Asynchronous Self-stabilization Made Fast,
Simple, and Energy-efficient

S. Devismes, D. llcinkas, C. Johnen, F. Mazoit

Université de Picardie Jules Verne, CNRS et Université de Bordeaux

Workshop COA 2024
27 novembre 2024

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 1/15

Distributed Systems

Bidirectional
Links

Processes

/

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 2/15

Communication Model

Classical model in the Self-Stab. community [Dijkstra, Commun. ACM, 1974]

Locally shared memory model. . .
Each node u has local variables that can be
® read by w and its neighbors,

® written only by w.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 3/15

Communication Model

Classical model in the Self-Stab. community [Dijkstra, Commun. ACM, 1974]

Locally shared memory model. . .
Each node u has local variables that can be
® read by w and its neighbors,

® written only by w.

. with composite atomicity

The state of a node is updated based on the local neighborhood in an
atomic step.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 3/15

Terminating Synchronous Algorithms

Each node atomically
® reads its state and the state of its neighbors,
® changes its state.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically
® reads its state and the state of its neighbors,
® changes its state.
At each step, all nodes are synchronously activated.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically
® reads its state and the state of its neighbors,
® changes its state.
At each step, all nodes are synchronously activated.

The initial configuration is controlled.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Terminating Synchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

At each step, all nodes are synchronously activated.
The initial configuration is controlled.

Starting from the pre-defined initial configuration, the execution eventually
terminates.

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 4/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically
® reads its state and the state of its neighbors,
® changes its state.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically
® reads its state and the state of its neighbors,
® changes its state.
Asynchronous: at each step, some nodes are activated.

(no fairness assumption: unfair daemon)

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Silent Self-Stabilizing Asynchronous Algorithms

Each node atomically

® reads its state and the state of its neighbors,
® changes its state.

Asynchronous: at each step, some nodes are activated.
(no fairness assumption: unfair daemon)

Self-stabilizing: the initial configuration is arbitrary.

Silent: every execution terminates + terminal = legitimate

Example: Distance to a Root, “min+1" algorithm
 Devismes, licinkas, Johnen, Mazoit | Workshop COA, 27/11/2024 5/15

Self-Stabilizing Asynchronous Algorithms

Round and Move Complexity

® Round complexity captures the “execution time”

(according to the speed of the slowest node).

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 6/15

Self-Stabilizing Asynchronous Algorithms

Round and Move Complexity

® Round complexity captures the “execution time”
(according to the speed of the slowest node).
relevant parameter: D the diameter of G.
often O(logn) in “real graphs”

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 6/15

Self-Stabilizing Asynchronous Algorithms

Round and Move Complexity

® Round complexity captures the “execution time”
(according to the speed of the slowest node).
relevant parameter: D the diameter of G.
often O(logn) in “real graphs”

® Move complexity captures the “total work done”.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 6/15

Self-Stabilizing Asynchronous Algorithms

Round and Move Complexity

® Round complexity captures the “execution time”
(according to the speed of the slowest node).
relevant parameter: D the diameter of G.
often O(logn) in “real graphs”

® Move complexity captures the “total work done”.
relevant parameter: n the number of nodes in G.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 6/15

Self-Stabilizing Asynchronous Algorithms

Round and Move Complexity

® Round complexity captures the “execution time”
(according to the speed of the slowest node).
relevant parameter: D the diameter of G.
often O(logn) in “real graphs”

® Move complexity captures the “total work done”.
relevant parameter: n the number of nodes in G.

Definition (Fully Polynomial)
[Cournier, Rovedakis, Villain. Inf. and Comp. 2019]
A self-stabilizing algorithm is fully polynomial if
® round complexity: Poly(D),
® move complexity: Poly(n).

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 6/15

Self-Stabilizing Asynchronous Algorithms

Round and Move Complexity

® Round complexity captures the “execution time”
(according to the speed of the slowest node).
relevant parameter: D the diameter of G.
often O(logn) in “real graphs”

® Move complexity captures the “total work done”.
relevant parameter: n the number of nodes in G.

Definition (Fully Polynomial)

[Cournier, Rovedakis, Villain. Inf. and Comp. 2019]
A self-stabilizing algorithm is fully polynomial if

® round complexity: Poly(D),
® move complexity: Poly(n).

Note: A node may “starve” in asynchronous unfair executions.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 6/15

Our Contribution 1

® Transformer
® 1991. Awerbuch et al. Proceedings FOCS. O(D) rounds, Ezp(n) moves

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 7/15

Our Contribution 1

® Transformer O(D) rounds, O(n3) moves
® 1991. Awerbuch et al. Proceedings FOCS. O(D) rounds, Ezp(n) moves

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 7/15

Our Contribution 1

® Transformer O(D) rounds, O(n3) moves
® 1991. Awerbuch et al. Proceedings FOCS. O(D) rounds, Exp(n) moves

® [eader election

® 2011: Datta et al. J. Parallel Distrib. Comput. O(n) rounds, Exp(n) moves
® 2011: Datta et al. TCS. O(n) rounds, Exp(n) moves
® 2017: Altisen et al. Inf. Comput. O(n) rounds, Poly(n) moves.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 7/15

Our Contribution 1

® Transformer O(D) rounds, O(n3) moves
® 1991. Awerbuch et al. Proceedings FOCS. O(D) rounds, Exp(n) moves
® |eader election O(D) rounds, O(n3) moves
® 2011: Datta et al. J. Parallel Distrib. Comput. O(n) rounds, Exp(n) moves
® 2011: Datta et al. TCS. O(n) rounds, Exp(n) moves
® 2017: Altisen et al. Inf. Comput. O(n) rounds, Poly(n) moves.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 7/15

Our Contribution 1

® Transformer O(D) rounds, O(n3) moves
® 1991. Awerbuch et al. Proceedings FOCS. O(D) rounds, Exp(n) moves

® |eader election O(D) rounds, O(n3) moves
® 2011: Datta et al. J. Parallel Distrib. Comput. O(n) rounds, Exp(n) moves
® 2011: Datta et al. TCS. O(n) rounds, Exp(n) moves
® 2017: Altisen et al. Inf. Comput. O(n) rounds, Poly(n) moves.

®* BFS
® 1993: Dolev et al. Acta Inform. O(D) rounds, Exp(n) moves
® 1997: Johnen. Proceedings PODC. D2 . n rounds

® 2009: Cournier et al. ACM Trans. Auton. Adapt. Syst.
D2 + n rounds, O(A - n®) moves
® 2019: Cournier et al. Inf. Comput. O(D?) rounds, O(n%) moves

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 7/15

Our Contribution 1

® Transformer O(D) rounds, O(n3) moves
® 1991. Awerbuch et al. Proceedings FOCS. O(D) rounds, Exp(n) moves
® |eader election O(D) rounds, O(n3) moves
® 2011: Datta et al. J. Parallel Distrib. Comput. O(n) rounds, Exp(n) moves
® 2011: Datta et al. TCS. O(n) rounds, Exp(n) moves
® 2017: Altisen et al. Inf. Comput. O(n) rounds, Poly(n) moves.
* BFS O(D) rounds, O(n2) moves
® 1993: Dolev et al. Acta Inform. O(D) rounds, Exp(n) moves
® 1997: Johnen. Proceedings PODC. D2 . n rounds

® 2009: Cournier et al. ACM Trans. Auton. Adapt. Syst.
D2 + n rounds, O(A - n®) moves
® 2019: Cournier et al. Inf. Comput. O(D?) rounds, O(n%) moves

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 7/15

Our Contribution 1

® Transformer O(D) rounds, O(n3) moves
® 1991. Awerbuch et al. Proceedings FOCS. O(D) rounds, Exp(n) moves
® |eader election O(D) rounds, O(n3) moves
® 2011: Datta et al. J. Parallel Distrib. Comput. O(n) rounds, Exp(n) moves
® 2011: Datta et al. TCS. O(n) rounds, Exp(n) moves
® 2017: Altisen et al. Inf. Comput. O(n) rounds, Poly(n) moves.
* BFS O(D) rounds, O(n2) moves
® 1993: Dolev et al. Acta Inform. O(D) rounds, Exp(n) moves
® 1997: Johnen. Proceedings PODC. D2 . n rounds

® 2009: Cournier et al. ACM Trans. Auton. Adapt. Syst.
D2 + n rounds, O(A - n®) moves
® 2019: Cournier et al. Inf. Comput. O(D?) rounds, O(n%) moves

® Cycle coloration in 3 colors

® 1986: Cole et al. Proceedings FOCS O(log*n) steps, LOCAL model
® 2009: Lenzen et al. Proceedings SSS. O(log*n) rounds, > Poly(n) moves
® 2018: Baremboim et al. Proceedings PODC. O(log*n) rounds, synchronous

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 7/15

Our Contribution 1

® Transformer O(D) rounds, O(n3) moves
® 1991. Awerbuch et al. Proceedings FOCS. O(D) rounds, Exp(n) moves
® |eader election O(D) rounds, O(n3) moves
® 2011: Datta et al. J. Parallel Distrib. Comput. O(n) rounds, Exp(n) moves
® 2011: Datta et al. TCS. O(n) rounds, Exp(n) moves
® 2017: Altisen et al. Inf. Comput. O(n) rounds, Poly(n) moves.
* BFS O(D) rounds, O(n2) moves
® 1993: Dolev et al. Acta Inform. O(D) rounds, Exp(n) moves
® 1997: Johnen. Proceedings PODC. D2 . n rounds
® 2009: Cournier et al. ACM Trans. Auton. Adapt. Syst.
D2 + n rounds, O(A - n®) moves
® 2019: Cournier et al. Inf. Comput. O(D?) rounds, O(n%) moves
® Cycle coloration in 3 colors O(log*n) rounds, O(n2%log*n) moves
® 1986: Cole et al. Proceedings FOCS O(log*n) steps, LOCAL model
® 2009: Lenzen et al. Proceedings SSS. O(log*n) rounds, > Poly(n) moves
® 2018: Baremboim et al. Proceedings PODC. O(log*n) rounds, synchronous

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 7/15

Contribution

A tranformer:
Input: a synchronous terminating algorithm A.(time and space complexities: T,
S)
a bound B such that T < B < 400
Output: an asynchronous algorithm which simulates A.

e silent, self-stabilizing (even in the unfair case)

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 8/15

Contribution
A tranformer:
Input: a synchronous terminating algorithm A.(time and space complexities: T,
S)
a bound B such that T < B < 400
Output: an asynchronous algorithm which simulates A.

e silent, self-stabilizing (even in the unfair case)
Round complexity Move complexity
Error recovery O(min(D, B)) O(min(n3,n%B))
Greedy mode O(B) O(min(n® + nB,n?B))
Lazy mode OD+T) O(min(n3 +nT,n?B))
Space complexity S-B

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 8/15

Contribution
A tranformer:
Input: a synchronous terminating algorithm A.(time and space complexities: T,
S)
a bound B such that T < B < 400
Output: an asynchronous algorithm which simulates A.

e silent, self-stabilizing (even in the unfair case)
Round complexity Move complexity
Error recovery O(min(D, B)) O(min(n3,n%B))
Greedy mode O(B) O(min(n® + nB,n?B))
Lazy mode OD+T) O(min(n3 +nT,n?B))
Space complexity S-B

Powerful tool to design efficient asynchronous self-stabilizing algorithms.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 8/15

Overview of the algorithm

Ideas:

® storage of the whole synchronous execution;

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the
algorithm.

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
3
o0
1 00
o O o0
@ G ()
-/
C C

® D—®

Q—Q—Q—O

C

8r—lr—\>—l
Q (m) |88L\DL\DL\J

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
3
o0
1 00
o O o0
@ G ()
-/
C C

Q—Q—Q—O D—®

E C

8r—lr—\>—l
Q (m) |88L\DL\DL\J

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
3
(0.9]
(0.9]
o0 (0.} 0.0}
@ G ()
2/
C

D—®

E C

8r—lr—\>—l
Q (m) |88L\DL\DL\J

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
3
(0.9]
(0.9]
o0 (0.} 0.0}
@ G ()
2/
E

D—®

E C

8r—lr—\>—l
Q (m) |88L\DL\DL\J

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
3
(0.]
0 00
o0 0 o0
O—Q O—®
E E E

1

1
00
d

f

E E

NoY s

C

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
1
0 1
o0 0 o0
O—©—@ ®
E E E E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

- @ Eree_
SN) Eam—

E

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
1
0 1
o0 0 o0
O—©—@ ®
E E E E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

-
- QE

E

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
1
0 1
o0 0 o0
O—©—@ ®
E E C E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Yo txa—
- QE

E

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
1
0 1
o0 0 o0
O—©—@ ®
E C C E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

YO Exa—
- QE

E

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
1
0 1
o0 0 o0 o0
O—)— ®
C C C

O—o)—0O—@ (D
Y,

E

Yo txa—

C E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
1
0 1
o0 0 o0
O—©—@ ®
C C C C

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Yo txa—
Q@ E

C

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
1
0 1
o0 0 o0 00
O—O— ®
C C C C

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Yo txa—
Q@ E

C

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the
algorithm.
1
0 1 o0
0 00 %)
O—@ ®
C C C

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Yo txa—
Yo txam—

Overview of the algorithm

Ideas:
® storage of the whole synchronous execution;

® a3 node must correct all its dependency errors before it simulates the

algorithm.
2 1 0 1 2 3 4
2 1 0 1 2 3 00
2 1 0 1 2 00 00
00 1 0 1 00 00 o)
o0 o0 0 o0 o0 o0 o0
C C

C

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 9/15

Dependences = Reset Dags

® Nodes with status F

® pis a parent of its neighbor ¢ if p also has a status F and its list is
smaller

Two key principles:
e “Controlled” resets: efficiency in moves

® On-the-fly reset dag shrinking: efficiency in rounds

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 10/15

Efficiency in moves

“Controlled” resets: a node in error always resumes the “normal” execution

after roots of its reset dag
1
0 1
0 00
O—@ ®
E E E

u
E
Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 11/15

E

SO} rx—
Yo} ca—

Efficiency in moves

“Controlled” resets: a node in error always resumes the “normal” execution

after roots of its reset dag
1
0 1
0 00
O—@ ®
E C E

u
E
Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 11/15

E

Yo} rx—
Yo} ca—

J

Efficiency in moves

“Controlled” resets: a node in error always resumes the “normal” execution

after roots of its reset dag
© ®
E

1
0 1
o0 0 00
O d
E C C
Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 11/15

E

SO} cx—
Yo} ca—

v

Efficiency in rounds

On-the-fly reset dag shrinking: an error node must be an error root, or its
list must have one more element than the smallest list of an error neighbor.

O°888-l>

1 2
0 1 oo
_ _ _oo_ _0_ _oo_ _oo_
OmOmOmOm0
E E E C

E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 12/15

Efficiency in rounds

On-the-fly reset dag shrinking: an error node must be an error root, or its
list must have one more element than the smallest list of an error neighbor.

1 2
0 1 oo
_ _ _oo_ _0_ _oo_ _oo_ _ _
OmOmOmOm0

E E E C E

E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 12/15

Efficiency in rounds

On-the-fly reset dag shrinking: an error node must be an error root, or its
list must have one more element than the smallest list of an error neighbor.

1
ol |1
oo_Ooooo___
H—E—Q—@D——0
E E E E E

E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 12/15

Efficiency in rounds

On-the-fly reset dag shrinking: an error node must be an error root, or its
list must have one more element than the smallest list of an error neighbor.

] o] 1) L) L
O—(——=—®
E E E E E

E

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 12/15

The algorithm

algoErr(p)
depErr(p)

errPropag(p, 1)
canClearE(p)

updatable(p)

Fi,1 <i<ph, (Vg€ N(p),gh>i—1)A
p.L[i] # algo(p,i — 1)

(p.s =EAN—-(3g€ N(p), gqgs=ENqgh < p.h))

(ps=CAJgeN@p), (¢h>ph+?2))

Jdq € N(p), gs=E ANqgh <i<p.h

p.s = E AVq € N(p), (|q.h —p.h| <1A(qh<phVgs= C))

ps=C AN ph<B A

(Vg € N(p), g-h € {p-h,p.h+1}) A

(creedy v (p.L[p.h] # algo(p,p.h) v 3q € N(p), a.h > p.h))

Rpr : (p-h >0V p.s=C) A (algoErr(p) V depErr(p)) — p.h:=0; p.s .= F

® Rp(i):errorPropag(p,i) — p.h:=1i; p.s:=F

® Rc :canClearE(p) — p.s :==C

* Ry : updatable(p) —s push(algo(p, p.h))

Priorities: Rg > Rp(i) and Rp(i) > Rp(i +1).
e = e N o TRy

Perspectives

® Reduce Memory Requirement
(a less general transformer, submitted to STACS)

® Weaker Models (e.g., link-register model)

® Non-terminating tasks (e.g., token circulation)

Devismes, llcinkas, Johnen, Mazoit Workshop COA, 27/11/2024 14 /15

Thank You

Devismes, llcinkas, John Mazoit Workshop COA, 27/11/2024 15/15

