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Communication Model

Classical model in the Self-Stab. community [Dijkstra, Commun. ACM, 1974]

Locally shared memory model. . .
Each node u has local variables that can be
® read by w and its neighbors,

® written only by w.
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Communication Model

Classical model in the Self-Stab. community [Dijkstra, Commun. ACM, 1974]

Locally shared memory model. . .
Each node u has local variables that can be
® read by w and its neighbors,

® written only by w.

. with composite atomicity

The state of a node is updated based on the local neighborhood in an
atomic step.
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Terminating Synchronous Algorithms

Each node atomically
® reads its state and the state of its neighbors,
® changes its state.
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Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically
® reads its state and the state of its neighbors,
® changes its state.
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Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically
® reads its state and the state of its neighbors,
® changes its state.
Asynchronous: at each step, some nodes are activated.

(no fairness assumption: unfair daemon)
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Self-Stabilizing Asynchronous Algorithms

Round and Move Complexity

® Round complexity captures the “execution time”

(according to the speed of the slowest node).
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relevant parameter: D the diameter of G.
often O(logn) in “real graphs”

® Move complexity captures the “total work done”.
relevant parameter: n the number of nodes in G.

Definition (Fully Polynomial)
[Cournier, Rovedakis, Villain. Inf. and Comp. 2019]
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Self-Stabilizing Asynchronous Algorithms

Round and Move Complexity

® Round complexity captures the “execution time”
(according to the speed of the slowest node).
relevant parameter: D the diameter of G.
often O(logn) in “real graphs”

® Move complexity captures the “total work done”.
relevant parameter: n the number of nodes in G.

Definition (Fully Polynomial)

[Cournier, Rovedakis, Villain. Inf. and Comp. 2019]
A self-stabilizing algorithm is fully polynomial if

® round complexity: Poly(D),
® move complexity: Poly(n).

Note: A node may “starve” in asynchronous unfair executions.
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® Cycle coloration in 3 colors
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Contribution

A tranformer:
Input: a synchronous terminating algorithm A.(time and space complexities: T,
S)
a bound B such that T < B < 400
Output: an asynchronous algorithm which simulates A.

e silent, self-stabilizing (even in the unfair case)
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Error recovery O(min(D, B)) O(min(n3,n%B))
Greedy mode O(B) O(min(n® + nB,n?B))
Lazy mode OD+T) O(min(n3 +nT,n?B))
Space complexity S-B

Powerful tool to design efficient asynchronous self-stabilizing algorithms.
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Overview of the algorithm

Ideas:

® storage of the whole synchronous execution;
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Dependences = Reset Dags

® Nodes with status F

® pis a parent of its neighbor ¢ if p also has a status F and its list is
smaller

Two key principles:
e “Controlled” resets: efficiency in moves

® On-the-fly reset dag shrinking: efficiency in rounds
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Efficiency in moves

“Controlled” resets: a node in error always resumes the “normal” execution

after roots of its reset dag
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Efficiency in moves

“Controlled” resets: a node in error always resumes the “normal” execution

after roots of its reset dag
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Efficiency in rounds

On-the-fly reset dag shrinking: an error node must be an error root, or its
list must have one more element than the smallest list of an error neighbor.

O°888-l>

1 2
0 1 oo
_ _ _oo_ _0_ _oo_ _oo_
OmOmOmOm0
E E E C

E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 12/15



Efficiency in rounds

On-the-fly reset dag shrinking: an error node must be an error root, or its
list must have one more element than the smallest list of an error neighbor.

1 2
0 1 oo
_ _ _oo_ _0_ _oo_ _oo_ _ _
OmOmOmOm0

E E E C E

E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 12/15



Efficiency in rounds

On-the-fly reset dag shrinking: an error node must be an error root, or its
list must have one more element than the smallest list of an error neighbor.

1
ol |1
oo_Ooooo___
H—E—Q—@D——0
E E E E E

E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 12/15



Efficiency in rounds

On-the-fly reset dag shrinking: an error node must be an error root, or its
list must have one more element than the smallest list of an error neighbor.
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The algorithm

algoErr(p)
depErr(p)

errPropag(p, 1)
canClearE(p)

updatable(p)

Fi,1 <i<ph, (Vg€ N(p),gh>i—1)A
p.L[i] # algo(p,i — 1)

(p.s =EAN—-(3g€ N(p), gqgs=ENqgh < p.h))

(ps=CAJgeN@p), (¢h>ph+?2))

Jdq € N(p), gs=E ANqgh <i<p.h

p.s = E AVq € N(p), (|q.h —p.h| <1A(qh<phVgs= C))

ps=C AN ph<B A

(Vg € N(p), g-h € {p-h,p.h+1}) A

(creedy v (p.L[p.h] # algo(p,p.h) v 3q € N(p), a.h > p.h))

Rpr : (p-h >0V p.s=C) A (algoErr(p) V depErr(p)) — p.h:=0; p.s .= F

® Rp(i):errorPropag(p,i) — p.h:=1i; p.s:=F

® Rc :canClearE(p) — p.s :==C

* Ry : updatable(p) —s push(algo(p, p.h))

Priorities: Rg > Rp(i) and Rp(i) > Rp(i +1).
e = e N o TRy



Perspectives

® Reduce Memory Requirement
(a less general transformer, submitted to STACS)

® Weaker Models (e.g., link-register model)

® Non-terminating tasks (e.g., token circulation)
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Thank You
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