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Résumé
Dans cet article, nous présentons un système résilient

pour un moto-planeur, basé sur une logique non-monotone.
Les systèmes écologiques, biologiques et autres sont rési-
lients, par exemple, les catastrophes naturelles, les bancs de
poissons et les nuées d’oiseaux. C’est une propriété qui per-
mets d’absorber les perturbations et de surmonter les adver-
sités. Le pilotage est également un système résilient car il
peut avoir des situations conflictuelles et l’environnement
est imprévisible. Le pilote doit alors changer de comporte-
ment. Quand un pilote fait face à ce genre de situations, il
entre dans un raisonnement incertain, malgré le fait qu’il
doive prendre des décisions pour différents objectifs. Nous
introduisons un modèle résilient non-monotone pour pilo-
ter un moto-planeur autonome. Ce modèle n’inclut pas la
notion de temps. La logique des défauts a été utilisée pour
trouver des points fixes à partir d’informations ambiguës et
conflictuelles. Le modèle proposé ici contient une connais-
sance du monde avec un ensemble de situations, d’objectifs
et d’actions. Après le calcul des solutions plausibles, la prise
de décision est basée sur une théorie non-probabiliste. Nous
avons défini une notion de stabilité dans des situations de
pilotage incertaines en utilisant la propriété de résilience.

Abstract
This article presents a resilient system for a motor-

glider based on non-monotonic logic. Resilience is the prop-
erty of a system allowing to absorb disturbances and over-
coming adversities. Ecological, biological and many other
systems are resilient, for instance, natural disasters, fish
school and birds flock. Piloting is also a resilient system be-
cause it could have conflicting situations and environment
is unpredictable, so behavior change. When a pilot faces
such kind of situations, he enters into uncertain reasoning,
despite the fact that he must take decisions for different ob-
jectives. We introduce a non-monotonic resilient model to
pilot an autonomous motor-glider. This model does not in-
clude the notion of time to make decisions. Default logic
is used to find fixed points from ambiguous and conflicting

information. The resilient model proposed here contains a
world knowledge with a set of situations, objectives and ac-
tions. After computation of plausible solutions, decision-
making is based on a non-probabilistic theory. We define a
notion of stability in uncertain situations of flight using the
property of resilience.

1 Introduction

After many decades of research in the field of aeronau-
tics today new directions open to use plane or any aerial
vehicle for different applications in an autonomous way.
Definition of autonomous aerial vehicle (UAV) is a pro-
grammed vehicle which receives directions from a source
placed at a distance apart from it. It can be flown without
a pilot by using a particular system on the ground. Using
UAV is not only confined to the military fields. They are
used in many areas such as agriculture, construction, enter-
tainment, and so far. In our study, we are using a motor-
glider. Motor-glider has many constraints when is flying,
besides, the pilot has short time to make decisions. He
considers certain information and thus be able to make ac-
tions, for instance, increase or decrease the engine power,
turn the steering wheel to the right, pull, etc. A motor-glider
is equipped with an engine motor, which allows to take-
off and climb without assistance, in contrast with a normal
glider that is non-motorized. In the 70’s, Holling introdu-
ced the term of resilience to model the dynamics of natural
disasters [5]. In other fields of science the concept of re-
silience is defined as the property of a system to absorb
and anticipate perturbations [4]. In ecology, resilience aids
to understand natural disasters behavior [5, 1]. In enginee-
ring, resilience ensures consistency, robustness and stabi-
lity [5, 14], even in uncertain environments [16]. Piloting
use non-monotonic reasoning when environment change,
it should take decisions because perturbations appear. In



this paper, we present a model based on non-monotonic lo-
gic and the property of resilience, both we will allow us
to tackle the problem of uncertain reasoning with incom-
plete information and stability of an autonomous motor-
glider. The sections are composed in the next order. First,
the traffic pattern circuit for airplanes and states of flight
are explained. Non-monotonic reasoning and default logic
are presented in section 3. The complete model as well as
situations, objectives and actions are described in section
4. The properties of resilience and stability are explained
in section 5. The implementation of the model is described
in section 6. Finally, conclusion is described in section 7.

2 Traffic Pattern Circuit

Every pilot knows the traffic pattern circuit. It is one
of the basic maneuvers to take-off and land. However, it
contains the necessary rules to carry out a long flight. Next,
we explain the different states of flight for an airplane.
Since most of these states are the same for motor-gliders.
First of all, the pilot needs to know airplane states, so he
uses the cockpit. The cockpit is a set of instruments on
board that displays parameters such as airspeed (Miles/h),
artificial horizon (pitch and roll) 1, variometer (Feet/s), al-
titude (Feet), compass,. . .

Traffic pattern circuit, Fig. 1, has different flight stages.
It starts at the point S p where the airplane is in Rest.
When the pilot is ready and he has the authorization, he
increases all the engine power to get a right airspeed to
take-off (point a). This is airplane should climb to a suitable
height (point b). After that, the pilot should turn the yoke to
the left making an orthogonal path to the runway (point c).
At this point, he turns again the yoke to the right having
constant airspeed, constant altitude and zero vertical speed.
When he arrives to the point d he will prepare to land.
Turning the yoke to the right, decreasing in altitude and
having negative vertical speed, until arrive to the point e.
Once again, he should turn the yoke to the right to continue
decreasing in altitude and having a stable roll and negative
pitch, until point f . After this point, airplane touches the
ground. Final point Fp is where airplane state is again in
Rest. In order to formalize the circuit, we represent know-
ledge using First-Order Logic (FOL). This is a formal lan-
guage, which allows to represent almost everything in natu-
ral sense, it is expressiveness. We could say : “An airplane
is landing”. Using FOL, we have : land(airplane). Ano-
ther instance could be : “Pilot increase the engine power”.
In FOL we have : engine(pilot, increase) and so on. The
flight manual contains all necessary information to pilot an
airplane, including technical descriptions, physical limita-
tions, rules and emergency procedures. But all these infor-

1. Pitch is the angle formed by the airplane when has rotated around
“y-axis”. Similarly, roll is formed by the airplane when has rotated, but
around “x-axis”.
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Figure 1 – Traffic Pattern.

mation are generals that depending on the situation could
have contradictory rules. For instance, there is a rule that
says the minimum over flight height will never be less than
500 feet, in fact this altitude depends of the agglomeration.
This rule could be expressed in FOL, considering that x =

airplane, as follows :

altitude(x)→ (x > 500) (1)

But when an airplane lands its altitude is less than 500 feet.
This could be expressed as follows :

land(x)→ (x < 500) (2)

General rules are described in the flight manual but pilot
is the one who finally decides if he violates such rules. We
can see that equation (1) and (2) are contradictory. This is
a limitation of classical logic, because it is monotonous.
Formally the property of monotony is : A ` w then A ∪ B `
w. In other words, adding new information to a model, the
consequences are not reduced. This kind of problem, about
contradictions and exceptions is well known in Artificial
Intelligence. It has been studied from along time [10, 9].
We can see that it is a non-monotonic problem. In order to
tackle it we have to move from this framework of classical
logic. Because pilot use non-monotonic reasoning when he
has new information and he can break the rules.

3 Non-monotonic Reasoning and Default
Logic

Non-monotonic reasoning is a class of reasoning where
we make assumptions about things jumping to the conclu-
sions. Humans use kind of reasoning, this is the way we
can do in situations with incomplete and contradictory
information. Pilot does the same thing because environ-
ment change and he will have exceptions. In the 1970s,
J. McCarthy, D. McDermott, Reiter and others started stu-
dies on non-monotonic inference, deriving in default rea-
soning, autoepistemic reasoning and more others. A ro-
bust formalization with exceptions is that Reiter proposed,
default logic [12]. In default logic, a default theory is a
pair ∆ = (D,W), where D is a set of defaults and W is
a set of formulas strictly in FOL. A default d is : A(X):B(X)

C(X) ,
where A(X), B(X),C(X) are well-formed formulas. Where
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X = (x1, x2, x3, . . . , xn) is a vector of free variables(non-
quantified). A(X) are the prerequisites, B(X) are the justi-
fications and C(X) are the consequences. Intuitively a de-
fault means,“if A(X) is true, and there is no evidence that
B(X) might be false, then C(X) can be true”. When defaults
are used it means extensions are calculated. An extension
of a default theory ∆ is a set E of logical formulas [12]
with the smallest set that must verify the following pro-
perty : If d is a default of D, whose the prerequisite is in E,
without the negation of its justification is not in E, then the
consequent of d is in E.

Definition 1. E is an extension of ∆ iif :
— E =

⋃∞
i=0 Ei with :

— E0 = W and
— for i > 0, Ei+1 = Th(Ei) ∪ {C(X) | A(X):B(X)

C(X) ∈ D,
A(X) ∈ Ei ∧ ¬B(X) < E}

where Th(Ei) is the set of formulas derived from Ei.

The previous definition is difficult to compute in prac-
tice. Because ¬B < E supposes that E is known, but E is
not yet calculated. In the case of normal defaults, B(X) =

C(X), E is an extension of ∆ iif : we replace ¬B(X) < E by
¬C(X) < Ei. According to Reiter if all defaults are normal,
it exists at least one extension. Extensions are defined such
as fixed points.

Example 1. Using default logic, from predicates (1)
and (2) we have 3 defaults, which contains general in-
formation about altitude, where alt = altitude, x =

airplane, std_ f gt = steady_ f light :

d1 =
((alt(x) > 500) ∧ roll(x, stable)) : std_ f gt(x)

std_ f gt(x)
(3)

d2 =
((alt(x) ≤ 500) ∧ roll(x, stable)) : land(x)

land(x)
(4)

d3 =
(land(x) ∧ obstacle) : climb(x)

climb(x)
(5)

In natural sense, d1 describes if x has an altitude more
than 500 feet with a stable roll, and it is possible that x is
in a steady flight, then x is in a steady flight. Default d2
describes that if x has an altitude less than 500 feet with a
stable roll, and it is possible that x lands, then x lands. And
default d3 describes if x lands and there is an obstacle, and
it is possible to climb, then x climbs. Now, we are going
to use these three defaults assuming that we have the follo-
wing information :

W = {(alt(x) ≤ 500), roll(x, stable), obstacle} (6)

From ∆ = (D,W), we calculate the set of extensions. We
find E1 = W ∪ land(x), where x lands, by using the default
d2. On the other hand, we find E2 = W ∪ climb(x), where x
climbs, by using the default d3. We have two coherent so-
lutions. Solving the problem of contradictory information.

There are mandatory rules that cover flight physics, se-
curity and more. For instance, in case of engine failure, x
lands. Or if there is an obstacle in the runway, x must not
land. But if x has a fault, the pilot must land to not die, so
the risk is huge. In this case, the extension calculated will
have a high weight. When different solutions are compu-
ted we should take into account criteria such as emergency,
security, regulation, energy, etc. to choose the better deci-
sion. Situations are constantly changing because environ-
ment change. Using probabilities to choose one of them it
is not the idea, such as Weighted Product Model or Weigh-
ted Sum Model [15]. We propose another manner to make
decisions from a different point of view. We are in uncer-
tain framework, we consider a non-probabilistic model. We
focus on the opportunist model [2]. This model creates an
opportunistic loss (or regret) matrix [13]. Formally, the set
of regrets is defined as :

∀E,∃ mr = min {max (ci) − c j} (7)

Where mr is the minimization of the difference between the
maximum value of the criteria ci and alternatives c j, this is
for all extensions.

Example 2. Let us consider extensions and criteria. Crite-
ria are information about the system or environment. Ha-
ving two extensions, E0 and E1. E0 has a higher value of

Table 1 – Criteria Table.

EXTENSION CRITERIA
Energy Risk

E0 5 2
E1 2 3

energy than E1, that is, E0 has a good status of battery or
gas, for example. On the other hand, E0 is less dangerous
that E1, in terms of risk (e.g. agglomeration). Regrets are
calculated, E0 : {0, 1} and E1 : {3, 0}. In order to obtain
the better decision of these two extensions. E0 is the better
option which minimize the risk (mr), which make sense, in
real-life if an airplane has enough energy and pilot makes
actions that are not dangerous, he will choose them.

Until now we present how to solve a problem with in-
complete and contradictory information as well as the way
to choose the better option when we have several exten-
sions. In the next section we are going to introduce new
concepts, taking into account the property of resilience and
non-monotonic to reason.

4 Non-monotonic Model

When a pilot has a disturbance of any kind, he will na-
turally move away from the objective (O), this it could be

3



land, take-off, climb. . .However, he must make actions to
achieve the goal. Pilot is in constant revision of behavior,
taking information from the cockpit, from the environment
and even from the control tower. Additionally, pilot should
respect air regulations and navigation laws. For a better un-
derstanding, we introduce the following concepts.

4.1 Situations, Objectives and Actions

Firstly, the set of situations (S ) contains information
about parameters of the airplane (altimeter, airspeed, va-
riometer. . .), environment, etc. On the other side, the set
of actions (A) are what the pilot does physically (increase
or decrease the engine power, turn the yoke to the left or
right, . . .) to the airplane. In this context, the situations
and actions are represented by positive literals. We consi-
der that for a certain situation, the challenge is to calculate
the extensions that contain actions which allow to approach
the desired objective (O). For instance, when an airplane is
placed at the start point (S p), Fig. 1, assuming it has the
authorization, and it is possible to take-off, then the plane
take-off. This objective could be described by a default as
follows :

(rest(x) ∧ authorization) : takeo f f (x)
takeo f f (x)

(8)

In the same way, we could describe when a plane (starts
at some point a) wants to maintain an altitude greater than
1500 feet with a north direction, to reach to the point b. A
default could be as follows :

((alt(x) > 1500) ∧ compass(x, north)) : point(x, b)
point(x, b)

(9)

These are just two defaults as examples, but we can include
many others in O. We consider two kind of objectives, short
and long-term. The short-terms occur when there are per-
turbations and airplane moves away from the long-term ob-
jective. Thus, pilot will find another short-goal to get closer
and converge. For instance, when the airplane is climbing
(from the point a to the point b, Fig. 1) to an altitude of
1500 feet and there are wind disturbances, equation (8) is
considered a sub-goal. On the other hand, a long-term ob-
jective is, for instance, maintain a steady flight for 5 mi-
nutes with an altitude of 1500 feet, equation (9) is conside-
red a long objective.

Definition 2. In the world K, there is always a resilience
trajectory R.

∀S ,∀O,∀A ⊆ K ∃ R (10)

Short-term objectives have very fast change in compari-
son with long-term. Nevertheless, short-terms will allow
to achieve long-term. As the system evolves and distur-
bances appear, exploration is an important stage of the mo-
del. Because this part it is the main process to find different

sub-goals that will allow to absorb the shock ζ. Sub-goals
g are related to the extensions since they contain actions
to converge to the final goal. It is so that the system can
jump between sub-goals and have a resilient behavior. If
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Figure 2 – Evolution of a goal G, switching sub-goals g
when a disturb ζ occurs : M and ? are the trajectories crea-
ted.

we take a look at the discrete representation, Fig. 2. We
have at the begging S p the computation of four exten-
sions : {g0, g1, g3, g5}, according to our decision-making
model g1 is chosen and then the system interacts with the
environment. At some point, disturb ζ1 occurs and exten-
sions are computed one more time : {g1, g4, g5, g6}, the
better solution is g6 and then interaction happens again.
This process occurs every time disturbs ζ appear. In this
sense, computing and choosing extensions, trajectories (M
, ?) are created. For the first resilient trajectory M, we
have : RM = {g5, ζ1, g4, ζ2, g3, ζ3, g6, ζ4, g5, ζ5, g4, ζ6, g6, . . .}
and for the second trajectory (?), we have : R? =

{g1, ζ1, g6, ζ2, g3, ζ3, g6, ζ4, g5, ζ5, g4, ζ6, g1, . . .}

4.2 Model

We present a model that describes the evolution of pilot
reasoning. In reality pilot makes two movements, he ob-
serves the horizon and next the cockpit, after that he does
actions, he repeats this over and over again. This dynamic
could be represented such as Fig. 3. The model has transi-
tions but the notion of time is not considered. For example,
if we have a situation si and if it is possible to go to the
situation si+1, we should do actions. Firstly, we start with

∆ = {D,W, S }

E = {E1, E2, ..., En} Choice

En = {A, S +}

∆+ = {D,W, S +}

∆← ∆+

Figure 3 – Reasoning of a pilot based on default logic.

4



a default theory ∆ = (D,W, S ). Where D are the set of de-
faults, W are the set of FOL and S are the parameters of
the airplane, environment, control tower, etc. We are consi-
dering that ∆ is a default theory before a transition and ∆+

is a default theory after a transition. Similarly, S is a si-
tuation observed before a transition and S + is a situation
observed after a transition. From ∆, the set of extensions
E is computed. Each extension contains actions. Once we
have the solutions we must choice the better extension that
brings us closer to the goal, then decision-making is based
as before. After pilot applies actions he takes observations
again (cockpit and environment) passing information from
S to S +. Then it goes back to ∆ to compute extensions and
choose the better one again. Sometimes for an airplane it
is impossible to converge to the desired goal and alterna-
tive objectives must be found. In the set of objectives (O)
the property of resilience is carried out. This is the property
will be described in the next section.

5 Resilience

The concept of resilience is defined as the property of
a system to absorb and anticipate perturbations [4]. So to
apply this property to our model, let consider a knowledge
world K, Fig. 4, which contains the set of situations (S ),
objectives (O) and actions (A). Inside the world K we will
study the property of resilience. Since we know that the lo-
gic model has an evolution, we are interested to study its
form and properties. We can define a trajectory as the satis-
faction of 4 main properties : reorganization (α), explora-
tion (β), release (γ) and conservation (δ), Fig. 4 [6, 14, 16].
We consider that Non-monotonic reasoning is exploration,
Choice is reorganization and conservation, and finally in-
teraction with environment is release. Trajectory has a form
as closed loop that converge a stable equilibrium [5]. In
control theory [8] stability is defined as follows :

Definition 3. A non-linear time-invariant system with x′ =

f (x), f : Rn → Rn. It has a point xe ∈ Rn is an equilibrium
point of the system if f (xe) = 0. It is global asymptotically
stable, if for every trajectory x(t), we have x(t) → xe as
t → ∞. It is locally asymptotically stable near or at xe if
there is R > 0, s.t. ||x(0) − xe|| ≤ R⇒ x(t) = xe as t → ∞.

We consider Lyapunov’s definition for our study. For
every short and long-term objective O a neighborhood (ε)
of the exact point of convergence is defined as follows :

0 < ‖O‖ < ε (11)

In our model, stability will be when every objective O
is inside ε. In this context, we define : R ≡ O, where
R is the theoretical trajectory of resilience and O is the
trajectory of objectives of our model [6]. If the equiva-
lence is valid, then the system will have stability in term

of resilience. Theoretical trajectory is defined as follow :
R : {. . . α, β, γ, δ, α, . . .}. An interesting point of the model
is if we increase the number of defaults, we will increase
the degrees of freedom. This is an important remark, be-
cause we consider degree of freedom a space in O where it
could pass a trajectory.

α

δ

γ

β

K

S

O

A

Figure 4 – Non-monotonic Resilience Stability.

6 Implementation

We are using a reduced-size model of motor-glider with
a wingspan of 1366mm (53.75 in.), an overall length of
977mm (38.5 in.) and a HBM 2812-1100 Brushless Mo-
tor. On board a microcomputer based on Linux operating
system is installed, it has the next characteristics : a cpu
running at 1 GHz ARM11 (single core), 512 Mb of RAM
and power consummation of 0.8 Watts. The microcomputer
contains physical digital ports with serial communication
protocols which allow to connect different devices. The
inertial sensor provides the accelerations, angular veloci-
ties and measurements of the earth’s magnetic field. These
three information, it allows us to know the orientation of
the motor-glider in space, for instance, if it is going up,
down, turning. . .Altitude is provided by the GPS module
but also it is calculated by an atmospheric pressure sensor.
Pitot tube is an instrument that allows to measure the sta-
tic and dynamic pressure, and thus to know the airspeed
of the airplane, based on the Bernoulli’s equation. For obs-
tacle detection an ultrasonic sensor is used, with a max.
detecting distance of 4-5m. The aileron control is done by
servomotors through PWM signal. The circuit on board is
supplied with 11.1 Volts and 1300 mAh LiPo battery. In
the microcomputer, SWI-Prolog was installed. Until now,
we have 80 defaults and the extensions are calculated in the
order of milliseconds. However, if we increase the number
of defaults, the calculation time does not increase much,
since horn clauses are used [7, 3].

7 Conclusion

We introduced a resilient model for an autonomous air-
plane, using non-monotonic logic, in particular, default lo-
gic. We tackled contradictory and incomplete information
to manage aviation rules and make decisions. We defined
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a non-probabilistic model to choose an extension consi-
dering criteria such as security, energy, emergency. . .We
used the property of resilience to find alternative solutions,
when disturbs occur, and converge to the objective or sub-
objectives. We described stability using Lyapunov’s defi-
nition. The implementation is currently in progress with
good results. This is a motivation to have a resilient model
able to find thermal and to be able to fly as long as possible
autonomously. We are also interesting to study Minsky’s
model, Fig.5, which describes how the mind get goals by
changing the set of axioms in use [10, 11]. From our mo-
del in the Fig.3, we could consider the “Now” such as the
actual situation S and “Want” such as S +, the long-term ob-
jectives. The differences will be the actions that we should
do to converge to the main objective.

Want

Now

Diff

Figure 5 – Minsky’s model.
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