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Organisation du cours

n° Date matin/a.m. CM TD Controle Lieu

1 Ven. 8 oct. 2021 a.m. CM1 Promeo, salle A120
2 Ven. 22 oct. 2021 matin CM2 TD1 Promeo, salle A13
3 Ven. 22 oct. 2021 a.m. CM3 TD2 Promeo, salle A13
4 Mer. 17 nov. 2021 a.m. CM4 TD3 Promeo

5 Ven. 19 nov. 2021 matin DS Promeo

6 Ven. 17 déc. 2021 matin TP1 Dpt. EEA 4\
7 Ven. 14 jan. 2022 matin TP2 Dpt. EEA ‘\
8 Mer. 2 fév. 2022 matin TP3 Dpt. EEA 7}

Matin: 8h30-12h15, pause 10h20-10h35 — Apreés-midi: 13h15-17h00, pause 15h10-15h25

Chargé de TD et TP: Julien Ducrocq (laboratoire MIS, UPJV)

1 TP1 +TP2+ TP
Note finale = |I'arrondi de 5 [DS + ( + 5 T+ 3)]




Plan du cours

 Introduction

- Constituants et caractéristiques d’un robot

« Gammes de robots et secteurs d’activités

- Les baies de commandes, le boitier d’apprentissage,
les modes et la programmation d’un robot

« Actionneurs et capteurs d’'un robot

- Reperes et transformations homogenes

. Etude de cas: cellule robotisée de soudage




Notation

a, v, M €R scalaires 21 ]

x € R" vecteur colonne de dimension n, X =

X . ;
A € R"™"™ matrice avec n lignes et m colonnes L *n _

mn
A 2
HXH — \ E : L5 norme euclidienne du vecteur x € R"

1=1

In c R™*" matrice identité n X n

nXm . s
Onxm €R matrice de zéros . X m

Al € R™*™ transposée de la matrice A € R™"X™

A~ ! inverse de la matrice A c R™*™ (de rang plein)



Introduction

Manipulateur

générique effecteur

« Un manipulateur peut étre représenté comme une chaine cinématique
de segments reliés par l'intermédiaire d'articulations rotoides ou prismatiques

« Le mouvement résultant de la structure est obtenu par composition des
mouvements élémentaires de chaque segment par rapport au précédent

- Afin de manipuler un objet dans I'espace, il est nécessaire de décrire
la position et |'orientation (pose) de l'effecteur

Objectif final: exprimer la pose de l'effecteur en fonction des variables des
articulations, par rapport a un repere donné (par ex. le repere de la base)




Positionnement

La pose d'un solide (ou corps rigide) dans I'espace 3D peut étre
completement décrite par 6 parametres indépendants:

« 3 parametres indépendants définissent la position d'un
point, noté O, du solide dans le repere fixe O-xyz (par ex.
coordonnées cartésiennes, cylindriques ou sphériques)

« 3 parametres indépendants déterminent |'orientation
du solide autour du point O’ (par ex. les angles d’Euler)

we




repere fixe

La position du point O’ du solide par rapport au repere fixe O-xyz
s'exprime par |'équation:

o = o,x + o,y + 0.2
ou x, y, z sont les vecteurs unitaires (la norme est 1) des

axes du repére O-xyz et 0y, 0, 0, sont les composants du
vecteur o’ € R? le long de chacun des trois axes



« Afin de décrire I'orientation du solide, considérons un repere attaché au corps
et exprimons ses vecteurs unitaires par rapport au repere O-xyz

« Soit O’-x"y’z’ un tel repére avec origine O’ et soient x’, y’, z’ les vecteurs
unitaires des axes

« Ces vecteurs sont exprimés par rapport au repere O-xyz par les eéquations:
! / /
X =X, X+ 2,y +T,Z

Y =YX+ y,y +y.2

A | / /
Z =z, Xt 2,y T 2%

. . / / / . , .
» Sous forme compacte, les vecteurs unitaires X', ¥, Z' qui decrivent

I'orientation du solide par rapport a O-xyz, peuvent étre combinés dans
la matrice 3 X 3:

T

_X’X T ' 7

/ / / /
Ly Yz 2y y X zZz°X
. / A b / / / _ ' 1" "
R—[Xyz]— Ty Yy 2y | = | XY Y'Y z
T, YL, 2 ] xTz yTz 7'z ]

qui est appelée matrice de rotation



Rotations éléeémentaires

- Considérons les rotations qu’on peut obtenir a partir de rotations
élémentaires autour des axes x, y, z

« Ces rotations sont positives s’ils sont faites autour des axes
relatifs dans le sens antihoraire

Exemple: le repere O-x)z est pivoté d'un angle o autour de l'axe z
et O-x"y'’z" est le repere qui résulte de cette rotation

A

2z | 2

x o Y



Rotations élémentaires A

z |z
« Les vecteurs unitaires de O-x"y’z’ peuvent étre
exprimeés par rapport au repére O-xyz comme:
COS & —sin « 0
. yl
x = |sina |, y=| cosaa |, 2Z/=1]0 A
4 z'
0] 0 |1 Y o
;
- - x O y
« La matrice de rotation de O-x"y’z’ par -

rapport a O-xyz engendrée est donc:

[ cosa —sina 0] .
R.(a) = |sina cosa 0 *
0 0 1]

De la méme fagon, on peut trouver la matrice de rotation autour de
I"axe y d’un angle ;5 et la matrice de rotation autour de I’axe x d’un angle v

Remarque: ces matrices sont trés utiles pour décrire des rotations
dans l'espace 3D autour d’axes arbitraires



Rotations élémentaires: sommaire

1 0 0 7
R,(y) = | 0 cosy —siny
0 siny cosvy

Matrice de rotation autour
de I'axe x d’un angle ~y

[ cos3 0 sinf ]
R,(B) = 0 1 0 Matrice de rotation autour
—sin8 0 cosf de l'axe y d’un angle 3

(cosa —sina 0]
R.(a) = |sina cosa 0 Matrice de rotation autour
de I'axe z d'un angle «x
0 0 1
Remarque:

Pour les rotations élémentaires, la propriété suivante est vérifiée:

Rx<_’y) — Rg<7)v Ry(_ﬁ) — Rg(ﬁ% Rz(_a) — RZ(O&)



Représentation d’un vecteur

Hypothese simplificatrice: 'origine du repere du solide coincide avec l'origine
du repére fixe. Donc o' = 0341 = [0, 0, 0]

y . A
On peut representer le point 3D
P comme suit: 2! P
2 [~
_ - \\\~\ p[ y'
Pz T~ P ¥
P = | Py parrapporta O-xyz  \ | .- Q
P EX BN
LY
e
et """"""" ‘it”, p
0 M=~ < Y
-, - — —
pgg \\‘v:/ : //
p' = | p, | parrapporta O-x'y'z' S R
/ Ii. "i,l
| Pz | z




Représentation d’un vecteur

Mais p et p’ sont deux représentations du méme point P, donc:

/

P=1p,xX +p,y +p.z = [X’ y' Z’}p

Mais cela signifie que (cf. les équations

précédentes): A
2
4 P
— Rp/ e ,
p - p \\\\ pl y
~._ P ¥
,—*"/:%\ "I
R représente la matrice de transformation qui N N\
permet d’exprimer les coordonnées du point P z LN
dans le repere O-xyz, en function des coordonnées 4 P
du méme point dans le repere O-x"y'z’ 0 &< — —*
R est une matrice orthogonale. Donc la Lt e s
transformation inverse est simplement: z [P
/I T z
p=R'p B



Représentation d’un vecteur

Exemple:
Deux repéeres avec la méme origine et une rotation relative d'un angle «
autour de l'axe z

A

Yy

/ ’
P, P : vecteurs des coordonnees
du point P dans les reperes y'

O-xyz et O-x"y'Z’
On trouve que:

Pz = P, cosa — p sina

_ / : /
Dy = P, SInQ + Py Cos

/

pZ:pz

Remarque:
La matrice R,(«) représente non seulement I'orientation d'un repere par rapport
a un autre, mais elle décrit également la transformation d'un vecteur dans un

repere en un autre avec la méme origine



Composition de matrices de rotation
Probleme: Comment composer plusieurs rotations ?

Considérons trois reperes O-x,),z, O-x,y,z,, O-x, 1,2, avec la méme origine O

pO, pl, p2 c R3? coordonnées d’un point P dans les trois reperes

O-x,),2, O-x1y; 21

O-x0y0 20



Composition de matrices de rotation

Soit R‘g la matrice de rotation du repere ¢ par rapport au repere j

Donc
1 1_.2
P = R5p
De la méme facgon, on obtient
0 0.1
0 0.2
= Ryp

Mais alors:




Composition de matrices de rotation

Considérons un repeére initialement aligné avec O-x,y,z,

La rotation définie par Rg peut étre interprétée comme obtenue
en deux étapes:

1. Tourne le repére avec R(l) pour |'aligner avec O-x,y,z,

Y - - 7 g 1
2. Tourne le repére, maintenant aligné avec O-x,y,z,, en utilisant Rs
pour l‘aligner avec O-x, y,z,

Remarque:
- La rotation d'ensemble peut étre exprimée comme une séquence
de rotations partielles
« Chaque rotation est définie par rapport a la précédente
- Le repére par rapport a lequel la rotation se produit est appelé repére courant
« La composition de rotations successives est obtenue par multiplication a droite
des matrices de rotation en suivant I'ordre donné des rotations
» Avec notre notation, on a que:

R] = (R)) ' = (R))"



Composition de matrices de rotation

Remarque:
- Les rotations successives peuvent aussi étre specifiées toujours
par rapport au repere initial

« On dit donc que les rotations sont faites par rapport au repére fixe

« La composition de rotations successives est obtenue par multiplication
a gauche des matrices de rotation en suivant I'ordre donné des matrices
de rotation

Probleme de base: le produit matriciel n‘est pas commutatif !

- Deux rotations, en général, ne commutent pas et la composition dépend
de l'ordre des rotations individuelles:

R)R} # RLRY




Composition de matrices de rotation

Exemple:
1 0 0
R,(r/4) = | 0 V2/2 —V2/2 |  Ry(x/6) =
0 v2/2 V22
V32 V2/4 V2/4T
R, (7/6) Ry (7/4) = 0  V2/2 —V2/2
| —1/2 V6/4 V6/4 _
mais \H\
" V3/2 0 1/2 7
R (m/4)Ry(m/6) = V2/4 V2/2 —6/4
| —V2/4 V2/2 V6/4

[ V3/2 0 1/2 ]
0 1 0
-1/2 0 +3/2




Composition de matrices de rotation

 Rotations successives d'un objet autour des axes du repére courant




Composition de matrices de rotation

« Rotations successives d'un objet autour des axes du repeére fixe




Représentation de I'orientation

« Les matrices de rotation fournissent une description redondante
de l'orientation d’un corps

 En effet, la matrice de rotation R, comprend 9 éléments:

11 Ti2 T13
R = | 7191 122 7To3

31 T332 7133

- Mais il y a 6 relations indépendantes entre ces éléments (contraintes
d’orthogonalité et de normalité des colonnes)

2 9 2

11712 + 21722 + 131732 = 0 rip try; +r3; =1
_ 2 2 2

711713 + r21723 + 131733 = 0 i + 730+ 133 = 1
_ 2 2 2

T12713 + r22723 + 132733 = 0 ri{s + 153 + 155 = 1

Conclusion: 3 parametres sont suffisantes pour décrire I'orientation d'un corps

Une représentation de I'orientation en fonction de 3 paramétres indépendants
est dite représentation minimale (par ex. les trois angles d’Euler)



Représentation de I'orientation

Propriétés des 4 représentations de |'orientation d'un corps rigide

L Angles d’Euler Quaternion
Représentation de (ZY% ZYX, etc.) Angle et axe unitaire
rotation ! ! '
Globale Oui Non Non Oui
Unique Oui Non Non Non
Minimale Non Oui Non Non




Matrices homogenes

solide

repere fixe

Pour décrire la pose d’un solide dans I'espace 3D, on a besoin de connaitre:
« [Translation] Position d’un point sur le solide (O’) par rapport au repeéere fixe

 [Rotation] Composants des vecteurs unitaires du repéere attaché au corps
avec origine O, par rapport au repere fixe



Matrices homogenes

P 2, y
1
A
0 0 1
p P
0, Repere 1
St
Repere 0 > z,
Oy %
To

Soit:
« P : point générique dans I'espace 3D
0 .1 , . .
« P, P : coordonnées du point P par rapport au repere 0 et 1
. 0(1) . vecteur qui décrit I'origine du repere 1 par rapport au repere 0
. R(l): matrice de rotation du repere 1 par rapport au repere 0



Matrices homogenes

P 2, y
1
A
0 0 1
p p
0, Repere 1
oy
Repere 0 > z,
0, Y,
To

« On peut écrire la position du point P par rapport au repere 0 comme suit:

Transformation de coordonnées
po — 0(1’ + R(l) p1 (translation + rotation) d’un vecteur
entre le repére O et le repéere 1




Matrices homogenes

P z, v,
A
P Y
0, Repere 1
07
Repere O > z,
Oy %
Zo

 Pour avoir une représentation compacte de la relation entre les coordonnées
du méme point P dans les deux repéeres, nous pouvons mtrodwre la
représentation homogeéne d’un vecteur générique p € R3

~ p

P = : ,
_ ¢ On rajoute une 4e coordonnee
p “tilde 1 au vecteur, dont la valeur est 1



Matrices homogenes

. agn V4 - O 1 4 -
« Si on utilise cette représentation pour les vecteurs P~ et P, on peut ecrire
la transformation de coordonnées en utilisant une seule matrice 4 x 4:

R(l) 0(1) Matrice de
AY = transformation
01«3 1 homogeéne

- La pose du repéere 1 par rapport au repére 0 est définie par le couple:
0 0
(017 Rl)
 La pose est définie par 6 parameétres:

« 3 définissant la translation

« 3 définissant la rotation



Matrices homogenes

- La transformation d’un vecteur du repere 1 au repéere 0 est exprimée par
une seule matrice qui contient la matrice de rotation du repere 1 par rapport
au repere 0 et le vecteur de translation de l'origine du repere 0 a l'origine

du repeére 1:

5 = A7 p’

* La transformatlon inverse entre le repére 0 et 1 est décrite par la
matrice A qui satisfait I'équation:

Al ~0 __ (AO) 1 ~O
« En utilisant les propriétés des matrices partitionnées, on trouve que:

(A(lj)_l _ (R(l))T _(R(l))TO(l) _ R(% _R(l) 0(1)
01X3 1 leg ]_



Matrices homogenes

Attention: les matrices homogéenes ne satisfont pas la propriété d’orthogonalité.
Par conséquent, en général:

A~ £ AT

En conclusion:

« Une matrice homogene permet d’exprimer la transformation
de coordonnées entre deux reperes sous forme compacte

« Si les repéeres ont la méme origine la matrice homogéene se réduit
a la matrice de rotation (4 x 4) définie précédemment

« Comme pour les matrices de rotation, on peut composer une séquence
de transformations de coordonnées grace au produit matriciel:

=0 __ 0 Al n—1=n
P = Al A2 T An &
ou Aﬁ_l est la matrice de transformation qui met en relation

la description d’un point dans le repere 7 avec la
description du méme point dans le repere ¢ — 1



Matrices homogenes 20 21

N
Exemple 1 (Rotation simple autour de l'axe z) Tl Y«
T Y1
O
° o > Yo
1
0 R.(a) O3x1
Al —
01x3 1 %o X1
Z
N
Exemple 2 (Translation simple) O -
7
\\
\
' A\ 20
0 X1 \\
a0 | 18O of
01 X3 1 O \\ N
0 7 Yo




