, generated by Keller’s con-

jecture on tiling graphs ( Lagarias and Shor, 1992 ); and

johnson l − w − d, generated using binary vectors of

length l and weight w, where two vertices are adjacent if the

Hamming distance between them is at least d . The crafted

graphs are often too easy (all the solvers solved keller4 ,
johnson8-2-4 , johnson8-4-4 , and johnson16-2-4 
within 10 s), or too hard (no exact solver can solve

johnson32-2-4 and keller6 within a reasonable time

to the best of our knowledge). 

3. Graphs from real world problems, including: hamming t − d

from coding theory, where two t -bit words are adjacent if

they are at least at Hamming distance d from each other;

c-fat ∗, graphs from distributed fault diagnosis ( Berman

and Pelc, 1990 ). Unfortunately, all these graphs are too easy

except for hamming10-4 . In the latter case, no exact solver

can solve it within a reasonable time. 

The BHOSLIB graphs are recommended in Cai et al. (2011) ;

rosso et al. (2008) to evaluate MaxClique and VC (Vertex Cover)

lgorithms. They are encoded from CSP instances generated using

he CSP model RB ( Xu et al., 2007 ), and are harder than most DI-

ACS graphs. 

.2. Solvers 

We compared DoMC2, SoMC2 and MoMC with the following

olvers: 

1. IncMaxCLQ, described in Li et al. (2013) and available at

http://home.mis.u-picardie.fr/ ∼cli/EnglishPage.html : This al- 

gorithm branches on every vertex of the graph in the order-

ing O 0 . 

2. MaxCLQ 

3 : We used the improved version in Li and Quan

(2010a) . 

3. MaxCliqueDyn 

4 , version dec. 2012: It improves the 2010 ver-

sion, which was better than MCR ( Li and Quan, 2010b ). 

4. MCS ( Tomita et al., 2010 ): MCS is improved from MCR. The

original codes of MCS are not open. We used a version im-

plemented by Wang Kai, whose performance is similar to

the performance of the original version ( Wang, 2013 ). 

.3. Experimental results 

Table 4 compares the mean runtimes of MaxCliqueDyn, MCS,

axCLQ, IncMaxCLQ, DoMC2, SoMC2 and MoMC, as well as the

ean search tree sizes of DoMC2, SoMC2 and MoMC, on random

raphs with different numbers of vertices ( n ) and different den-

ities ( d ). One advantage of random graphs is that they show the

symptotic behavior of the solvers. At each point ( n , d ), 51 graphs

ere generated. Each graph was generated in such a way that two

ertices are adjacent with probability d . When less than 51 in-

tances were solved within the cutoff time of 50 0 0 s, the total

umber of solved graphs is shown in the next row. To save space,

e do not display the results for densities that are too easy for a

iven n (i.e., when the mean runtime is less than 0.1 s for all the

ested solvers). 

DoMC2, SoMC2 and MoMC are the best performing solvers in

able 4 , except for three easy points (500, 0.5), (1000, 0.3) and

20 0 0, 0.2), which are solved faster with MCS. Although DoMC2

enerally produces the smallest number of branches at a search
3 available at http://home.mis.u-picardie.fr/ ∼cli/EnglishPage.html . 
4 available at http://www.sicmm.org/ ∼konc/maxclique/ . 

http://cs.hbg.psu.edu/txn131/clique.html
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
http://home.mis.u-picardie.fr/~cli/EnglishPage.html
http://home.mis.u-picardie.fr/~cli/EnglishPage.html
http://www.sicmm.org/~konc/maxclique/
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Table 4 

Mean runtimes in seconds and tree sizes in thousands for random graphs with different numbers of vertices ( n ) and 

different densities ( d ); 51 graphs were solved at each point. The points where no graph is solved within 50 0 0 s are marked 

with “> 50 0 0”’. When less than 51 graphs are solved, the total number of solved graphs (#solved) is shown in the next 

row. “Dyn” stands for MaxCliqueDyn and “IncMC” stands for IncMaxCLQ. 

n d Dyn MCS MaxCLQ IncMC DoMC2 SoMC2 MoMC 

Time Time Time Time Time Tree Time Tree Time Tree 

200 0.70 0.28 0.22 0.24 0.22 0.16 2.23 0.16 1.96 0.14 2.03 

200 0.80 5.22 2.28 1.61 1.44 0.89 11.45 0.91 9.50 0.77 10.01 

200 0.90 65.34 37.61 9.55 6.56 4.28 36.41 4.64 31.11 3.63 31.19 

200 0.95 34.84 23.76 1.69 0.95 0.60 5.08 0.67 4.83 0.53 4.71 

300 0.60 0.63 0.54 0.78 0.67 0.51 6.22 0.48 5.10 0.44 5.20 

300 0.70 7.88 6.37 6.27 5.78 3.91 49.80 3.54 40.44 3.13 42.12 

300 0.80 270.0 209.6 116.3 119.7 72.07 735.3 70.40 584.7 59.39 610.0 

300 0.90 > 50 0 0 > 50 0 0 3951 3576 3255 19,866 3153 14915 2879 18,116 

#solved 0 0 4 20 46 46 48 

400 0.60 4.67 4.21 5.89 4.81 3.47 38.17 3.19 29.80 2.87 31.97 

400 0.70 98.92 94.06 87.17 84.03 53.34 555.2 50.68 446.7 43.94 465.1 

400 0.80 > 50 0 0 > 50 0 0 4175 3332 2760 23,394 2721 19,182 2049 17846 

#solved 0 0 28 21 51 51 51 

500 0.50 1.81 1.59 2.89 2.34 1.80 18.55 1.83 16.38 1.65 16.56 

500 0.60 26.26 23.30 30.60 27.11 17.53 228.6 16.02 181.2 13.94 186.4 

500 0.70 1201 915.5 763.4 877.0 507.3 5283 490.4 4418 426.6 4577 

10 0 0 0.30 0.73 0.67 2.31 1.12 0.86 8.75 0.81 8.25 0.80 8.25 

10 0 0 0.40 8.54 7.59 19.42 9.24 7.17 73.67 6.30 52.47 5.55 52.69 

10 0 0 0.50 175.6 166.0 300.2 215.1 151.8 1761 135.4 1433 119.0 1447 

20 0 0 0.20 1.15 1.08 7.92 2.53 1.52 2.80 1.41 2.70 1.47 2.70 

20 0 0 0.30 23.98 20.59 147.0 31.92 21.33 222.4 20.49 188.3 17.86 188.3 

20 0 0 0.40 622.9 611.6 1910 891.6 589.5 6511 573.2 5927 507.7 6008 

50 0 0 0.10 6.81 5.88 56.81 19.55 5.44 4.26 5.01 4.26 5.12 4.26 

50 0 0 0.20 114.1 109.1 2330 422.5 97.33 779.6 95.66 747.0 86.52 747.0 

10 0 0 0 0.10 162.1 144.8 1235 269.7 78.31 10.57 60.94 10.49 64.48 10.49 

10 0 0 0 0.20 3421 3283 > 50 0 0 4220 3161 5847 2838 3538 2582 3540 

#solved 3 3 0 1 51 51 51 

150 0 0 0.10 750.5 970.5 > 50 0 0 1105 613.8 122.0 405.5 116.9 375.4 116.9 

20 0 0 0 0.05 341.5 251.7 > 50 0 0 190.6 118.7 17.66 106.5 17.66 106.2 17.66 
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tree node, when compared with SoMC2 and MoMC, its perfor-

mance is the worst among the three solvers in terms of both run-

time and search tree size. MoMC combines the strengths of SoMC2

and DoMC2, and is faster than the other solvers. 

Table 5 reports the results on standard DIMACS graphs. The

instances that are too easy (i.e. brock200_ ∗, C125.9, san200_ ∗) or

too hard (i.e. C50 0.9, C10 0 0.9, C20 0 0.9, C40 0 0.5, keller6 ) for all the

algorithms were excluded. The cutoff time was set to 10 5 s, ex-

cept for the two very hard instances MANN_a81 and p_hat1500-3 ,

whose time limit was 1 month. Overall, MoMC is the best perform-

ing solver in Table 5 . For the 8 brock ∗ graphs, the performance

of MoMC is comparable to the performance of SoMC2 in terms

of both runtime and search tree size, and is better than the per-

formance of DoMC2 and the other solvers. For example, MoMC

and SoMC2 are almost 5 times faster than the other solvers for

brock400_4 and brock800_3 . For p_hat1500-2 , MoMC is 17 times

faster than MCS, 25 times faster than MaxCLQ, 3.5 times faster

than IncMaxCLQ, 44% faster than SoMC2, and 11% faster than

DoMC2. 

DoMC2 and MoMC solve the very hard instance MANN_a81 in

19 days, and p_hat1500-3 in 24 days and 22 days, respectively.

McCreesh and Prosser (2013) solved MANN_a81 in 31 days with an

exact multi-thread algorithm with 24 threads on a 12-core hyper-

threaded dual Xeon E5645, and p_hat1500-3 in 128 days with 32

threads on a 16-core hyper-threaded dual Xeon E5-2660. DoMC2

and MoMC are, to the best of our knowledge, the first two single

thread exact solvers that solved these two instances. They might be

parallelized using the low-overhead, scalable work splitting mech-

anism proposed in McCreesh and Prosser (2015) , to solve these in-

stances in shorter time. 

Table 6 compares the runtimes of all the solvers, and the search

tree sizes of DoMC2, SoMC2 and MoMC, for the BHOSLIB graphs.

DoMC2, SoMC2 and MoMC have comparable performance, and out-
 e  
erform IncMaxCLQ, which was so far the best exact solver on the

HOSLIB graphs. 

Table 7 compares both the runtimes and search tree sizes of

oMC2, SoMC2 and MoMC to find an optimal solution and to

rove the optimality for the instances of Tables 5 and 6 , for which

oMC2, SoMC2 and MoMC are substantially faster than MCS, Max-

liqueDyn, MaxCLQ and IncMaxCLQ. The columns finding report

he runtimes and search tree sizes of each algorithm to find an op-

imal solution from scratch (without proving the optimality). The

olumns proving report the runtimes and search tree sizes of each

lgorithm to prove the optimality after finding an optimal solution.

n general, it is harder to find an optimal solution than to prove its

ptimality for DoMC2, SoMC2 and MoMC. 

0. Conclusions 

We introduced a static strategy for BnB MaxClique algorithms

o minimize the number of branches at a search tree node sub-

ect to the constraint that a static vertex ordering in a graph G

hould be kept during the search. This static strategy was com-

ared with the dynamic strategy intensively used in the state-of-

he-art BnB MaxClique algorithms for minimizing the number of

ranches without any constraint. We designed the following three

nB algorithms from the same generic algorithm: DoMC2 0 and

oMC2 using the dynamic strategy, and SoMC2 using the static

trategy. These algorithms differ only in the minimization function.

oMC2 0 uses a graph coloring process to minimize the number of

ranches whereas DoMC2 and SoMC2 use, in addition, incremental

axSAT reasoning to improve the minimization. 

The reported experimental results of DoMC2 0 , DoMC2 and

oMC2 show that the dynamic strategy significantly reduces the

umber of branches when compared with the static strategy. How-

ver, the static strategy allows a more incremental search. By
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Table 5 

Runtimes in seconds and search tree sizes in thousands for DIMACS graphs that are solved by at least one solver in 10 5 s (except for the two 

very hard instances MANN_a81 and p_hat1500-3 whose time limit is 1 month), excluding the graphs solved by all solvers in 1 s. “–” stands for 

instances that cannot be solved wthin the cutoff time. “Dyn” stands for MaxCliqueDyn and “IncMC” stands for IncMaxCLQ. 

Instance n d Dyn MCS MaxCLQ IncMC DoMC2 SoMC2 MoMC 

Time Time Time Time Time Tree Time Tree Time Tree 

brock400_1 400 0.74 466.0 379.7 339.2 222.3 193.1 1801 128.5 1097 122.2 1242 

brock400_2 400 0.74 192.1 166.2 105.9 170.2 492.0 4605 100.1 907 102.4 1055 

brock400_3 400 0.74 371.6 256.2 102.4 204.6 141.6 1289 76.13 745.2 74.27 752.4 

brock400_4 400 0.74 185.7 138.2 125.3 159.2 74.42 564.2 20.87 202.2 20.35 202.2 

brock800_1 800 0.65 5988 5209 4889 8830 5814 51,917 1865 13669 1888 13669 

brock800_2 800 0.65 5349 4686 4857 11,210 9332 70,890 1867 13903 1913 13903 

brock800_3 800 0.65 3455 3208 3452 4221 5765 39,014 789.6 5913 756.8 5913 

brock800_4 800 0.65 2691 2259 3441 5832 4069 28,964 1310 11103 1331 11103 

C20 0 0.5 20 0 0 0.50 – – – 61,009 35,480 361,270 37,416 341639 33941 348,617 

C250.9 250 0.89 2376 2074 298.2 278.9 143.9 1035 193.9 1060 144.4 1039 

DSJC10 0 0.5 10 0 0 0.50 185.2 169.6 295.8 226.3 155.7 1866 130.8 1389 113.12 1394 

gen400_p0.9_55 400 0.90 – 37,220 – 1.23 1.09 1.83 1.09 1.83 1.09 1.83 

gen400_p0.9_65 400 0.90 – 96,567 26,134 0.34 0.32 2.15 0.32 2.15 0.32 2.15 

gen400_p0.9_75 400 0.90 – – 1372 0.27 0.21 2.78 0.21 2.78 0.21 2.78 

hamming10-2 1024 0.99 49.73 0.19 0.06 32.65 35.43 130.8 34.88 130.8 35.37 130.8 

keller5 776 0.75 – – 5376 141.6 253.2 848.4 181.3 745.6 178.6 736.7 

MANN_a27 378 0.99 2.81 0.36 0.12 0.34 0.18 8.20 0.25 8.57 0.18 8.22 

MANN_a45 1035 0.99 1712 63.09 20.04 115.8 7.84 62.88 10.60 63.15 10.21 63.15 

MANN_a81 3321 0.99 – – – – 19 days – 19 days 

p_hat10 0 0-2 10 0 0 0.49 276.6 131.6 219.9 48.75 19.69 47.72 26.26 46.15 19.53 49.41 

p_hat10 0 0-3 10 0 0 0.75 – – – 42,244 17,493 29,806 22,986 27237 16720 28,494 

p_hat1500-1 1500 0.25 2.84 2.38 9.75 5.32 3.32 45.58 3.42 42.91 3.08 42.91 

p_hat1500-2 1500 0.51 – 10,448 15,138 2165 674.3 1209 879.9 1098 607.8 1145 

p_hat1500-3 1500 0.75 – – – – 24 days – 22 days 

p_hat300-3 300 0.74 3.06 1.43 1.13 0.37 0.28 1.28 0.32 1.11 0.30 1.14 

p_hat500-2 500 0.50 1.04 0.42 0.66 0.19 0.28 0.82 0.28 0.82 0.28 0.82 

p_hat500-3 500 0.75 235.1 79.23 81.04 22.02 9.98 25.65 14.45 26.78 10.12 27.52 

p_hat700-2 700 0.49 8.60 3.33 4.61 0.92 0.92 1.56 1.08 1.45 0.94 1.53 

p_hat700-3 700 0.75 3946 1586 1009 269.5 113.7 198.0 157.1 171.0 111.2 187.4 

san400_0.7_3 400 0.70 1.50 0.77 3.1 1.91 0.20 0.25 0.20 0.25 0.20 0.25 

sanr200_0.9 200 0.90 32.56 19.68 6.08 2.71 1.93 15.29 1.90 11.75 1.47 11.75 

sanr400_0.7 400 0.70 110.0 99.69 98.56 104.7 148.4 1660 63.14 568.1 54.86 591.4 

Table 6 

Runtimes in seconds and tree sizes in thousands for BHOSLIB instances that are solved by at least one solver in 3600 s. The 

instances that cannot be solved within 3600 s are marked by “–”. “Dyn” stands for MaxCliqueDyn and “IncMC” stands for Inc- 

MaxCLQ. 

Instance n d Dyn MCS MaxCLQ IncMC DoMC2 SoMC2 MoMC 

Time Time Time Time Time Tree Time Tree Time Tree 

frb30-15-1 450 0.82 2500 992.8 493.6 0.13 0.12 0.43 0.12 0.43 0.12 0.43 

frb30-15-2 450 0.82 – 1432 849.2 0.15 0.14 0.44 0.14 0.44 0.14 0.44 

frb30-15-3 450 0.82 2741 766.5 365.5 0.21 0.19 0.45 0.21 0.45 0.19 0.45 

frb30-15-4 450 0.82 – 2620 1058 0.21 0.21 0.45 0.21 0.45 0.20 0.45 

frb30-15-5 450 0.82 – 1109 663.5 0.16 0.15 0.44 0.16 0.44 0.15 0.44 

frb35-17-1 595 0.84 – – – 0.89 0.80 0.71 0.83 0.71 0.80 0.71 

frb35-17-2 595 0.84 – – – 1.27 1.14 0.75 1.20 0.75 1.13 0.75 

frb35-17-3 595 0.84 – – – 0.35 0.38 0.61 0.31 0.61 0.30 0.61 

frb35-17-4 595 0.84 – – – 0.38 0.34 0.61 0.34 0.61 0.33 0.61 

frb35-17-5 595 0.84 – – – 0.53 0.47 0.64 0.49 0.64 0.47 0.64 

frb40-19-1 760 0.85 – – – 1.62 1.45 0.86 1.55 0.86 1.45 0.86 

frb40-19-2 760 0.85 – – – 0.52 0.44 0.79 0.46 0.79 0.44 0.79 

frb40-19-3 760 0.85 – – – 1.59 1.42 0.90 1.51 0.90 1.42 0.90 

frb40-19-4 760 0.85 – – – 5.83 5.32 1.42 5.56 1.42 5.32 1.42 

frb40-19-5 760 0.85 – – – 4.83 4.36 1.32 4.69 1.32 4.36 1.32 

frb45-21-1 945 0.86 – – – 105.4 98.0 12.5 100.5 12.5 98.0 12.5 

frb45-21-2 945 0.86 – – – 62.36 62.17 6.81 63.74 6.81 62.36 6.81 

frb45-21-3 945 0.86 – – – 37.42 36.03 4.87 35.94 4.87 34.54 4.87 

frb45-21-4 945 0.86 – – – 30.47 27.56 3.58 29.24 3.58 27.69 3.58 

frb45-21-5 945 0.86 – – – 189.1 176.6 16.6 183.6 16.6 177.1 16.6 

frb50-23-1 1150 0.87 – – – 694.7 638.4 48.5 668.3 48.5 626.4 48.5 

frb50-23-2 1150 0.87 – – – 306.7 283.8 20.9 291.8 20.9 284.6 20.9 

frb50-23-4 1150 0.87 – – – 14.76 14.87 2.36 14.02 2.36 13.92 2.36 

frb50-23-5 1150 0.87 – – – 218.1 203.8 17.7 208.9 17.7 205.2 17.7 

frb53-24-2 1272 0.88 – – – 176.8 169.3 13.6 172.9 13.6 170.3 13.6 

frb53-24-3 1272 0.88 – – – 1845 1699 139.1 1754 139.1 1705 139.1 

frb53-24-4 1272 0.88 – – – – 3369 204.9 3459 204.9 3398 204.9 

frb53-24-5 1272 0.88 – – – 897.1 822.3 54.6 837.3 54.6 822.0 54.6 

frb56-25-2 1400 0.88 – – – 2359 2237 145.4 2278 145.4 2226 145.4 
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Table 7 

Runtimes in seconds and search tree sizes in thousands of DoMC2,SoMC2 and MoMC to find an optimal solution (without proving the 

optimality) and to prove the optimality for instances of Tables 5 and 6 , for which DoMC2, SoMC2 and MoMC are substantially faster 

than MCS, MaxCliqueDyn, MaxCLQ and IncMaxCLQ. 

Instance DoMC2 SoMC2 MoMC 

finding prov ing finding prov ing finding prov ing

Time Tree Time Tree Time Tree Time Tree Time Tree Time Tree 

brock400_1 169.3 1627 23.82 173.4 126.4 1082 2.12 14.85 118.8 1216 3.45 25.97 

brock400_2 483.0 4548 9.01 56.36 100.1 907.0 < 0.01 0.02 102.4 1054 0.03 0.12 

brock400_3 116.1 1159 25.53 129.1 75.81 742.7 0.32 2.47 73.95 749.9 0.32 2.47 

brock400_4 71.92 553.6 2.50 10.64 20.44 199.5 0.43 2.70 19.93 199.5 0.42 2.70 

brock800_1 5489 49,552 324.2 2365 825.0 7055 1040 6614 882.0 6994 1006 6675 

brock800_2 9331 70,890 < 0.01 0.00 1813 13,589 53.57 313.7 1865 13,589 47.87 313.7 

brock800_3 5764 39,014 < 0.01 0.00 636.6 5042 153.0 870.3 602.6 5036 154.2 876.8 

brock800_4 3113 24,357 955.7 4607 1237 10,589 72.20 513.7 1259 10,589 71.74 513.7 

DSJC10 0 0.5 31.40 429.0 124.3 1437 43.21 413.2 87.59 975.8 32.18 423.7 80.94 970.3 

gen400_p0.9_55 1.08 1.83 < 0.01 0.00 1.08 1.83 < 0.01 0.00 1.08 1.83 < 0.01 0.00 

gen400_p0.9_65 0.31 2.15 < 0.01 0.00 0.31 2.15 < 0.01 0.00 0.31 2.15 < 0.01 0.00 

gen400_p0.9_75 0.20 2.78 < 0.01 0.00 0.20 2.78 < 0.01 0.00 0.20 2.78 < 0.01 0.00 

MANN_a45 4.71 60.05 3.13 2.83 3.68 60.09 6.92 3.06 4.83 60.09 5.38 3.06 

keller5 6.70 3.20 246.5 845.2 42.10 82.80 139.2 662.8 32.90 73.90 145.7 662.8 

p_hat10 0 0-2 0.18 1.04 19.51 46.68 0.24 1.04 26.02 45.11 0.35 1.99 19.18 47.42 

p_hat1500-2 20.10 3.00 654.2 1206 3.70 4.00 876.2 1094 1.70 1.00 606.1 1144 

p_hat700-3 1.90 1.80 111.8 196.2 1.40 1.90 155.7 169.1 2.10 4.00 109.1 183.4 

sanr400_0.7 24.40 285.0 124.0 1375 4.44 13.70 58.70 554.4 0.96 14.20 53.90 577.2 

frb50-23-1 638.4 48.50 < 0.01 0.00 668.3 48.50 < 0.01 0.00 626.4 48.50 < 0.01 0.00 

frb50-23-2 283.8 20.90 < 0.01 0.00 291.8 20.90 < 0.01 0.00 284.6 20.90 < 0.01 0.00 

frb50-23-4 14.86 2.36 < 0.01 0.00 14.01 2.36 < 0.01 0.00 13.91 2.36 < 0.01 0.00 

frb50-23-5 203.8 17.70 < 0.01 0.00 208.9 17.70 < 0.01 0.00 205.2 17.70 < 0.01 0.00 

frb53-24-2 169.3 13.60 < 0.01 0.00 172.9 13.60 < 0.01 0.00 170.3 13.60 < 0.01 0.00 

frb53-24-3 1698 139.1 < 0.01 0.00 1753 139.1 < 0.01 0.00 1704 139.1 < 0.01 0.00 

frb53-24-4 3368 204.9 < 0.01 0.00 3458 204.9 < 0.01 0.00 3397 204.9 < 0.01 0.00 

frb53-24-5 822.3 54.60 < 0.01 0.00 837.3 54.60 < 0.01 0.00 822.0 54.60 < 0.01 0.00 

frb56-25-2 2236 145.4 < 0.01 0.00 2277 145.4 < 0.01 0.00 2225 145.4 < 0.01 0.00 
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integrating adjacency matrix reconstruction and by exploiting an

incremental upper bound in the solvers, we showed that the two

strategies are complementary. 

This observation led us to the design of a new BnB algorithm

for MaxClique, called MoMC, that combines the strengths of the

two strategies into a single algorithm. More precisely, let | B d | and

| B s | be the number of branches obtained using the dynamic and

static strategy, respectively. If | B d |/| B s | < α, where α is a parame-

ter of the algorithm, the dynamic strategy is used to minimize the

number of branches. Otherwise, the static strategy is used. Our ex-

perimental results show that MoMC is generally better than the al-

gorithms implementing a single strategy, and is substantially faster

than other state-of-the-art BnB MaxClique algorithms. In particular,

MoMC and DoMC2 are, to the best of our knowledge, the first two

single thread exact solvers that solved the two very hard DIMACS

instances MANN_a81 and p_hat1500-3 . 
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