Principes cryptographiques pour la résolution du problème de consensus :

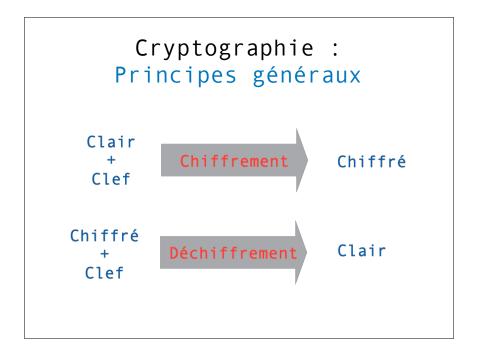
Application à la « Blockchain »

Gilles Dequen gilles.dequen@u-picardie.fr

Licence 3 Informatique

Plan du cours

- Principes cryptographiques
 - Terminologie et garanties cryptographiques
 - Ordre de grandeur
- Signature
 - Primitives asymétriques
 - Principes et exemples
- Fonctions de hachage cryptographique
 - Collision, Première/Seconde Pre-image
 - Algorithme de Floyd
 - Paradoxe des anniversaires
- Signature et contrôle d'intégrité


Calendrier de l'intervention

- 4h de Cours Magistral
 - 9 janvier ;
 - Principes cryptographiques;
 - 14 janvier ;
 - Garanties de la chaine de blocs :
- 10h de Travaux Dirigés
 - 16 janvier, 23 janvier (évaluation sur feuille), 30 janvier, 6 février, 13 février (rendu de projet)

Plan du cours

- Preuve de travail
 - Point distingué
 - Principes et exemples
- Le consensus
 - Autorité et confiance
- Structures de données pour la chaine de blocs
 - Arbre de Merkle
 - Bloc et chaine de blocs
 - Complexité de la chaine de blocs

Principes cryptographiques Généraux

Cryptographie: Principes généraux

- Stratégie d'ouverture
 - Standardisation et robustesse
- Génération aléatoire
 - Hasard « moyen »
- Combinatoire
 - Fondements de l'informatique théorique • P ?= NP
 - Contre-mesure à l'attaque par « Brute Force »
- Déterminisme
 - Et polynomial ...

Cryptographie: Ordres de grandeur

- Combinatoire
- Contre-mesure à l'attaque par « Brute Force »
- Notion de grandeur
 - e.g. une clef aléatoire de 128 bits

$$2^{128} \approx 3.4.10^{38}$$

• Nombre de gouttes d'eau dans les océans

$$\approx 4, 2.10^{25}$$

• Nombre de grains de sables sur Terre

$$\approx 2.10^{26}$$

• Nombre de molécules d'eau sur Terre

$$\approx 4,6.10^{46}$$

Cryptographie : Ordres de grandeur

- Combinatoire
 - Contre-mesure à l'attaque par « Brute Force »
 - Notion de grandeur
 - e.g. une clef aléatoire de 128 bits

$$2^{128} \approx 3, 4.10^{38}$$

• On considère ...

$$100 \ Yotaflops \simeq 1.10^{26}$$

• Et une clef par flop

$$\approx 108~000~ans$$

Cryptographie : Principes généraux

- Garanties cryptographiques
 - Confidentialité
 - Autorisation d'accès pour l'accès au « secret »
 - Indépendant du partage du secret
 - Authenticité
 - Garantie de la légitimité pour l'autorisation d'accès
 - Intégrité
 - Garantie de non-altération du secret lors de l'échange

Cryptographie : Principes généraux

- Garanties cryptographiques
 - Confidentialité
 - Primitives asymétriques
 - e.g. RSA, DSS, ECC, ...
 - Primitives symétriques
 - e.g. FOX, 3-DES, AES, Blowfish, Prince, ...
 - Authenticité
 - Primitives asymétriques
 - e.g. RSA, DSS, ECC, Diffie-Hellman, ...
 - Intégrité
 - Fonctions de hachage cryptographiques
 - e.g. SHA*, MD*, ...

Première notion de Cryptographie : Signature

Cryptographie: Signature

- Cryptographie asymétrique
 - Pas de clef unique … (cas symétrique)
 - ullet ... un couple de clefs K_1,K_2
 - Un clair chiffré par la première clef (resp. la seconde) pourra être déchiffré par la seconde (resp. la première)

Crypto: Signature

- Cryptographie asymétrique
 - ullet Cryptographie à clef publique [Merkle, 70] $\{K_1,K_2\}\ is\ \{K_{Private},K_{Public}\}$
 - $K_{Private}$ est connue du propriétaire
 - ullet K_{Public} est connue de tout le monde
 - e.g. RSA, ECC, ...

Crypto: Signature

- Transposition de la réalité
 - La boîte aux lettres
 - Toute personne connaissant l'emplacement de la boîte aux lettres de son destinataire peut y mettre des messages et/ou documents

 K_{Public}

 Seul le propriétaire la boîte aux lettres est en mesure de l'ouvrir pour y récupérer les messages et/ou documents

 $K_{Private}$

Crypto: Signature

- Au coeur des primitives asymétriques
 - Fonctions à sens unique
 - Lie les clefs privée/publique
 - Connaissant M (le message !!)
 - f(M) = C est « simple » à calculer
 - $f^{-1}(C) = M$ est « difficile » à calculer
 - Appartenance du problème à la classe NP
 - \bullet Une « brèche secrète » $K_{Private}$ fait décroître la complexité calculatoire
 - \bullet f $^{\text{-}1}(x)$ devient « simple » à calculer pour celui qui connaît le secret

Crypto: Signature

- Primitives asymétriques : Avantages
 - Gestion simplifiée des clefs
 - Indépendant du nombre de correspondants
 - Authenticité satisfaite
 - Confidentialité satisfaite
- Primitives asymétriques : Inconvénients
 - Couteux en ressources
 - Intégrité non satisfaite
 - Vulnérable aux attaques à texte clair
 - Connaissance de la clef publique

Crypto: Signature

- Authenticité par le chiffrement asymétrique
 - \bullet Clair : M
 - ullet Chiffre : C
 - ullet Cryptosystème : C_a
- ullet Seul B peut chiffrer

$$C = C_a(K_{private}^B, M)$$

• Tout le monde peut déchiffrer

$$M = C_a^{-1}(K_{public}^B, C)$$

• Garantie de l'authenticité

Crypto: Signature

- Confidentialité par le chiffrement asymétrique
 - \bullet Clair : M
 - ullet Chiffre: C
- ullet Cryptosystème : C_a
- Tout le monde peut chiffrer

$$C = C_a(K_{public}^B, M)$$

ullet Seul B peut déchiffrer

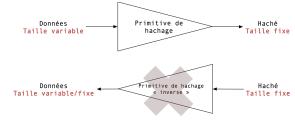
$$M = C_a^{-1}(K_{private}^B, C)$$

• Garantie de confidentialité

Crypto: Signature

- Authenticité par le chiffrement asymétrique
- $\bullet \ \mathrm{Si} \ C = C_a(K^B_{private}, M)$
- Tout le monde peut déchiffrer

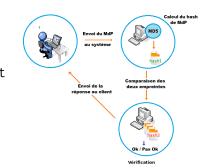
$$M = C_a^{-1}(K_{public}^B, C)$$


- ullet Alors C est une signature de M par B
 - $M = C_a^{-1}(K_{public}^B, C)$ est la vérification de la signature

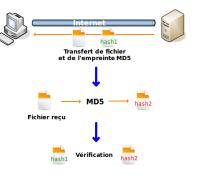
Seconde notion de cryptographie: Les fonctions de hachage et le contrôle d'intégrité

Fonctions de hachage : Principes généraux

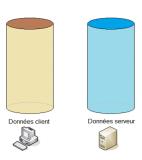
- Fonction à sens unique
 - Utilité
 - Authentification, intégrité, non désaveu
 - Principe
 - En entrée
 - •Des données ayant une taille variable
 - En sortie
 - •Un « hash » (empreinte) de taille fixe
 - Propriété d'unicité probabiliste et très grande diffusion de l'information
 - •Une infime modification de l'entrée bouleverse le hash de sortie
- •Exemples : MD*, SHA-*, ...


Fonctions de hachage : Principes généraux

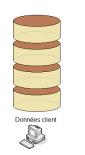
- Une empreinte de 128 bits
 - Exemple: 0xef63f8c1c585b76358db9f9b41ddf6ff
- Une fonction de hachage cryptographique qui doit répondre à plusieurs propriétés et plusieurs conditions :
 - Diffusion et confusion
 - Rapidité de calcul
 - Non bijective
 - Résistance à la première et seconde pré-image
 - Résistance aux collisions

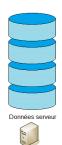

Fonctions de hachage : Principes généraux

 Authentification et contrôle d'intégrité des données

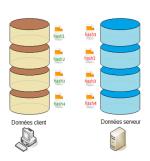

Fonctions de hachage : Principes généraux

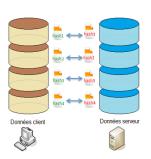
 Authentification et contrôle d'intégrité des données


Fonctions de hachage : Principes généraux

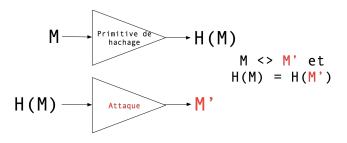

- Exemple : rsync
 - Fonction de hachage MD5
 - Logiciel de synchronisation des données Client/Serveur
 - e.g DropBox

Fonctions de hachage : Principes généraux

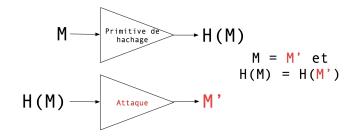

- Exemple : rsync
- Découpage des données en blocs


Fonctions de hachage : Principes généraux

- Exemple : rsync
- Découpage des données en blocs
- Calcul des empreintes de blocs

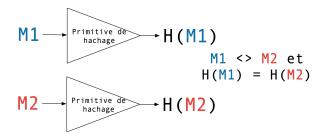

Fonctions de hachage : Principes généraux

- Exemple : rsync
 - Découpage des données en blocs
 - Calcul des empreintes de blocs
 - Vérification de la concordance


Fonctions de hachage : Inversion seconde preimage

 Connaissant l'empreinte H(M), « H » estelle résistante à une attaque consistant à retrouver M ?

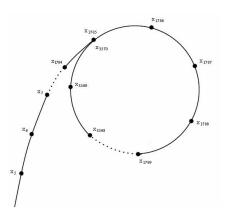
Fonctions de hachage : Inversion première preimage


 Connaissant l'empreinte H(M), « H » estelle résistante à une attaque consistant à retrouver M ?

Fonctions de hachage

: Collision

 Existe-t-il au moins deux messages distincts M1 et M2 tel que H(M1) = H(M2)


Fonctions de hachage : Détection de cycle de Floyd pour le collisionnement

- Algorithme dit du « Lièvre et de la Tortue »
- Entrée
 - ullet Un ensemble fini S de cardinal $\Omega(S)$
 - ullet Une fonction F sur S tq
 - Récurrence : $a_0 \in S, a_{i+1} = F(a_i)$
 - ullet F est un générateur pseudo-aléatoire
 - Condition nécessaire
- But : détection de cycle
- Pourquoi ?
 - Si un cycle existe alors, il existe i et j tel que $a_i \neq a_j, F(a_i) = F(a_j)$

Fonctions de hachage : Paradoxe des anniversaires

- Attaque au coeur du collisionnement de fonctions
- Exercice
 - Calculer la probabilité que sur un groupe de N individus, au moins 2 soient nés le même jour
 - Indépendamment de l'année
 - Pour simplifier, on considère uniquement des années non bissextiles

Fonctions de hachage : Détection de cycle de Floyd

Fonctions de hachage : Paradoxe des anniversaires

- Exercice
 - Calculer la probabilité que sur un groupe de N individus, au moins 2 soient nés le même jour
 - Quelle est la probabilité pour que 2 personnes soient nées le même jour ?
 - En déduire la probabilité pour que 2 personnes soient nées à des dates différentes

Fonctions de hachage : Paradoxe des anniversaires

- Exercice
 - Calculer la probabilité que sur un groupe de N individus, au moins 2 soient nés le même jour
 - Considérant 2 dates distinctes, quelle est la probabilité pour qu'un individu soit né à l'une de ces dates ?
 - En déduire la probabilité pour que 3 personnes soient nées à des dates différentes
 - Que signifie la probabilité inverse à l'évènement précédent ?

Première et seconde notions de cryptographie Signature et contrôle d'intégrité

Fonctions de hachage : Paradoxe des anniversaires

- Exercice
 - Calculer la probabilité que sur un groupe de N individus, au moins 2 soient nés le même jour
 - Au besoin on a : $1-a/b \approx e^{-a/b}$

Signature et contrôle d'intégrité

- ullet M un message
- Signature et chiffrement
 - ullet C_a un cryptosystème asymétrique
 - $S_A^M = C_a(K_{private}^A, M)$ est une signature de M par A• $C_B^M = C_a(K_{public}^B, M)$ est un chiffrement confidentiel de M pour B
- Contrôle d'intégrité
- H est une fonction de hachage
- ullet H(M) est une empreinte « unique » de M

Signature et contrôle d'intégrité

- ullet M un message
- ullet C_a un cryptosystème asymétrique
- ullet Chiffrement signé par A de M à destination de B

$$S_{A\to B}^{M} = C_a(K_{public}^{B}, C_a(K_{private}^{A}, M||H(M)))$$

ullet Déchiffrement par B et authentification de A

$$M'||\alpha = C_a^{-1}(K_{public}^A, C_a^{-1}(K_{private}^B, S_{A \to B}^M))$$

- $H(M') \stackrel{?}{=} \alpha$
- \bullet Si oui, alors B considèrant M' sait qu'il vient de A et a la garantie $\mbox{\tiny (probabiliste)}$ que M' est identique à M

Troisième notion de cryptographie: La preuve de travail

Fonctions de hachage : Preuve de travail

- Construction d'un « point distingué » d'une fonction cryptographique symbolisant la réalisation d'un effort
 - Cet « effort » réglable correspond à un temps de calcul et est corrélé à un coût financier
 - Cet « effort » est vérifiable rapidement
 - e.g
 - Hashcash « Bitcoin »
 - Contre-Mesure au SPAM

Fonctions de hachage : Preuve de travail

- Construction d'un « point distingué » d'une fonction cryptographique symbolisant la réalisation d'un effort
- Qu'est qu'un « point distingué » ?
 - Entrée
 - ullet Une fonction de hachage cryptographique H
 - ullet Une donnée M
 - M est un point distingué si H(M) dispose de la distinction (i.e. une propriété choisie)

Fonctions de hachage : Preuve de travail

- Qu'est qu'un « point distingué » ?
 - Un exemple ...
 - Entrée
 - ullet Une fonction de hachage cryptographique H
 - L'empreinte générée est d'une taille fixe de 256 bits
 - ullet Une donnée M
 - Propriété de distinction
 - e.g.
 - \bullet H(M) doit être paire
 - $\bullet\, H(M)\, {\rm doit}\, {\rm d\'ebuter}$ (ou terminer) par k bits à 0
 - ullet H(M) doit débuter par « 0x12345 » (Hexadécimal)

Le consensus:

Comment se mettre d'accord ?
Comment avoir « confiance »
dans cet accord?

Fonctions de hachage : Preuve de travail

```
M = Random\ Value \ While\ H(M)\ is\ not\ distinguished \ M = F(M)
```

- Quel effort ? Combien de tours de boucles pour calculer les distinctions suivantes ?
- A. H(M) doit être paire
- B. H(M) doit débuter (ou terminer) par k bits à 0
- C. H(M) doit débuter par « 0x12345 »

Se mettre d'accord ...

Se mettre d'accord ...

- Décentralisation de l'information
 - Problèmes à résoudre:
 - Comment un ensemble d'entités peuventelles de mettre d'accord localement sur une unique information ?
 - Quelles sont les conditions nécessaires et suffisantes à respecter si tant est que cela soit possible ?
 - Comment avoir confiance dans une information locale sans autorité centrale ?

Se mettre d'accord ...

- Décentralisation de l'information
 - Problèmes à résoudre:
 - Comment un ensemble d'entités peuventelles de mettre d'accord localement sur une unique information ?
 - Systèmes distribués
 - Cf. Intervention de M. Cournier

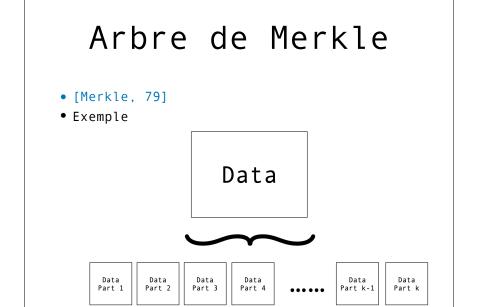
Se mettre d'accord ...

- Décentralisation de l'information
 - Problèmes à résoudre:
 - Comment avoir confiance dans une information locale sans autorité centrale ?
 - Cryptographie

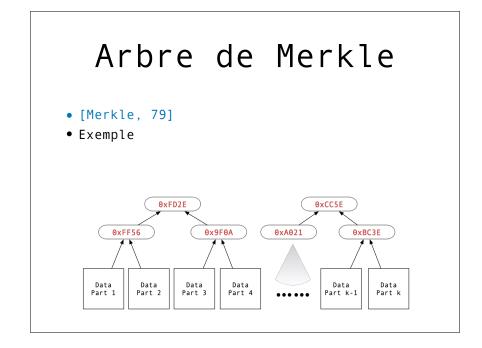
Structures de données L'arbre de Merkle

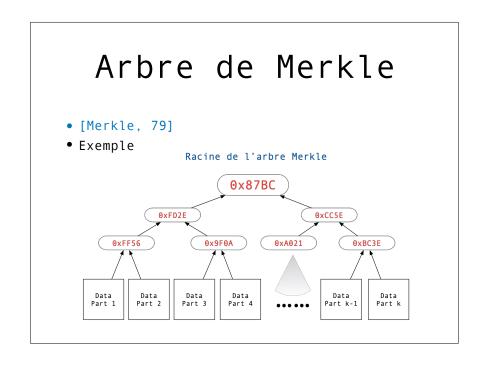
Arbre de Merkle

- [Merkle, 79]
- But
 - Vérification partielle de l'intégrité d'un ensemble de données
 - Applications
 - Git, BitTorrent, Cryptocurrencies, etc.
- Structure arborescente
 - Les feuilles contiennent les données
 - Accès aux feuilles avec une complexité logarithmique
- En pratique ...
 - Arbre binaire


Arbre de Merkle

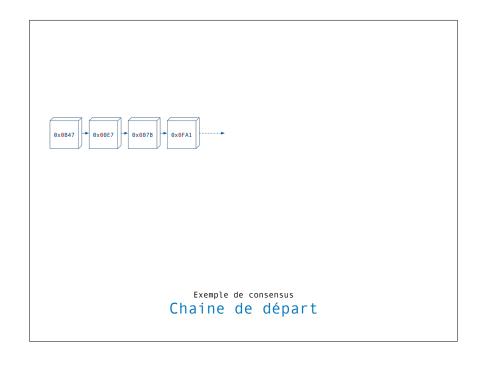
- [Merkle, 79]
- Exemple

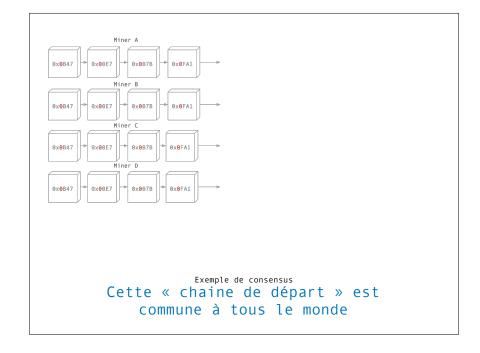

Data

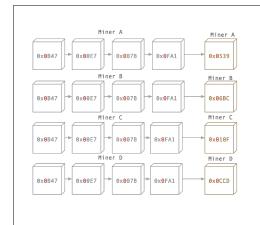

Arbre de Merkle

- [Merkle, 79]
- Exemple

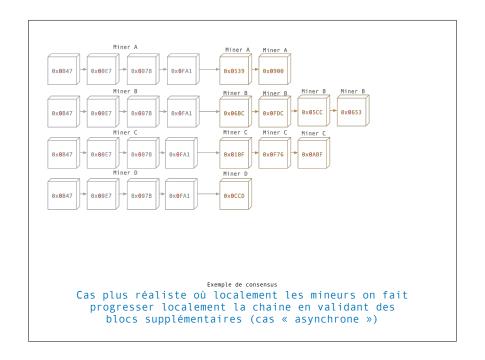
Arbre de Merkle • [Merkle, 79] • Exemple OxFF56 Ox9F0A OxA021 OxBC3E Part 1 Data Part 2 Data Part 4 Data Part k-1 Data Part k

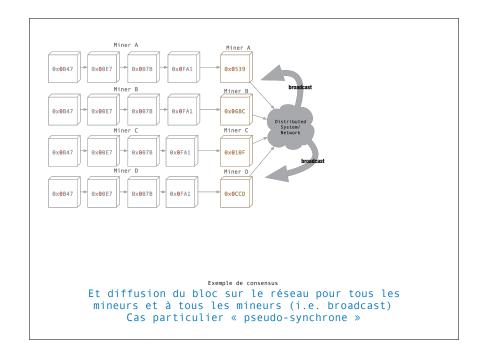


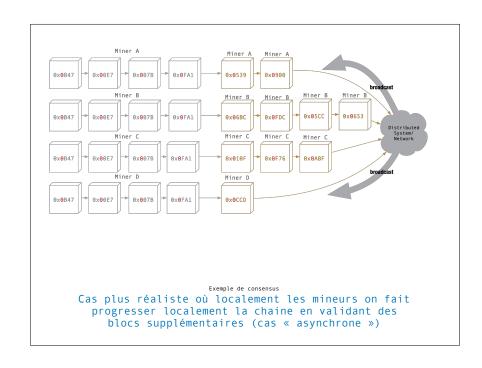

Structures de données La chaine de blocs

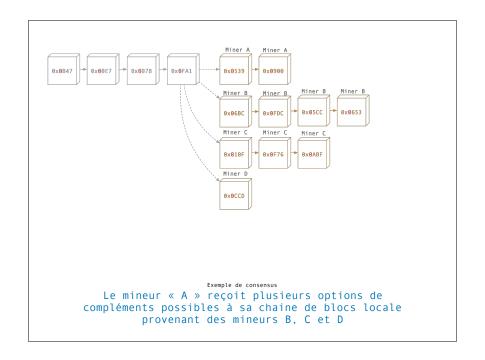

Bloc et chaine de blocs

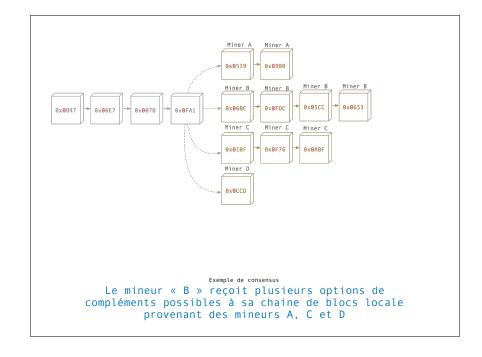
- Bloc
 - Une donnée
 - Signée
 - Horodatée
 - Hachée
- La chaine de blocs
 - Le haché du bloc précédant
 - Preuve de travail

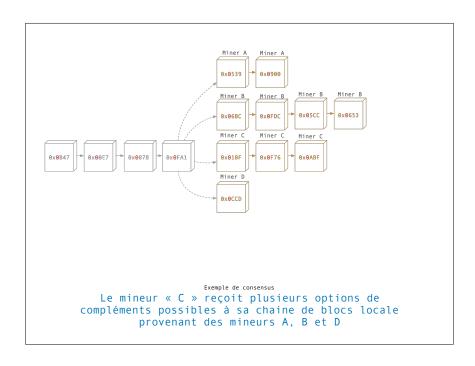

Blockchain : un exemple de consensus 4 mineurs « jouent » en concurrence

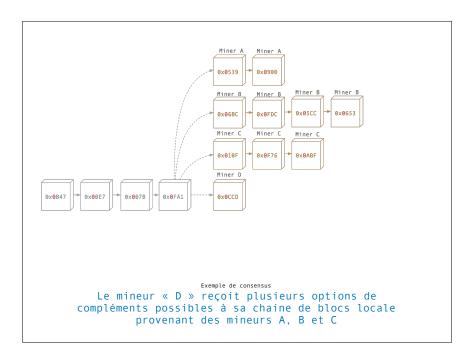


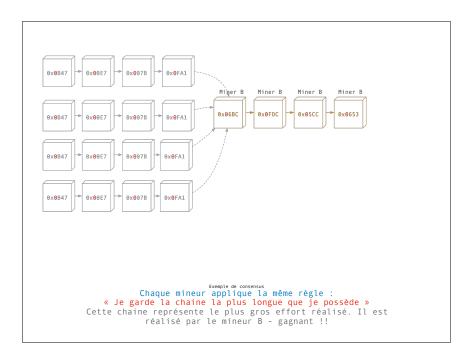


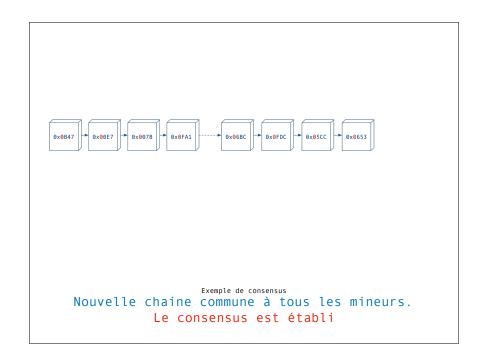



Chaque « miner » calcule localement un prochain bloc possible









Questions ?

