SR3: Secure Resilient Reputation-based Routing *

Karine Altisen

Stéphane Devismes
Raphaél Jamet

Pascal Lafourcade

Abstract

In this paper, we propose SR3 (which means Secure Resilient Reputation-based Routing), a secure and
resilient algorithm for convergecast routing in WSNs (Wireless Sensor Networks). SR3 uses lightweight
cryptographic primitives to achieve data confidentiality and unforgeability. Security of SR3 has been
proven formally using two verification tools: CryptoVerif and Scyther. We made simulations to show the
resiliency of SR3 against various scenarios, where we mixed selective forwarding, blackhole, wormhole,
and Sybil attacks. We compared our solution to several routing algorithms of the literature. Our
results show that the resiliency accomplished by SR3 is drastically better than the one achieved by those
protocols, especially when the network is sparse. Moreover, unlike previous solutions, SR3 self-adapts
after compromised nodes suddenly change their behavior.

keywords: Wireless sensor networks, Routing, Security, Resiliency.

1 Introduction

Nowadays, there is a growing interest in WSNs. WSNs are multi-hop mesh networks made of numerous
small battery-powered sensors that generate data about the environment (e.g., temperature) and use them
for specific services (e.g., emit an alarm when the surrounding temperature is too high). Moreover, they
embed wireless communication capabilities allowing them to exchange data. The low capabilities of the
sensors, their wireless communications, and the fact that they are deployed in open areas make them prone
to attacks.

Routing is a crucial issue in WSNs. Here, we consider a routing scheme called convergecast routing. In
this problem, a node is distinguished as the sink and all non-sink nodes, called here source nodes, must be
able to transmit data to the sink on request or according to an a priori unknown schedule. The sink can be
arbitrarily far (in terms of hops) from other nodes. Typically, in WSNs, source nodes are sensors and the
sink is a base station that is linked to another network, like a gateway.

A routing protocol in a WSN may have to face many kinds of attacks. Here, we consider the critical
scenario, where some sensors are compromised and controlled by an attacker. In particular, such an internal
attacker has access to all secret and received information of the compromised nodes.

The attacker can impact the routing protocol at two main levels:

*A preliminary version of this paper appeared in [1].

Message Level: First, he can attack the data message to learn secret information, i.e., violate the data
confidentiality, as this property consists in guaranteeing that data remain secret between the source
and destination.

He can also make the sink deliver incorrect information, i.e., violate the integrity of data messages.
Integrity guarantees that the destination is able to detect whether the data inside a message have been
modified.

Moreover, the attacker can act against the authentication of the nodes. Authenticity guarantees that
the destination is able to detect whether the alleged source in a message is the true one.

Routing Level: Secondly, the attacker can affect the routing scheme itself, e.g., he may prevent data from
being delivered by the sink (leading to degrade the quality of service, essentially the delivery rate), or
create congestion by increasing the load in all or part of the network (leading to reduce the lifetime
of the network). Such an attack can also evolve over time, e.g., the attacker can attract traffic to a
given intruder node using various means. Thanks to that, the intruder node (called a sinkhole) will
have more impact for further malicious actions.

Related Work. Numerous solutions have been introduced to cope with attacks on data. The confidential-
ity, authenticity, and integrity properties are mainly guaranteed using cryptographic mechanisms. However,
the choice of the cryptographic primitives should be led by the inherent constraint of WSNs. WSNs being
limited in terms of resource and power, lightweight cryptographic mechanisms [2] are mandatory. An example
of such a mechanism is elliptic curve cryptography [3, 4]. In contrast, classical asymmetric cryptography,
e.g., RSA, should be excluded due to its computational cost.

Using such lightweight cryptographic primitives, routing protocols implementing some security properties
have been proposed, e.g., u-Tesla [5, 6] is a broadcast authentication protocol that enables receivers of
the broadcast data to verify that these data really originate from the alleged sources. pu-Tesla has a low
communication and computation overhead, scales to a large number of receivers, and tolerates message loss.

Although it is not strictly a routing protocol, SPINS [5] is a set of tools for routing, which provides
security guarantees without using any costly operations: p-Tesla is one part of SPINS; the other part is
SNEP, a message format that guarantees various security properties, like authenticity and confidentiality,
using few additional bits per message.

Some other protocols, called secure route discovery protocols, have been introduced [7, 8] to help securing
routing. Actually, they compute a valid route (i.e., the computed path exists in the network) between the
source and destination, and for some of them (e.g., [7]), they guarantee that nodes in the chosen route
achieved a certain security level, e.g., the integrity of the discovered route, which means that the computed
route has been effectively traversed during the discovery process.

However, all aforementioned solutions do not use specific strategies to combat attacks at the routing level,
e.g., selected forwarding, blackhole, etc. Specific approaches have been proposed to maintain a good quality
of service in presence of insiders, that drop all or part of messages. For example, the notion of resiliency has
been introduced in [9, 10] as the ability of a network to “continue operating” in presence of compromised
nodes, i.e., the capacity of a network to endure and overcome internal attacks. For example, a resilient
routing protocol should achieve a “graceful degradation” in the delivery rate with increasing the number of
compromised nodes. In [11, 10], authors experimentally analyze the resiliency of several classical routing
techniques, e.g., random walk [12], gradient-based routing [13], geographic routing [14]. The experimental
results show that these solutions are weak in terms of resiliency. Then, they propose several resilient variants
of the gradient-based routing; this latter routes messages following a Destination Oriented Directed Acyclic
Graph (DODAG). Mainly, they introduce randomization and duplication in that protocol. As a result, the
proposed patches drastically increase the delivery rate when the network is subject to selective forwarding
or blackhole attacks. However, in their simulations, they always assume that the DODAG is available and
not attacked by insiders. Moreover, they mainly consider dense networks in their simulations, e.g., networks
with average degree around 30.

Contribution. This paper deals with convergecast routing in WSNs, where all source nodes have several
messages to route. We propose a Secure, Resilient, and Reputation-based Routing algorithm, called SR3.
This protocol is a reinforced random walk that is partially determinized using a reputation mechanism.

SR3 uses lightweight cryptographic primitives: symmetric cryptography (precisely, authenticated encryp-
tion [15]), nonces, and hash functions. Thanks to these primitives, it achieves interesting security properties,
including data confidentiality and unforgeability, this latter property implies integrity and authenticity of
the data. We prove the desirable security properties achieved by SR3 in the computational model using the
formal tool CryptoVerif [16]. We also prove in the symbolic model the secrecy of data and authentication of
nodes using the tool Scyther [17].

Then, we show the resiliency of SR3 against various scenarios, where we mixed selective forwarding,
blackhole, wormhole, and Sybil attacks. The resiliency of our algorithm is mainly captured using the delivery
rate and some fairness measure. Our simulation results show in particular that unlike previous solutions, SR3
self-adapts when compromised nodes change their behavior (e.g, an interesting case is when a compromised
node behaves well to attract the traffic and then suddenly decide to drop all received messages). We compare
our solution to several routing algorithms of the literature, including resilient ones. Our simulations show
that the resiliency accomplished by SR3 is drastically better than the one achieved by those protocols,
especially when the network is sparse.

A shortcoming of our solution is the number of hops to reach the destination, as it is usually greater than
other solutions of the literature. However, in our experiments, we observed that this complexity remains
sublinear in the number of nodes.

Note also that our solution is reactive (i.e., in absence of data to route the protocol eventually stops.),
has a low overhead in terms of communications, and does not use any underlying infrastructure, such as
spanning tree or DODAG. Hence, SR3 is well-suited for WSNs.

Roadmap. The remainder of the paper is organized as follows. In the next section, we present our
routing algorithm, SR3. Section 3 deals with the automatic proof of the security properties of SR3 using
CryptoVerif [16] and Scyther [17]. In Section 4, we present experimental results that show the resiliency of
SR3. Section 5 is dedicated to concluding remarks.

2 SR3

The formal code of our routing protocol, SR3, is given in Algorithms 1 and 2. Below, we identify the
assumptions we made about networks. Then, we informally explain the behavior of SR3.

2.1 Assumptions

We consider arbitrary connected networks with bidirectional links, although we will focus on Unit Disk
Graphs (UDG) in simulations. Each node p has a unique ID (to simplify, we shall identify any node with its
identifier, whenever convenient) and knows the set of its neighbors, Neig, — this latter assumption will be
relaxed, when considering Sybil attacks.

Networks are made of one sink, which is the data collector, and numerous source nodes. The source nodes
are sensors, and consequently are limited in terms of memory, computational power, and battery. Sensors
are non-trustworthy since they are vulnerable to physical attacks and an adversary can compromise them.
In contrast, the sink is assumed to be robust and powerful in terms of memory, computation, and energy.
So, we assume that it cannot be compromised.

All nodes have access to a lightweight cryptography library (hash function, symmetric encryption, and
random number generation). Each source node shares a symmetric key with the sink. Moreover, we assume
that all source nodes have several data to route; however, the scheduling of the data generation is a prior:
unknown. Finally, there is no time synchronization between nodes.

2.2 Overview

Randomization is interesting to obtain resilient solutions because it generates behaviors unpredictable by
an attacker. However, note that the “classical” uniform random walk, where a node chooses the next
hop uniformly at random among its neighbors, is known to be inefficient even against a small number of
compromised nodes [9]. So, we designed SR3 rather as a reinforced random walk, based on a reputation
mechanism. The idea is to locally increase the probability of a neighbor to be chosen at the next hop,
if it behaves well. Such a reputation mechanism is based on acknowledgments. We propose a scheme in
which if a process receives a valid acknowledgment, it has the guarantee that the sink actually delivered
the corresponding data message. Hence, upon receiving such an acknowledgment, a process can legitimately
increase its confidence on the neighbor to which it previously sent the corresponding data message. Therefore,
eventually all honest nodes preferably choose their highly-reputed neighbors, and so the data messages tend
to follow paths that successfully route data to the sink.

2.3 Reputation Mechanism

To implement our reputation mechanism, we identify each data message (tagged MSG in the algorithm) with
a nonce, i.e., an unpredictable random number that should remain secret between the source and sink until
the delivery of the data message.

Assume that node v initiates the routing of some value Data. It first generates a nonce N,, (NEW_NONCE(),
Line 1). Then, it encrypts in a ciphertext C' the concatenation of Data and N, using the key k., it shares
with the sink only (Ey, . ((Data, N,)), Line 3). Then, both C and the identifier of v (in plaintext) are routed
to the sink, and only the sink is able to decrypt C. So, upon receiving the data message, the sink decrypts C'
using k,s, delivers Data, and sends back to v an acknowledgment ACK containing N, (Lines 36-39). Finally,
if v receives this acknowledgment, it has the guarantee that Data has been delivered, thanks to N,,.

Now, during the routing, a compromised relay node can blindly modify the encrypted part of the message.
To prevent the sink from delivering erroneous data, we assume a (symmetric) authenticated encryption
scheme [15], which guarantees confidentiality, authenticity, and integrity of encrypted information. This
way, when receiving a message, the sink checks the validity of the message by decrypting the ciphertext
using the key keys[o] of the alleged source o of the message (E,:elys[o](C’), Line 36). If the ciphertext has

been modified, then E,:elys[o](C’) =1 (with overwhelming probability) and the message is simply discarded.
Similarly, if a compromised node has modified the plaintext identifier in the message, then either keys[o] is
undefined, or the sink decrypts the ciphertext with a wrong key (in this latter case again, E,;elys[o] (C) =1).
So, in both cases the message is also discarded.

Upon receiving an acknowledgment, if the receiving node v is the initiator of the corresponding data
message m, v can conclude that m has been delivered. In that case, v should reinforce the probability
associated to the neighbor to which it previously sent m. To achieve that, we proceed as follows: when v
initiates the routing of m, v saves in the list Lg.,; the nonce stored in m, together with the identifier of the
neighbor to which v sends m (Lgen: is appended in Line 5 using @, this latter operator is defined below).
Hence, on reception of an acknowledgment, v checks (in Line 20) if it is the destination of the acknowledgment
and if the nonce N, attached to that acknowledgment appears in Lgen: (see the test (No, -) € Lgent in
Line 20).! In that case, v gets back the corresponding neighbor from the list (GET(Lgent, Vo), Line 21),
increases its confidence on that neighbor (Line 22, further details about increasing the confidence are given
in Subsection 2.4), and removes the record from Lgent (Lgent \ (No, -), Line 23). (If v is the destination of
the acknowledgment, but N, does not appear in Lgent, the acknowledgment is simply discarded.)

Due to the memory limitations, Lge,; must have a maximum size,? 5g. If a node v has some new data
to route and Lgep; is full (that is, it contains sg elements), then the oldest element is removed from the
list to make room for the new one. A side effect is that records about lost messages or of messages whose
acknowledgment has been lost are eventually removed from Lgep;.

1« » means “any value”. So, (No,) is any record whose left value is N,.

2All lists used in SR3 are of bounded size. We made several experiments to choose the appropriate bounds, see Subsection 4.2.

Note that it may happen that some data message m comes back to the node v from which it originates
because m followed a cycle in the network. In this case (Lines 8-13), the validity of m is checked, and if
so, the routing process of m is restarted. Since the old entry in Lg.,: is not relevant anymore, it is simply
replaced by the new one.

Consequently, the concatenation of (z,y) to the list L using ® works as follows: first, if L contains any
pair with a left member equal to x, that pair is removed from L; then, if L is (still) full, the rightmost pair
is removed; finally, (z,y) is inserted on the left side of the list. Note that, using ®, any left member of a
pair in the list is unique.

2.4 Compute the Reputation

To choose the next hop of some data message, a node performs a random choice among its neighbors,
weighted according to their reputation (see Lines 4 and 7).

The reputation of a neighbor actually corresponds to the number of occurrences of its identifier in the
list L reputation: €ach time a node v wants to reinforce the reputation of some neighbor u, it simply adds an
occurrence of u into its list (Line 22).

Our reputation mechanism is implemented using the probability law denoted by L% ps(Lreputation): Let
X be a random variable taking value in Neig,; the law LY ps(L geputation) is defined, Vo € Neig,, by:

P?"(X — 27) — |LR6putation|z + 5;1
|LReputation| +1

Where 6, is the degree of v, |Lreputation| is the number of elements in L geputation, a0d |Lreputation|s 1
the number of occurrences of x in Leputation. Hence, when v wants to route a data message, it chooses its
next destination according to L% ps(LReputation) (Se€ RAND(Neigy,L% ps(LReputation)) in Lines 4 and 7).

Informally, when a node needs to route a message, it draws at random a value from L gepytation PlUS
a blank element. If the blank element is drawn, it selects a neighbor uniformly at random, and sends the
message to that neighbor. Otherwise, the message is sent to the neighbor whose identifier has been drawn.
This way, the more a neighbor is trusted, the more it will be selected. However, because of the blank element,
there is always a positive probability of selecting a neighbor without taking trust into account. Note that,
initially L geputation is empty, and consequently the first selections are made uniformly at random.

To ensure a better resiliency against attackers that change their behavior over time, and to reduce memory
consumption, Lpeputation i defined as a FIFO list of maximum size, sg. The insertions in L greputation US€
the operator e that satisfies the following condition: when the list is full, the next insertion is preceded by
the removing of the oldest (and consequently, less relevant) element.

An example illustrating the probability law is provided in Figure 1. In this example, we focus on the
node v and assume a Lpepytation Of at most 3 elements. From the given configuration, v will route most
messages through z, because it has the greatest number of occurrences in the list L gepytation Of v. The high
reputation of z may come from the fact that at some point the paths from z to the sink through z were
faster and more reliable: this is a side effect of our protocol. Such fast and reliable paths indirectly help
increasing the reputation of z, since in this case x receives valid acknowledgments from z more frequently
than from other neighbors.

Using such a FIFO finite list, a node only stores the freshest information. Interestingly, if a compromised
node first behaves well, its reputation increases, resulting in attracting the traffic. Then, it may change its
behavior to become a blackhole (a node dropping all messages it receives). Now, thanks to our mechanism,
regularly some messages will be routed via other nodes and consequently the reputation of the compromised
node will gradually decrease, inducting then a severe reduction of the traffic going through that node.

Consider again Figure 1. If z turns out to be compromised and starts dropping all messages, then all
messages going through z and w will either get lost or loop back to v. However, there is still a positive
probability that v routes messages through y, which will retransmit them. Some of these messages will
be delivered and consequently acknowledged. So, the identifiers currently stored in Lgeputation Will be

LReputation = ['LU, Z, Z] , SR =3 for node v

Next hop probabilities for v: w Y
1+1/3 4
P(X = = = — =~ 33.
(w) 4 12 33.33% \ / \
v Sink
241/3 7
P(X=2)= = — =~ 58.
(X =2) 1 15~ 58.33% / /
. _0+41/3 i N
P(X =y) = — = = 5 ~8.33% ! i

Figure 1: An example of how the reputation affects the routing process

progressively replaced by occurrences of y, increasing its probability (resp. decreasing the probability of w
and z) of being chosen.

2.5 Acknowledgment Routing

An acknowledgment message ack is emitted because the corresponding data message m has been successfully
delivered by the sink. So, we can suppose that the path followed by m was safe. Thus, we can use the
bidirectionality of the links to route ack (as much as possible) through the reverse path followed by m.

This reverse routing is accomplished by letting a trail along the path followed by m. This trail is
actually made using hash H(N,) of the nonce N, identifying the message (see Line 2), this hash being stored
in plaintext in the data message (see Line 6). The trail is then is stored thanks to the list L sckRouting
maintained at each node: after the reception of each data message, the relaying nodes store the hash of the
nonce available in the message, together with the identifier of the neighbor from which they received the
message (Lines 14-17). This information will be then used during the return trip of the acknowledgment:
when a node v receives an acknowledgment containing the nonce N, it checks whether it is the final
destination of that acknowledgment (Lines 20 and 25). If this is not the case, v checks if an entry containing
H(N,) exists in Lackrouting (Lines 26-30). If v finds such an entry, it sends the acknowledgment to the
corresponding neighbor and removes the entry from L ackrouting (Line 29). Otherwise, the next hop of the
acknowledgment is chosen uniformly at random, in a best-effort mindset (L%, denotes the probability law
of the uniform random walk, see Line 31).

If a data message loops back to a node it already visited, the most relevant information regarding
acknowledgments for this node is the oldest one. Therefore, before inserting a new trail, the node checks if
L sckRouting already contains a trail for that message. If a related entry exists, we do not update L sckRrouting
(Lines 14-17).

Acknowledgments can be still dropped by compromised nodes. The trail for such lost acknowledg-
ments would unnecessarily clutter the memory of nodes. To avoid this, we manage L sckRouting Similarly to
L reputation, €., LackRouting 15 @ list of bounded size s4, appended using operator e.

Finally, an intruder may build acknowledgments with false nonces. These fake acknowledgments will
increase the load of the network, and impact the energy consumption. Now, some nodes being compromised,
a safe node cannot trust information coming from its neighbors to decide whether it should forward or drop an
acknowledgment. To circumvent that problem, a relay node decides to drop a received acknowledgment with
probability ﬁ, where N is an upper bound on the number of nodes (Lines 33 and 42). So, on the average, an
acknowledgment makes IV hops in the network before being dropped. An interesting side effect of this method
is the following: in a safe network (i.e., a network without attackers), the acknowledgments that follow long
routes are often dropped before reaching their final destination. Since the length of the routes followed by
the acknowledgments are directly related to the length of the route taken by the corresponding messages,
the reputation mechanism ends up favoring shorter routes, thus improving the overall hops complexity.

The overall behavior of SR3 is summarized in Figure 2.

(MSG, Ex,. ((Data, N,)), H(N,), v) MSG, By, ((Data, N,)), H(N,), v)

e Check validity
Sink e Deliver Data
e Build ACK

<ACK,NU,’U> <ACK,NU,’U>

Network

Figure 2: A message and its acknowledgment.

3 Security Analysis

We evaluate the security of SR3 in two phases. The first phase focuses on the message format, for which
we prove the following three properties: unforgeability, confidentiality of the data, and confidentiality of the
nonce before message delivery. This analysis uses the tool CryptoVerif [16]. We first detail the modeling of
SR3 and our intruder model. Then, we model the different security properties we considered. CryptoVerif
automatically finds bounds on the security of these properties. We refined these bounds to allow the user
to determine the desired trade-off between message sizes and the expected security level. We illustrate our
results with an example based on the classical data link protocol S-MAC [18]® which is dedicated to WSNs
and allows to transmit up to 250 bytes of data in a message.

The second phase is a symbolic analysis of the protocol, in order to prove its security when running
several sessions. This analysis supposes that the cryptographic primitives are perfect. For this, we use the
tool Scyther [17].

We first describe how we model SR3 and the attacker for these two analyses.

3.1 Modeling of SR3

SR3, as described in the previous section, routes messages through several nodes. There are three distinct
roles in this process: the source (whose identifier is denoted by src) of the considered data message, the
relays, and the sink.

The data message is initially created by the source, which then forwards it either to a relay or the
sink. Initially, a data message consists of a ciphertext C' = Ej___({Data, N)) containing the (symmetric)
authenticated encryption of some data Data and a nonce N, and a plaintext part made of the hash of the
nonce N and the identifier sre. Notice that the symmetric key ks, is chosen uniformly at random in C, the
space of all the possible symmetric keys, before the WSN is deployed. We suppose k... is known only by the
source src and the sink.

Relays forward the data message without changing it. When a data message reaches the sink, this latter
first checks whether the message respects the format (MSG, C, h, s). If so, C' is decrypted with the key of the
node identified by s (E;elys[s] (C)): if this operation succeeds, then a valid data is extracted and delivered,
moreover an acknowledgment (ACK, N, src), is generated and routed through relays until reaching the source.

A data message can loop back to its source, and an acknowledgment can loop back to the sink: they act
as relays in these cases.

Figure 3 illustrates that view of the protocol. The honest relays do not alter the messages in any way
(however, remind that honest nodes may sometimes drop ACK messages), and the protocol works with any
number of them, or none at all. Also, our intruder model specifies that any node can be compromised,
except the sink. Therefore, all relays R; are suspicious, and we lump them, whether honest or compromised,

3S-MAC stands for Sensor Medium Access Control.

Source Ry - R, Sink

2 | (MSG,Ey,,..((Data, N)), H(N), src)

N (MSG, Ex,,.. ((Data, N)),H(N), src)

(ACK, N, src) 3
(ACK, N, src) l—* 4

1. Generate Data, 2. Draw a nonce N,

3. Check validity, 4. Deliver Data

Figure 3: One session of the SR3 protocol

Hostile network
Source Sink

2 (Ekgp. ((Data, N)),H(N), src)

> (Ekgre ({(Data, N)),H(N), src)

(N, src) 3
(N, src) N 4

1. Generate Data, 2. Draw a nonce N,

3. Check validity, 4. Deliver Data

Figure 4: Modeling of one session of SR3

together in one single entity, called the hostile network. All communications between the source and the
sink happen through the hostile network, as depicted in Figure 4. The hostile network can modify or drop
messages, and can also create messages using informations deduced from previous communications. (As the
types MSG and ACK can be deduced from the message format, we omit them in the modeling.)

3.2 Game-Based Proof of the Security Properties in the Computational Model

We now consider the message format.

3.2.1 Background

We model the ability of our protocol to meet a given security property using games. A game is a probabilistic
algorithm where an adversary, given as a probabilistic polynomial-time Turing machine, faces a challenge,
which consists in breaking a specific property modeled by the game. The goal is then to compute the ability
of the adversary to win the challenge. This is called the advantage of the adversary.

When describing a game, we write a & X to denote that a is a random value obtained according the
distribution represented by X. If X is a set, a is drawn uniformly at random on X. Similarly, if X is a
probabilistic algorithm, a is drawn randomly using the algorithm.

Our analysis uses a common cryptography model, called the random oracle model [19], where hash
functions are modeled by random oracles. A random oracle is a theoretical black box O which satisfies the
following property: for every input ¢, the first time O is queried with ¢, O returns a value v, picked uniformly
at random from its output domain; then, each time O is queried again with ¢, O returns the same value v.
Moreover, encryptions are modeled using encryption oracles. An encryption oracle is a theoretical black box
which retains the secret encryption key and encrypts arbitrary data at the adversary’s request.

3.2.2 Modeling SR3’s Primitives

Hash function. Our algorithm uses a hash function of input size n,, and of output size n,. We model it
as a random oracle, and we refer to this modeling using # : {0,1}"" — {0,1}™.

Nonces. Nonces are modeled as truly random numbers of size 7,

Encryption scheme. We assume the authenticated encryption is both IND-CCA2 (INDistinguishability
against adaptive Chosen-Cliphertext Attack) [20] and INT-PTXT [21, 22] (INTegrity of the PlainTeXTs).

Intuitively, an encryption primitive is IND-CCAZ2, if it is computationally difficult for an adversary to
win a challenge that consists in guessing which of two data is encrypted into a given ciphertext despite it
has access to a decryption and an encryption oracle before and after the reception of the challenge. More
formally, we recall below the IND-CCA2 game introduced in [15].

Ezperiment EXPtINMM(A) :
K&K
(Do, D1, state) il Af(K,'),E‘l(K,.)()
b {0,1}
C & (K, Dy)
Return b = Ag(K,%gil(K’A)(Do, D, C, state)

First, a key K is generated uniformly at random from K, the set of possible (symmetric) keys, of size 7.
Then, the adversary A runs in two phases: A; and As. In each of them, the encryption and decryption
oracles, respectively denoted by £(K,-) and £71(K,-), can be called a polynomial number of times. A;
outputs two distinct data Dy and D7 of identical size and some information state used to link the two
attacker phases together. Then, one of the data Dy and D; is selected uniformly at random and encrypted
in the ciphertext C. Finally, A receives the challenge (i.e., the two data Dy, D1, as well as the ciphertext C')
and state. The adversary A, is allowed to call £1(K, -) with any ciphertext, except the challenge ciphertext
C. The game returns 1 if and only if the adversary correctly guesses the value of the challenge bit b, the
index of the data encrypted into C. For any adversary A, the IND-CCA2 advantage in this game, noted
AdvNP=CR(4) is defined as:

AdvINPCR Ay = 2 x Pr[Expt™NP 2 (4) = 1] — 1

where Pr[Expt™P~“2(4) = 1] is the probability that .A wins the IND-CCA2 game.

Intuitively, an encryption primitive E is INT-PTXT, if it is computationally difficult for an adversary to
produce a valid ciphertext decrypting to a data which had never been encrypted using F. Below, we recall
the game used in [15] to define this notion for a symmetric encryption scheme (K, E, D), where K, E, and

D are respectively a set of keys (of size 7y), and encryption and decryption primitives.
Experiment Expt™ T (4)

K&k

S« 0;

C ﬁ AES(K7')a€71(K7‘)()
d<«+ D(K,C)
Return d# L andd ¢ S

Each call to the encryption oracle Eg(K, d) consists of storing the data d into S, and then returning F (K, d),
the encryption of d using key K. The adversary also has access to the decryption oracle £71(K,-). The
adversary A wins the INT-PTXT game if and only if it can forge a valid ciphertext C' whose corresponding
decryption has never been queried to the encryption oracle. For any adversary A, the INT-PTXT advantage
in this game, noted Adv™ ¥ (4), is defined as:

Adv[NT_PTXT(A) = Pr[ExptINT*PTXT(A) =1]

where Pr[Expt™ T (A) = 1] is the probability that A wins the INT-PTXT game.

Since we assume the encryption scheme of SR3 is both IND-CCA2 and INT-PTX T-secure, both Adv P-4 4)
and AdvNTHTXT (A) become negligible in the size of the keys of encryption scheme 7. An advantage
Adv(A) becomes negligible in x, if for every positive polynomial P(z), we have 3K, Vx > K, Adv(A) < %.

3.2.3 Modeling SR3

Based on the above presented model, we describe actions performed by the source and sink using two
functions, see Figure 5. The attacker has access to some of these functions. For instance, the function
GenPrere()(.) below represents the normal behavior of a node, and an attacker who has access to this
function models a chosen-plaintext attack.

e Gen"rore()(Data) is the function which generates a message produced by src containing Data (whose
length is 74), using the encryption function from {0, 1}" to {0,1}" (where 1, = n4+n, and n. > n,).
This message is made of (C, h, src) = (Ey_. ((Data, N)), H(N), src), where N is a fresh unpredictable
nonce of size n,, H(N) is the hash of N, and E;__({Data, N)) is the encryption of the concatenation
of the data and nonce. The function Gen*sr-()(Data) returns the pair (C,h,src), N. The nonce N
is given in cleartext to represent the knowledge of an attacker that listens to traffic in the network.
Indeed, such an attacker may have access to both the messages and their acknowledgments; he may
then know the nonces contained in the original messages.

We store all the encrypted ciphertexts in a set called Queries, initially empty.

) Vem'fE’:slrc) ((C, h, s)) is the function that checks whether the packet (C, h, s) is valid or not. Precisely,
it checks

— whether s = src,

— whether E,;lrc (C) #L, which guarantees the integrity of the encrypted data (e.g., E;slrc(C’) fails
if some digit has been reversed), and authenticity (since encryption uses a symmetric key, only
entities knowing this key, i.e., the source and sink, are able to correctly encrypt and decrypt data,
consequently integrity implies authenticity), and

— whether h = H(N), where (d, N) = E,;lrc(C) (of course, this last check is made only if the two
first ones succeed).

If these three conditions are satisfied, then the function outputs 1 (meaning that the message is valid),
0 otherwise.

10

Source Sink
kST’C k i IC k‘ST’C
/ src \
1 (C, h, src)
N, src 2

1. ((C, h, src), N) = GenPrsre()(Data)

2. Message verification phase: Veri fE’;slm(')(C’)

Figure 5: The SR3 protocol, using functions

These two functions allow us to model SR3 in CryptoVerif. Notice that, in the following games, we replace

Ex

sre

(), E,;lm (), and H(-) — the encryption, decryption, and hash functions actually used by SR3 — by the

encryption, decryption, and random oracles &(kgre,), € (ksre,), and H(-) that respectively model them.
These oracles represent knowledge accessible to the intruder.

3.3 Properties

The three properties we want to prove are the following:

o Confidentiality of the (encrypted) data: the probability of the adversary getting information about the

data in a message is negligible, even when the acknowledgment has been sent.

e Confidentiality of the nonce: the probability of the adversary getting information about the nonce N
in a message, before the message has been delivered, is negligible.

e Unforgeability: the probability that the adversary creates a new ciphertext C' such that Verif Efare) (@)

1 is negligible.

With the help of CryptoVerif, we analyzed those three properties of SR3. Each of these three properties
is evaluated thanks to a game. For each game, CryptoVerif outputs a bound on the advantage of any

adversary in that game. This bound is obtained automatically after successive game reductions.

complete verification code is available online [23].

3.3.1 Data Confidentiality

The

The first property we consider is the confidentiality of the data. The game (named FG, for Find-then-Guess)

is based on the idea that even if the adversary chooses the set of possible data, it cannot guess which of

those data is inside a given message. On the other hand, if the attacker was able to win reliably, it would be
also effectively able to recover some information about the data contained in messages, without knowledge

of the key.

Let A be an adversary running in two phases: A; and As. First, A; outputs two data, Dy and Dy, of
identical size together with some information state used to link the two attacker phases together. One of

these two data is selected uniformly at random, and a data message (C, h, src) is generated using the selected
data and the key ks, of sre, initially generated uniformly at random from K. Then, (C, h, src), the nonce
N it contains, and state are given to As. To win, Ay should guess which of the two data is in C. During

11

this game, A can query Gen&®sre)(.), H(-), and Verif€ (kare) ().
Experiment EXptm(A) :
ksrc (i IC
(Do, D1, state) & Alceng(ks'rc.-)(,)7H<‘>,Verifg—l(ksrcy.)«)()
b {0,1}
((C, h,srcy, N) E Gens(k”c")(Db)

enf (Bsres) () 21 () Veri f€ N (ksrer) (.
Return b = Ag" OHE),Verif ()(<C, h, src), N, state)

Let Pr[Expt’“(A) = 1] be the probability of winning the find-then-guess game. We define the find-then-
guess advantage of A against FG, noted Adv¥(A), as follows:

Adv™@(A) =2 x PrlExpt™@(4) =1] -1

We modeled this game in CryptoVerif to obtain a bound on Adv'® (A). Actually, this bound depends on
the ability of the attacker A to break the encryption scheme used by SR3, i.e., this game can be reduced to
the IND-CCA2 game. This means that the bound on Adv®(A) depends on the advantage Adv™"P~“2(3)
of some adversary B in the IND-CCA2 game. Precisely, for all adversaries A

e making gg queries to Gen®Fsre) (1) gy queries to Vem'fgfl(k”“')(-), and gp queries to H(:) in the
FG game, and

e running the F'G-game in T 4 time units,
there exists an adversary B

e making g + 1 queries to the encryption oracle &(ks.c,) and gy queries to the decryption oracle
E Y ksre,+) in the IND-CCA2 game, and

e running the IND-CCA2 game in Ty time units with Tg = T4 + Pi(qq,qv,s) time units, where
Pi(ga,qv,s) is polynomial in ¢g, gy, and the message size s (see [23] for details)

such that
AdviP(A) < 2 x AdvNPEE2 ()

Note that the IND-CCAZ2 property of the encryption scheme allows to obtain a security bound which is
independent from 7.. Also, ¢y does not appear in the result meaning that calls to H(-) does not help the
adversary in anyway.

Moreover, IND-CCA2 guarantees that for all adversaries B, Adv"P~¢ AQ(B), and consequently Adv’® (A),
becomes negligible in ny, the size of the key. We now refine and instantiate this bound to select the necessary
trade-off between the desired level of security and the mandatory minimization of the message overhead.

Illustrative Example. As an example, we now show how to fix parameters when focusing on the S-MAC
protocol [18] for which the data packet length can be up to 250 bytes.

Recall that we want to achieve the IND-CCA2 and INT-PTXT-secure properties. Such properties can be
ensured using an Encrypt-then-MAC primitive [15]. Encrypt-then-MAC consists of an encryption primitive,
e.g., AES-128 [24],* and a Message Authentication Code (MAC) [25], e.g., HMAC-SHA-1 or HMAC-SHA-
256.°

Here, we use AES-128 [24], which outputs 128 bits (16 bytes) of ciphertext using an input plaintext of
128 bits. To overcome the size limitation, we use AES-128 together with a block cipher mode of operation

4AES stands for Advanced Encryption Standard.
SHMAC-SHA stands for Keyed-Hash Message Authentication Code and Secure Hash Algorithm.

12

called Cipher Block Chaining (CBC) [26]. This latter allows to securely link together several fixed-length
ciphertexts, so-called blocks. Using AES, each block will be of size 128 bits (16 bytes), and the overhead of
CBC is one block (the initialization vector), so 16 bytes. We fix here the size of the plaintext to 208 bytes,
i.e., 13 blocs of 16 bytes. So, using AES-128 together with CBC, we obtain a ciphertext constituted of 14
blocs of 16 bytes, i.e., 224 bytes.

Then, for the MAC, we use HMAC-SHA-256 which, given an input of up to 2% bits, produces an output
message authentication code (MAC) of 256 bits (32 bytes). However to reduce the overhead, we truncate
this output to 9 bytes, i.e. 72 bits. Overall, we obtain a ciphertext of 233 bytes.

Then, using these parameters and several results from [27, 28, 29, 15], we obtain the following bound
(see [23] for details):

AdvTP(A) < 4x Advions saa-256 (M) +4 X Advans saa-256(N) +

1
2% (gv = 1) x av x (8 x Advomp-sua-256(0) + g35) +

196 x (qG + 1)2

qv PRF
o7 T4 X Advyrs(Z) + o127

970
where
e comp-SHA-256 (resp. comp-SHA-256") is the compression function of SHA-256 (resp. its dual function);

the PRF-advantage AdvERF (X) measures the ability of an adversary X to guess whether a given oracle
is a random instance of F', a family of pseudorandom functions, or a truly random function;

o AdvI®4(X) is the PRF-advantage of X under related key attacks;

7 runs in time O(Tg) and makes 14 x (g + 1) queries to the encryption oracle, modeling the encryption
function of AES;

e M is a related key adversary that performs two oracle queries and has time O(Tg);
e N makes qy queries and runs in O(Tp) time;

e O makes 2 queries and runs in O(T'), T being the time for one computation of comp-SHA-256.

We assume q = 220 and g¢ = 23°. Finally, we bound the strength of the adversaries using estimations

based on the current best attacks on AES (2'26-!) and comp-SHA-256 (2256):

e For AES, if the attacker can make Nygs queries, its advantage can be estimated by 2]1\72“235?1.

e For SHA-256, if the attacker can make Ngy queries to the compression function, then the advantage

of the attacker can be estimated by gV;g*g.

We assume Nygs < 279 and Ngma < 2'°°. Hence, we obtain Advm(A) <2799,

3.3.2 Nonce Confidentiality

In the next game, we evaluate whether an adversary can extract a nonce from an undelivered message. Let
A be an adversary running in two phases (A; and As) that communicate using a variable named state. The
game consists in giving a challenge data message (C, h, src) to an adversary .4, who should guess the nonce
inside this message in at most nb, tries. To do this, the adversary is allowed to call Gen®sre) (1), H(.),

13

and Verif‘gfl(ksm')(-). Moreover, it chooses the data that will be contained in the challenge message.
Experiment Expt" "/ (A) :

kare & K

Eksre) () (- i€ M ksres) (L
(Data, state) & AGem (), H() Verif)

((C, h,srcy, N) & Genfhsres) (Data)

en&(ksres) (. N Verif€ Hksre,) (.
Answers < AS (), H()Verif ()((C, h, src), state))

Return (|Answers| < nba AN € Answers)

The nonce confidentiality advantage of A against N—conf is defined as the probability of winning the game,
i.e., Pr[Expt" " (A) = 1]:
AdvV M (A) = PriExpt" ™" (A) = 1]

CryptoVerif outputs that for all adversaries A:

e making gg queries to Gen®¥sre) (1), gy queries to Verifgfl("“TC")(~)7 qm queries to H(-), and nby tries
in the N—conf game, and

e running the N—conf game in T4 times units,
there exists an adversary B:
e making g¢ + 1 queries to &€(ksre,) and qy queries to £ (kgpe, -) in the IND-CCA2 game, and

e running the IND-CCA2 game in Ty time units with Tg = T4 + Ps(qq,qv,s) time units, where
Ps(qG,qv, s) is polynomial in gg, gy, and the message size s (see [23] for details),

such that:)
AdVN_Conf(.A) < noa +2(T]]H + qc + AdVIND—CCA2(B)
Similarly to the previous property, this bound becomes negligible when increasing 7,, and 7. Again, one
can find the right values to obtain a given security bound.

Illustrative Example. Considering the encryption parameter values already fixed in Subsections 3.3.1
and the results from [27, 28, 29, 15], we obtain the following bound (see [23] for details):

nba + qu + qa
- 2Mn

PRF
2 x Adv¢onp-sHa-256(N) +

AdVN—conf(A) + 2 % Advggﬁp—SHA—%s* (M) +

1
(av —1) x gv x (8 x AdVconp-spa-256(0) + 5355) +
196 x (qg + 1)?

qv PRF
=1 T2 X Advygs(Z) + 9128

971
(Z, M, N, O are the same adversaries as those defined in Subsection 3.3.1.)
To obtain an estimation, we use the same values as in Subsection 3.3.1 and we assume nby = qy = and
qu = 2%°. Finally, we fix the size 1, of the nonce to 96 (12 bytes). Hence, we obtain Ava{‘mf(.A) <2749
using a ciphertext of length 233 bytes and a nonce of 12 bytes.

220

14

3.3.3 Unforgeability

Finally, the last game evaluates the unforgeability, i.e., the ability of an intruder to create a new valid
ciphertext. Note that this property implies both indistinguishability and authenticity of the data. To evaluate

unforgeability, the game gives an attacker A access to both Genf(¥sre)(.) and Verifgfl(k”“')(-). To win,
A should return a ciphertext which is valid and which has never been encrypted by Gen‘g(km")(-). Recall
that the set Queries contains the ciphertext encrypted by Gen&®Fsre:)(.).

Eaxperiment Expt” V4 4)

Queries <
$
ksre <— K

E(ksre,) (. . eri 5*1(sres) (.
(C, b, s) = AGenE e (RO Verif& = (Rare) () y
Return C € Queries A Vem‘fffl(ksrcy)(c)

The unforgeability advantage of A against U F—CMV A, noted AdvVF MV 4 (A), is defined as the probability
of A winning this game, Pr[Expt”" 4 (4) = 1]:

AdvUFMVA Q) = PrExpt/TMVA(4) = 1]

Using CryptoVerif, we find that the advantage of A depends only the strength of the authenticated
encryption. Formally, for all adversaries A:

e making gg queries to Gen®(Fsre) (1), gy queries to Verifgfl(k”“')(), gr queries to H(-) in the UF—
CMYV A game, and

e running the UF—CMV A game in T4 time units,
there exists an adversary B:
e making g¢ queries to &(kspe,) and gy + 1 queries to € (kgpe,) in the INT-PTXT game, and

e running the INT-PTXT game in Ty time units with T = Ta + Ps(qa,qv,s) time units, where
P5(gc, qv, s) is polynomial in qg, gy, and the message size s (see [23] for details)

such that:

AdvUF@MVA (A) < AdvINTprXT (B)

Similarly to the previous properties, AQvINTPEXT (B) becomes negligible when increasing n.

Illustrative Example. Considering the encryption parameter values already fixed in Subsections 3.3.1-
3.3.2 and the results from [27, 28, 29, 15|, we obtain the following bound (see [23] for details):

AdvTTEA(A) < AdvEgns-sHa-256 (M) + AdvV oy sHa-256(N) +

1
9256

qv

(qv — 1) x qv
>< ﬁ

>)+

PRF
(8 X Advcomp—SHA—256(O/) +

where
e M’ is a related key adversary that performs two oracle queries and has time O(Tj);
e N’ makes gy queries and runs in O(T) time; and

e (O’ makes 2 queries and runs in O(T), T being the time for one computation of comp-SHA-256.

15

To obtain an estimation, we use the same values as in Subsections 3.3.1-3.3.2. We obtain AdvUF{‘MVA(A)
275L,

Overall, we obtain a security level of at least 274 for each of the three aforementioned properties
(unforgeability, confidentiality of the data, and confidentiality of the nonce before message delivery) using
a ciphertext of length 233 bytes and a nonce of 12 bytes. As the nonce is concatenated to the data in the
plaintext to encrypt (208 bytes), the size of the data is then at most 196 bytes. Note also that the size of the
hash has to be fixed. Here, we fix it to 12 bytes (the same size as the nonce), to prevent random collisions.
In addition to the ciphertext (233 bytes) and hash (12 bytes), a data message also contains the identifier of
the source (4 bytes) and one bit for the message type (MSG). Hence, the data messages can be encoded using
less than 250 bytes, with a low overhead as up to 196 bytes of data can be stored in, and so are supported
by S-MAC. Similarly, our acknowledgment messages are supported by S-MAC since they can be encoded
using 12 bytes for the nonces, 4 bytes for the source identifier, and one bit for the message type ACK (hence
less that 250 bytes).

3.4 Symbolic Analysis of SR3

We conducted a symbolic analysis of SR3, focusing on authentication, using the tool Scyther [17]. Overall,
the symbolic analysis focuses more on the protocol than on the cryptography, because of few key differences
with the previous section.

First, this analysis is done in the symbolic model instead of computational model. This model assumes
the perfect encryption hypothesis, which specifies that cryptographic primitives are perfect black-boxes, and
the attacker can only interact with them through the expected properties: for instance, the attacker can
decrypt Ex(z) if and only if he has knowledge of k. This knowledge is built from a Dolev-Yao model [30],
which specifies that the attacker only knows what can be built or deduced from the communications he
overhears.

The symbolic model is more restrictive for an attacker than the computational model. Here, we still
use the description given in Figure 4 (page 8), but we consider an independent source node. Also, instead
of proving security properties for a single session of the protocol, we determine whether the attacker can
execute a bounded number of sessions of the protocol to achieve its goal. The attacker can alter, delete, or
create messages, based on its current knowledge, and it can also initiate new protocol sessions.

We focus on authentication, more precisely non-injective agreement for both participants. This property
is defined in the hierarchy given in [31]. Consider two actors, A and B, running a protocol. If the protocol
verifies this property, it guarantees that if A completes a run of the protocol, apparently with B, then B has
previously been running the protocol, apparently with A, and both A and B agreed on the same data (in
our case, this data is both Data and N).

We model the authenticated encryption by decomposing an Encrypt-then-MAC primitive into two parts:
an encryption and a MAC (Message Authentication Code) part. Our modeling for Scyther is available
online [23] and we experimented it setting the bound on the number of sessions to 100. Under this condition,
Scyther reported that SR3 provides the aforementioned authentication property for both actors A and B.

4 Experimental Results

In this part, we evaluate our protocol with respect to classical measures, namely, delivery rate of the messages,
fairness, and number of hops. We also study the resiliency of SR3 against several attack scenarios. For that
purposes, we ran simulations using Sinalgo [32], an event-driven simulator for WSNs, and we compared the
performances of SR3 to those of six other routing protocols.

4.1 Experimental Conditions

We deployed sensors uniformly at random on a square plane. We positioned the sink at the center of
the square plane. The compromised nodes are selected uniformly at random among other sensors. Two

16

<

nodes can communicate if and only if their Euclidean distance is less or equal to a preset fixed range, i.e.,
the topology is a Unit Disk Graph (UDG). We only considered connected topologies. The communication
links are asynchronous and FIFO. To enforce asynchronism (i.e., to maximize interleavings of events), the
transmission time of each link follows an exponential random distribution of parameter A = 1 (so, the average
transmission time is 1). Only honest sensors generate data to route. The time between two consecutive data
generations at the same sensor also follows an exponential random distribution, whose parameter \ is the
same for all sensors and whose value depends on the average degree § and the number of sensors n in the
network, to prevent congestion, namely A = wiz'

If we fix the number of nodes n and the range of the UDG, we can tune the size of the simulation
area to control the expected average degree ¢ of the network. In our simulations, n varies from 50 to 400
and & varies from 8 to 32. The percentage of compromised nodes varies from 0 to 30%. We considered
various attack scenarios, where compromised nodes made selective forwarding: each compromised node
drops received messages with a probability p € (0,1] (if p = 1, the node is called a blackhole). In addition,
some compromised nodes may have some additional “bad” skills, e.g., they may be wormholes or Sybil.
A compromised node is said to be Sybil when it pretends to be multiple, distinct nodes in the system. A
wormhole is a compromised node, typically far from the sink, which (temporarily) violates the UDG topology
by directly communicating (via a fast private medium) with the sink in order to attract the traffic.

For each setting (number of nodes, average degree, attack scenario, amount of compromised nodes, and
routing algorithm), we ran simulations over 20 UDGs, randomly generated. In each simulation, 500 000 data
are generated. The simulation stops once all messages have been routed or lost. We made more than 13 000
simulation runs and the overall number of generated data is greater than 6 billion.

4.2 List Sizes

SR3 uses three lists, whose respective sizes are bounded. We made several experiments to set the size of
each list to the appropriate value. Of course, the size of these three lists are influenced by the network load,
which in turn is influenced by the transmission time, drop rate, and data generation time intervals (all those
parameters have been set in Subsection 4.1).

We consider first the list Lgeputation- We experiment several possible values for its size, sgp. In these
experiments, we implement L ackrouting and Lgen: as infinite lists, which correspond to their ideal (yet
impractical) behavior, to prevent any side effect.

When the behavior of malicious nodes is homogeneous over the time, the greater sg is, the better the
delivering rate is. However, if si is big, this results in increasing the time required to refresh the content
of the list. So, in the case of malicious nodes that suddenly change their behavior (i.e., a sinkhole attack),
the system spends more time to recover if si is big. In other words, if the behavior of malicious nodes is
heterogeneous with time, a large list L geputation Would reduce the adaptivity, and consequently the overall
delivery rate, of our algorithm.

To create a sinkhole attack, we use wormholes: their ability makes them more attractive than other nodes,
as they allow delivering messages faster to the sink. During the first third of the simulation, wormholes send
all received data messages in their channel directly connected to the sink and route acknowledgments as
honest nodes in order to obtain a high reputation. Next, they become blackholes, i.e., they drop all messages
they receive.

The necessary tradeoff to obtain when choosing the value of sp is illustrated in Figure 6, where results are
given for a network of 200 nodes, average degree 16, and 10% of blackholes, and 10% of wormholes/blackholes
which become blackholes after the first third of the simulation. For each point (z,y) of the curves, y is the
delivery rate computed over a window of 50 000 messages, from the (x —50000)*" to the z*" emitted message.

We test the aforementioned scenario with several values for sg — from 5 to 40. For each size, we run
simulations on networks of sizes 100, 200, and 400 with average degrees 8, 16, and 32, and containing both
10% of blackholes (BH) and 10% of wormholes/blackholes (WH/BH). We made 10 simulations (each with a
different topology) for each setting (list size, number of nodes, degree). The overall results are summarized
in Table 1. In each cell of the table, we print the value of sp that offers the best average delivery rate.

17

3

N QO OO OO DO D List size 5 —+—
e P L S EE-E Y R List size 10 —
O A\ +~v+ “\+M+A/+¢“+V+V+\/\+ﬁ+x List size 40 O
< Y - i

=

) I

o U

@ [

%] FEE

[%2] K h -

[] Ao

E i

©)O

) e

> i

(0] L

=2 v

o 02F i

©

[0

(@)}

o

q>) 0 1 1 1 1

< 0 100000 200000 300000 400000 500000

The x message has been processed

Figure 6: Average delivery rate (10% of WH/BH, 10% of BH, n = 200, § = 16)

Number of nodes

100 \ 200 \ 400
8 10 5 5

Average degree 16 || 15 | 10 5
320 20 | 15 5

Table 1: Best observed L geputation Size sg, when facing 10% BH and 10% WH/BH.

An important fact does not appear in Table 1: the average delivery rate is very similar for a large range
of list sizes. We chose sg = 10, which appeared to be a good compromise in each setting.

Next, we consider the list Lgen:. The size of both Lgen: and Lackrouting are bounded for practical
reasons only. Indeed, sensors have tight local memories. Now, having infinite sizes for those lists would offer
the best behavior. The goal here is to find a reasonable size that achieves the adequate trade-off between
performances and resource consumption.

To set the size sg of Lgent, we led experiments, where sg = 10 (the value we choose previously), but
where L ackRouting 18 still implemented as an infinite list.

In those experiments, our goal is to minimize the proportion of events called false negatives. We call false
negatives valid acknowledgments that return to their destination, while their corresponding nonce has been
removed from Lgen:. In that case, the valid acknowledgment is simply discarded.

We made our simulations in safe networks, because this corresponds to the worst case (in terms of number
of false negatives), where the routes followed by data messages and acknowledgments are longer.

We tested sg with values 1, 3, 5, 7, and 9. The results for a particular setting is depicted in Figure 7.
Actually we obtained similar results for each setting. We can see value 3 for sg is sufficient to reach our
objective of 99% of accepted acknowledgments. Therefore, we chose to set sg to 3.

Finally, we repeated the same process to set the size s4 of L AckRouting Using the sizes previously selected
for L geputation (10) and Lgen: (3). Again, we tried to minimize the proportion of false negatives. If the list
is too small, more messages would be randomly routed, which would in turn increase the delay before they
reach their destination, and consequently, increase the number of false negatives.

18

1 o ' ' SR3 —+—
0.99 9%

0.98 i
0.97 i
0.96 b
0.95 b
0.94 - b
0.93 b
0.92 - b
091 b

0.9 1 1 1
1 2 3 4 5

Size of Lggny

Proportion of accepted acknowledgments

Figure 7: Proportion of accepted acknowledgments, depending on Lgey; size (n = 200 and & = 8)

1 ' ' ' N SR3 —+—
0.99 : 99%

0.98 i
0.97 - i
0.96 i
0.95 - i
0.94 - b
0.93 b
0.92 - b
091 b
0.9 : : ; : 5 ! :

Accepted acknowledgments proportion

Size of L

Figure 8: Proportion of valid acknowledgments, depending on L Ackrouting Size (n = 200 and 6= 8)

Figure 8 is an example of results we obtained, using the same setting as the previous example (200
nodes, average degree 8). Other settings give similar results. The proportion of accepted acknowledgments
stagnates from the size 5 for L sckRrouting, S50 We chose that value for s4.

4.3 Benchmark Protocols

Resiliency is the property targeted by our experiments. It has been introduced by Erdene-Ochir et al [10].
In this latter paper, they study resiliency of some classical protocols. They propose new routing solutions
dedicated to resiliency in [11]. Hence, in the following, we compare SR3 to a panel of six algorithms proposed
and/or studied in these two papers [11, 10].

19

More precisely, in [10], Erdene-Ochir et al propose a classification of routing protocols:

e Topological-based protocols that use topological information (e.g. hop distances) to deterministically
determine the routes.

e Probabilistic protocols.
e (eographic protocols that determine the routes using GPS information.
e Hierarchical protocols, such as RPL [33], that split source nodes into different routing roles.

As in [10], we exclude this latter category from our panel because, in our scenario all source nodes play the
same role. Again, similarly to [10], we consider one member of each of the three first categories (actually
the same as those studied in [10]):

1. The Gradient-Based Routing (GBR) [13] is a topological-based protocol which routes messages along
a DODAG, this latter being based on hop distances and rooted at the sink. Precisely, a source node
forwards all messages it receives to its (preferred) parent in the DODAG, i.e., a neighbor of lowest
level in the DODAG.

2. The Uniform Random Walk (RW) [12] is a probabilistic protocol in which the message holder selects
the next hop destination uniformly at random among its neighbors until the message reaches the sink.

3. The Greedy-Face-Greedy protocol (GFG) [14] is a geographic routing protocol where two modes are
alternatively used: Greedy and Face. The Greedy mode (which routes according to the smallest
geographic distance) is preferably used, but may lead a message to a dead end. In this case, the Face
mode allows the message to escape.

Notice that GBR is close to the hierarchical protocol RPL [33], since RPL is also based on a DODAG rooted
at the sink.

We also compare SR3 to the three resilient solutions proposed by Erdene-Ochir et al in [11]. These
solutions are respectively called RGBR, PRGBR, and PRDGBR in the following. These three protocols
are actually variants of the RGB protocol, where some uncertainty is introduced using randomness to make
them less predictable by an adversary.

4. RGBR uses the levels of neighbors in the DODAG: each sensor chooses next hop for each message
uniformly at random among its lowest-level neighbors.

5. In PRGBR, each sensor chooses between two modes: (1) with probability 0.4 the message is routed
according to RGBR; (2) with probability 0.6 the message is routed to a neighbor of same level (if no
such a neighbor exists, the sensor uses mode (1)).

6. PRDGBR duplicates the message at each hop and routes the two messages independently using
PRGBR. To avoid congestion, each node drops the received copies of messages it already saw.

Notice that an identical approach has been recently used to propose resilient variants of RPL [34].

4.4 Some Scenarios and Results
4.4.1 Average Delivery Rate

Figures 9-11 show the delivery rates observed in networks of average degree 6 = 8, 16, and 32, facing 30% of
blackholes (BH). The size of the networks varies from 50 to 400 nodes. (Note that, with 30% of blackholes,
several honest nodes cannot safely reach the sink and consequently have delivery rate zero.) We remark that
SR3 always offers a better delivery rate than the other protocols on networks of average degrees 8 and 16.
In networks of average degree 32, its delivery rate is approximately the same as PRDGBR, while still better
than the other protocols. In particular, the greater the networks are, the greater the gap is.

20

Average delivery rate

Average delivery rate

T T T T T T GFG 4’7
GBR --->-—-
RGBR -------
| | PRGBR {1
S PRDGBR -—m--
SR3 --@--
Number of nodes

Figure 9: Average delivery rate (30% of BH nodes, 5= 8)
T T T T T T GFG 4’7
GBR -
e o RGBR - -
. e e | PRGBR 1
e g _ ¢PRDGBR - m--
RW O -
SR3 @

50 100 150 200 250 300 350 400
Number of nodes

Figure 10: Average delivery rate (30% of BH nodes, 6 = 16)

21

GFG —+—

GBR -~

RGBR

—_— e L PRCER O
S | -~ $PRDGBR - -
ety RPROCEN 8

SR3 @

Average delivery rate

Number of nodes

Figure 11: Average delivery rate (30% of BH nodes, § = 32)

Figure 12 shows the delivery rates observed in networks of size n = 200 facing 30% of blackholes (BH).
The average degree of the networks varies from 8 to 32. Again, we can remark that SR3 always offers the
best delivery rate in that case. Moreover, as for RW and GFG, the average delivery rate of SR3 is insensitive
to the degree variation. In contrast, the observed delivery rates for gradient-based protocols are low in sparse
networks. In high-density networks, the performances of PRDGBR match those of SR3. However, SR3 use
only two messages per data, while PRDGBR duplicates the messages at each hop, and consequently heavily
increases the load of the network.

SR3 also efficiently combats the selective forwarding (SF) attacks. Figure 13 shows the average delivery
rates observed in networks of size n = 200 and average degree & = 8 that have to face 20% of compromised
nodes, according to the drop rate of these nodes. We can observe that, except RW, all protocols of the panel
achieve a graceful degradation in delivery rate when the drop rate increases. Still, SR3 offers one of the best
performance. Only PRDGBR has performances close to those of SR3 when the drop rate is 100% (that is,
when compromised node are actually blackholes). But again, this performance comes at the price of a high
communication overhead.

We also considered networks of size n = 200 and average degree § = 8, where 10% of nodes are both
blackholes and Sybil (SY). The number of pseudonymous identifiers of these compromised nodes varies from
1 to 10. We can observe in Figure 14, that except for GFG, adding Sybil nodes does not change the relative
performances in the panel. Actually, GFG is insensitive to Sybil attacks because it does not use node
identifiers. Now, still in that case, SR3 offers the best performances.

4.4.2 Fairness

Fairness among the delivery rates of honest nodes is a desired property in routing protocols. A classical
way to capture this property is to compute the standard deviation of the delivery rates of honest nodes [35].
Figure 15 shows the average and standard deviation of delivery rates observed in networks of size n = 200
and average degree § = 32, when facing 30% blackholes. The smaller the standard deviation is, the fairer
the algorithm is. Now, a shortcoming of this measure is that when the delivery rates are uniformly bad (like
for example in RW), the observed fairness is good. So, analyzed alone, this measure is misleading.

Instead, we propose here to visualize the distributions of delivery rates. Figure 16 shows an example
of our method. In this figure, we consider the same simulations as in Figure 15. There is one column per

22

Average delivery rate

Average delivery rate

0.8

0.4

0.2

Delivery rate in presence of black holes

T T T T : GFG
GBR >
RGBR X%
_ L@ @@ @ g R PRGBR -
- o PRDGBR - W -
R RW o

‘_ o e -7 - 7‘%V—:j:j:j:iff,’j'_ffi‘.f%f—i’-f7""'"'—';;:’:’>;z< SRS e

Figure 12: Average delivery rate (30% of BH nodes, n = 200)

0 0.2 0.4 0.6 0.8 1
Drop rate of the compromised nodes

Figure 13: Average delivery rate (20% of SF nodes, n = 200, 0 = 8)

23

GFG —+—

GBR -

RGBR ¥

| PRGBR -

PRDGBR --M--

o RW --&-

S SR3 --@ -
>
)
=
Ko)
©
(]
(@)
©
)
>
<

02t]
P ias (SR S Qo @ Qe @ Qoo
1 2 3 4 5 6 7 8 9 10

Number of pseudonymous identities per SY node

Figure 14: Average delivery rate (10% of SY nodes, n = 200, § = 8)

Algorithm Average delivery rate | Standard deviation
GFG 0.117 0.308
GBR 0.487 0.487
RGBR 0.491 0.307
PRGBR 0.306 0.223
PRDGBR 0.750 0.179
RW 0.008 0.017
SR3 0.777 0.060

Figure 15: Average delivery rate and standard deviation of the delivery rate of nodes (30% of BH, n = 200,
§ = 32)

24

Proportion of nodes (%): | _
0

10 20 30 40 50 60 70 80 90 100

100 100 100 100 100 100 100

90 90 - 90 90 90 90 90

80 80 80 80 80 80 80 -
70 70 70 70 70 70 70

60 60 60 60 60 60 60

50 50 50 50 50 50 50

40 40 40 40 40 40 40

30 30 30 30 30 30 30

20 20 20 20 20 20 20

10 10 10 10 10 10 10

0 - 0 0 0 0 0 - 0

GFG GBR RGBR PRGBR PRDGBR RW SR3

Figure 16: Average delivery rate distribution (30% of BH, n = 200, J = 32)

algorithm of the panel. Each column represents the range of possible delivery rates from 0 to 100%, by
intervals of 10%. The color shade encodes the proportion of nodes having the corresponding delivery rate.
Consider, for example, the RW protocol: almost all nodes have a delivery rate of less than 10%. In contrast,
using SR3, almost all nodes have a delivery rate greater or equal to 70%. We can clearly observe two classes
of processes when looking at GFG and GBR: nodes have either 0% or 100% of delivery rate; these protocols
are unfair. The probabilistic variants of GBR are fairer: the delivery rates are spread on the whole range,
but still these results are weaker than those observed for SR3.

We also provide other results in Figure 17. Simulations were run on networks of size n = 200 with an
average degree § = 8, also when facing 30% blackholes. Overall, we observe results similar to the previous
setting, with a few differences. First, GBR and the variants have overall lower deliver rate and fairness, as
they behave better in highly connected networks. Also, in this special case, there are more nodes which lost
all of their messages, as there is no guarantee for the existence of safe paths for all sources.

4.4.3 Average Number of Hops

Here, we are only interested in the messages that are successfully delivered. So, we consider safe networks.
Figures 18-20 show the average number of hops of data messages in networks of average degree respectively
6 =8, 16 and 32, where the size n varies from 50 to 400. First, note that we do not show results for RW in
the figure because they are drastically worse than other protocols of the panel, e.g., for 50 nodes and é§ = 16,
its average number of hops is 40, and for 400 nodes and § = 16, its average number of hops is 529. Then,
by definition, routes followed using GBR or RGBR are optimal. Finally, SR3 generates longer routes than
the geographical and gradient-based protocols due to its lack of knowledge about the network. However,
this length stays reasonable (i.e. we always observed lengths drastically smaller than n), and scales with
the number of nodes. Note that Greedy-Face-Greedy does not behave well in some low-degree graphs, this
is due to the existence of dead ends in those graphs.

25

Proportion of nodes (%): | _
0

10 20 30 40 50 60 70 80 90 100

100 100 100 100 100 100 100
90) 90 9 <) 9 1)
80 80 80 80 80 80 80
70 70 70 70 70 70 70
60 60 60 60 60 60 60
50 50 50 50 50 50 50
40 40 40 40 40 40 40
30 30 30 30 30 30 30
20 20 20 20 20 20 20
10 10 10 10 10 10 10

GFG GBR RGBR PRGBR PRDGBR RW SR3

Figure 17: Average delivery rate distribution (30% of BH, n = 200, § = 8)

25 T T T T T T GFG 4‘7
GBR ——

RGBR %

20 .- PRGBR [
PRDGBR - - -

RW -~ -

SR3 @

Average number of hops

50 100 150 200 250 300 350 400
Number of nodes

Figure 18: Average number of hops in safe networks (§ = 8)

26

Average number of hops

Average number of hops

25

20

15

25

20

15

10

T T T T T GFG 4‘7
GBR -
RGBR -
1 PRGBR {3
___®PRDGBR - m--
e RW --©-
e SR3 @
A T
150 200 250 300 350 400
Number of nodes
Figure 19: Average number of hops in safe networks (6 = 16)

- - - ' ' GFG —+—
GBR —x—
RGBR %
_.-% PRGBR -
o PRDGBR B~
RW O -
o SR3 @

'] = D — S— !

% - f:_’;::f::ii:,"::i:j::Q::j;j:;i:‘,;l,{.j::::i:*__id_#",,_"4x_* ___________ by
0 . , . . .

150 200 250 300 350 400

Number of nodes

Figure 20: Average number of hops in safe networks (& = 32)

27

4.4.4 Self-adaptativity

Thanks to its reputation mechanism, SR3 self-adapts to the variations of the hostile environment. To see
this, consider the following scenario: in a network of n = 200 nodes with average degree § = 8, we assume
5% of blackholes and 5% of wormholes/blackholes (WH/BH), that first behave as wormholes to attract the
traffic, and then become blackholes after one third of the simulation. Such nodes appear more attractive to
their neighbors because they allow delivering messages faster. Figure 21 shows the evolution of the delivery
rates of each protocol: for each point (z,y) of the curves, y is the delivery rate computed over a window of
10 000 messages, from the (z — 10000)*" to the 2" emitted message. Only SR3 recovers from this attack.

1 T T T T T T T T T

% GFG —+—
< 0000000000000 00 GBR -—--x¢-—-
2 ; ° oo e00o0_o000g000¢ RGBR - *----
) s T°F an = 2 B EJE 90000000000 %,y 40 0.9 000400

O R soiviotoioiog-dopionitoloion ot . ! PRGBR o

= O EF e O T 00 gy g R T . PRDGBR --&-
8 L4 RW --©--
£ : SR3 e~
2 06 i

2 .

S @O’G(}G@@‘O -0 O’OOG‘QQ :

o 04F R

g :

P e

o ; %mi*:i—*i*;aﬂﬂ.*.ﬂiii—li-.iﬂrl—li

D 02r 13K Sk e s KKK KKK KK KKK KKK KKK KKK K s oK

© 0 e e o 0 e R e e R e e

(@2}

2 . . L 00900000000000000000000000000000

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
The x™ message has been processed (either delivered or lost)

Figure 21: Average delivery rate (5% of WH/BH, 5% of BH, n = 200, 0 = 8)

We show in Figure 22 the average delivery rate distribution in the same setting as previously. We see
that the deterministic protocols cause nodes to deliver either none, one third or all their messages. The
randomization used in the GBR variants causes a more spread out distribution, but there is still a large
concentration of nodes delivering between 30 and 40 percent of their messages. Finally, as observed before,
SR3 is fair: most nodes deliver more than 70 percent of all their messages, whereas for the other protocols
managing to deliver some data, the delivery rates of the nodes in this scenario strongly depend on their
position in the network.

5 Concluding Remarks

We proposed SR3, a secure and resilient algorithm for convergecast routing in wireless sensor networks.
Using lightweight cryptographic primitives, SR3 achieves data confidentiality and unforgeability. Using
simulations, we showed the resiliency of SR3 in various attack scenarios, including selective forwarding,
blackhole, wormhole, and Sybil nodes. The comparative study shows that the resiliency accomplished by
SR3 is drastically better than the one achieved by several routing protocols of the literature, even those
whose targeted metric is resiliency.

The immediate perspective of this work is to study the performances of SR3 in a more dynamic environ-
ment, e.g., networks with mobile nodes or networks where nodes are added/removed on the fly.

An implementation of SR3 in a WSN testbed platform is currently being finalized, the preliminary results
are promising, and it should be ready soon for real-world experimentations.

28

Proportion of nodes (%): | _
0

10 20 30 40 50 60 70 80 90 100

100 100 100 100 100 100 100 -
90 90 90 90 90 90 90
80 80 80 80 80 80 80
70 70 70 70 70 70 70
60 60 60 60 60 60 60
50 50 50 50 50 50 50
30 30 30 30 30 30 30
20 20 20 20 20 20 20
10 10 10 10 10 10 10
0 0 0 0 0 0 0
GFG GBR RGBR PRGBR PRDGBR RW SR3
Figure 22: Average delivery rate distribution (5% of WH/BH, 5% of BH, n = 200, 6 = 8)
Acknowledgments
The authors are grateful to Bruno Blanchet for his meticulous reading of the paper and his numerous
suggestions.
References
[1] K. Altisen, S. Devismes, R. Jamet, and P. Lafourcade. SR3: Secure resilient reputation-based routing.

In Distributed Computing in Sensor Systems (DCOSS), 2013 IEEE International Conference on, pages
258-265, 2013.

T. Eisenbarth and S. Kumar. A survey of lightweight-cryptography implementations. Design € Test of
Computers, IEEE, 24(6):522-533, 2007.

Neal Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48(177):203-209, 1987.

Victor S. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology — CRYPTO ’85
Proceedings, volume 218, pages 417-426, 1986.

A. Perrig, R. Szewczyk, JD Tygar, V. Wen, and D.E. Culler. Spins: Security protocols for sensor
networks. Wireless networks, 8(5):521-534, 2002.

Donggang Liu and Peng Ning. Multilevel ptesla: Broadcast authentication for distributed sensor net-
works. ACM Transactions in Embedded Computing Systems (TECS), 3:800-836, 2004.

P. Papadimitratos and Z.J. Haas. Secure Routing for Mobile Ad hoc Networks. In Proceedings of the
SCS Commnication Networks and Distributed Systems Modeling and Simulation Conference (CNDS),
pages 193-204, 2002.

Y.C. Hu, A. Perrig, and D.B. Johnson. Ariadne: A secure on-demand routing protocol for ad hoc
networks. Wireless Networks, 11(1-2):21-38, 2005.

29

[9]

[10]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

[20]

[22]

23]

Ochirkhand Erdene-Ochir, Marine Minier, Fabirce Valois, and Apostolos Kountouris. Resiliency of
wireless sensor networks: Definitions and analyses. In Telecommunications (ICT), 2010 IEEE 17th
International Conference on, pages 828-835, 2010.

Ochirkhand Erdene-Ochir, Marine Minier, Fabrice Valois, and Apostolos Kountouris. Toward resilient
routing in wireless sensor networks: Gradient-based routing in focus. In Proceedings of the 2010 Fourth
International Conference on Sensor Technologies and Applications, SENSORCOMM ’10, pages 478-483,
2010.

O. Erdene-Ochir, A. Kountouris, M. Minier, and F. Valois. Enhancing resiliency against routing layer
attacks in wireless sensor networks: Gradient-based routing in focus. International Journal On Advances
in Networks and Services, 4(1 and 2):38-54, 2011.

R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and C. Rackoff. Random walks, universal traver-
sal sequences, and the complexity of maze problems. In 20th Annual Symposium on Foundations of
Computer Science, pages 218-223, 1979.

C. Schurgers and M. Srivastava. Energy efficient routing in wireless sensor networks. In Proceedings of
MILCOM 2001, pages 357-361, 2001.

P. Bose, P. Morin, I. Stojmenovié¢, and J. Urrutia. Routing with guaranteed delivery in ad hoc wireless
networks. Wireless Networks, 7(6):609-616, 2001.

Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. J. Cryptol., 21(4):469-491, September 2008.

Bruno Blanchet. A computationally sound mechanized prover for security protocols. IEEE Trans.
Dependable Sec. Comput., 5(4):193-207, 2008.

Cas JF Cremers. The scyther tool: Verification, falsification, and analysis of security protocols. In
Computer Aided Verification, pages 414-418. Springer, 2008.

Wei Ye, John S. Heidemann, and Deborah Estrin. Medium access control with coordinated adaptive
sleeping for wireless sensor networks. IEEE/ACM Trans. Netw., 12(3):493-506, 2004.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In Proceedings of the 1st ACM conference on Computer and communications security, pages 6273,
1993.

Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. In Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO 91, 11th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings,
volume 576 of Lecture Notes in Computer Science, pages 433-444. Springer, 1991.

Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to exploit nonces or redun-
dancy in plaintexts for efficient cryptography. In Tatsuaki Okamoto, editor, Advances in Cryptology
- ASTACRYPT 2000, 6th International Conference on the Theory and Application of Cryptology and
Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume 1976 of Lecture Notes in
Computer Science, pages 317-330. Springer, 2000.

Jonathan Katz and Moti Yung. Unforgeable encryption and chosen ciphertext secure modes of opera-
tion. In Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Bruce Schneier, editors, Fast Software
Encryption, volume 1978 of Lecture Notes in Computer Science, pages 284-299. Springer Berlin Heidel-
berg, 2001.

K. Altisen, S. Devismes, R. Jamet, and P. Lafourcade. SR3 supplementary material, December 2013.

30

[24]

[25]

[35]

Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique cryptanalysis of the full
aes. In Advances in Cryptology-ASIACRYPT 2011, pages 344-371. Springer, 2011.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication.
In Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’96, pages 1-15, London, UK, UK, 1996. Springer-Verlag.

W.F. Ehrsam, C.H.W. Meyer, J.L. Smith, and W.L. Tuchman. Message verification and transmission
error detection by block chaining, February 14 1978. US Patent 4,074,066.

Mihir Bellare. Symmetric encryption. https://cseweb.ucsd.edu/~mihir/cse207/w-se.pdf.

Mihir Bellare. New proofs for nmac and hmac: Security without collision-resistance, 2006. An extended
abstract of this paper appeared in Advances in Cryptology - Crypto 2006 Proceedings, Lecture Notes
in Computer Science Vol. 4117, C. Dwork ed, Springer-Verlag, 2006.

Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message
authentication code. J. Comput. Syst. Sci., 61(3):362-399, 2000.

Danny Dolev and Andrew Yao. On the security of public key protocols. Information Theory, IEEE
Transactions on, 29(2):198-208, 1983.

Gavin Lowe. A hierarchy of authentication specifications. In Computer Security Foundations Workshop,
1997. Proceedings., 10th, pages 31-43. IEEE, 1997.

Sinalgo. Simulator for network algorithms. http://www.disco.ethz.ch/projects/sinalgo/. Distributed
Computing Group at ETH Zurich.

N. Accettura, L.A. Grieco, G. Boggia, and P. Camarda. Performance analysis of the RPL routing
protocol. In Mechatronics (ICM), 2011 IEEE International Conference on, pages 767 =772, april 2011.

Karel Heurtefeux, Ochirkhand Erdene-Ochir, Nasreen Mohsin, and Hamid Menouar. Enhancing RPL
resilience against routing layer insider attacks. In Leonard Barolli, Makoto Takizawa, Fatos Xhafa,
Tomoya Enokido, and Jong Hyuk Park, editors, 29th IEEE International Conference on Advanced
Information Networking and Applications, AINA 2015, Gwangju, South Korea, March 24-27, 2015,
pages 802-807. IEEE Computer Society, 2015.

Ochirkhand Erdene-Ochir, Apostolos A. Kountouris, Marine Minier, and Fabrice Valois. A new metric
to quantify resiliency in networking. IEEE Communications Letters, 16(10):1699-1702, 2012.

31

Algorithm 1 SR3 for any source node v

Input: k,s: the key of node v, shared with the sink s
Variables:

Lsent: List of at most sg pairs, initially empty

L AckRouting: List of at most sa pairs, initially empty

LReputation: List of at most sr elements, initially empty
On generation of Data

1: N, < NEW_NONCE()

2: h + H(N,)

3: C < Eg,.({(Data, Ny))

4: next < RAND(Neig,,L%rs(LReputation))

5: Lgent <= Lsent © (Ny, next)

6: Send (MSG,C, h,v) to next

On reception of (MSG,C, h,o) from f

7: next + RAND(Neigy, L% s (L reputation))
8: if v = o then
9: if E;! (C) #1 then

10: (Data, N,) < E; ! (C)

11: Lgent ¢ Lgent © (No, next)

12: Send (MSG, C, h,0) to next

13: end if

14: else

15: if (h,-) ¢ LackRouting then

16: LAckRouting — LAckRouting o <h7 f>

17: end if
18: Send (MSG, C, h,0) to next
19: end if

On reception of (ACK, N,, o) from f
20: if v =0 A (No,-) € Lgent then
21: first_hop < GET(Lsgent, No)

22: LReputation — LReputation o fiV“StthP

23: Lsent < Lsent \ {No, -)

24: else

25: if v # o then

26: h < H(N,)

27: if (h,_) € LackRouting then

28: next < GET(L AckRouting, It)

29: L AckRouting < LAckRouting \ (P, -)
30: else

31: next + RAND(Neig,,Lhw)

32: end if

33: Send (ACK, N,,0) to next with probability &=t
34: end if

35: end if

32

Algorithm 2 SR3 for the sink s

Input: keys|]: array of shared keys, indexed on node identifiers
On reception of (MSG,C, h,o) from f

36: if B ,(C) #L then

37: (Data, No) + B ,1(C)

38: Deliver Data to the application

39: Send (ACK, N,,0) to f

40: end if

On reception of (ACK, N,,o0) from f

41: next + RAND(Neigs,L%w)
42: Send (ACK, N,,0) to next with probability %

33

