TD 2 - Rotations et Transformations Homogènes

Exercice 1:

- **1.** Le vecteur \overrightarrow{OP} de coordonnées $[0, 1, 0]^T$ subit successivement une rotation de 90° autour de l'axe x, et de 90° autour de l'axe y. Donnez la matrice de transformation globale. Vérifiez graphiquement.
- **2.** Trouvez les composants du vecteur $\overrightarrow{OP} = [1, 1, 0]^T$ après une translation de $[0, 0, 1]^T$ suivie d'une rotation de 60° autour de l'axe z.

Exercice 2:

- 1. Déterminer la matrice de transformation A correspondant à une rotation autour de l'axe x d'un angle $\theta = 30^{\circ}$, puis une translation le long de l'axe y d'une longueur d = 3 m.
- **2.** Déterminer la matrice de transformation A' correspondant à une translation le long de l'axe y d'une longueur d = 3 m suivie d'une rotation autour de l'axe x de $\theta = 30^{\circ}$.
- 3. Vérifier graphiquement que le produit matriciel n'est pas commutatif.

Exercice 3:

On fait une rotation de $\pi/2$ suivant l'axe y, suivie d'une translation de d=2 m suivant l'axe x et d'une rotation de $-\pi/2$ suivant l'axe z.

- **1.** Quelles sont les coordonnées du point dans le repère initial (de référence) sachant que ses coordonnées (homogènes) dans le repère final sont $[0, 3, 0, 1]^T$? Vérifier le résultat graphiquement.
- **2.** Connaissant les coordonnées (homogènes) d'un point [1, 2, 0, 1]^T dans le repère de référence, quelles sont ses coordonnées dans le repère final ? Trouver le resultat par deux méthodes différentes. Vérifier le résultat graphiquement.

Exercice 4 (Modèle géométrique d'un manipulateur) :

Soit le manipulateur planaire à deux segments (RR) de la Figure 1 auquel un référentiel est associé à chaque articulation. En utilisant les matrices de transformation homogènes, déterminer la position et l'orientation de l'organe effecteur (point P) par rapport à la base fixe (c'est-à-dire, par rapport au repère $O-x_0$ y_0 z_0).

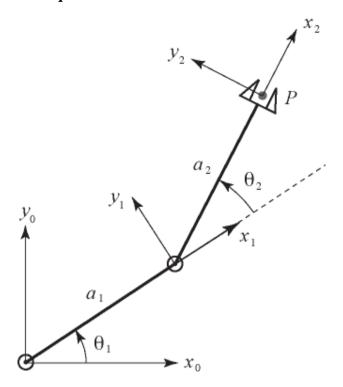


Figure 1 : Manipulateur planaire à deux segments (RR).

Exercice 5 (Robot mobile):

Le robot mobile Pioneer 3-AT montré dans la Figure 2 possède deux capteurs embarqués : une caméra, de repère O_{C} - $x_{C}y_{C}z_{C}$, et un laser, de repère O_{L} - $x_{L}y_{L}z_{L}$. Les repères O_{W} - $x_{W}y_{W}z_{W}$ et O_{R} - $x_{R}y_{R}z_{R}$ désignent respectivement le repère monde et le repère attaché au robot. Pour plus de simplicité, on fera l'hypothèse que l'origine O_{R} du repère robot coïncide avec le centre de gravité du robot. En sachant que les coordonnées du point P dans le repère caméra sont $\mathbf{p}^{C} \in \mathbb{R}^{3}$, déterminer \mathbf{p}^{L} , \mathbf{p}^{R} et \mathbf{p}^{W} .

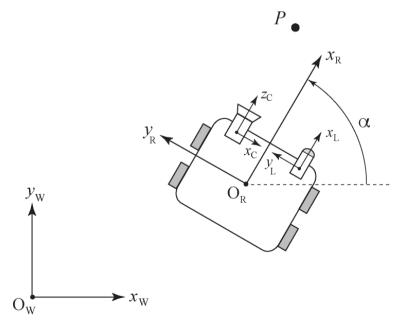


Figure 2 : Robot mobile avec caméra et laser embarqués.