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Notions de base de theorie des probabilites

Soit X une variable aléatoire (v.a.) et x une valeur spécifique (ou réalisation)
qu’elle peut prendre.

Pr(X = z) : probabilité que la variable aléatoire X prenne la valeur x

Exemples :
1. Lerésultat d'un lancé de dé est caractérisé par (6 valeurs possibles) : \
1
Pr(X=1)=Pr(X=2)=...=Pr(X =6) = s

2. Piece de monnaie équilibrée lancée en l'air (2 valeurs possibles,
« pile » ou « face ») :

1
Pr(X = “pile”) = Pr(X = “face”) = 5




Notions de base de theorie des probabilites

Dans un espace continu, les v.a. peuvent prendre un continuum de valeurs

« Dans ce cas, on introduit la notion de fonction de densité de probabilité
p(x) = px (x) (abréviation « pdf »: probability density function).
Une v.a. continue X a une pdf p(z) si:
b

Pr(a < X <b) = / p(x)dx

a

* On peut obtenir la pdf d'une v.a. continue en calculant la dérivée de la
fonction de répartition P(xz) = Px(x) = Pr(X < x) dela v.a. (abréviation
« cdf »: cumulative distribution function), a savoir :

p(x) = - P(x)

La cdf d’'une variable aléatoire réelle est toujours croissante, continue
a droite, avec une limite nulle en —00 et une limite qui vaut 1 en +00



e — |

Notions de base de theorie des probabilites

Exemple (loi exponentielle) :

« Support: [0, c0)
e Parametre: A > (0 (intensité)
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Notions de base de théorie des probabilites

Propriétés d’une pdf:

0.35
0.30
1. Nous avons que : 0.25 7
= 0.20-
> ‘Z 0.15-
/ p(z)dx = 1 0.10- .
N w) il
I:II:II:I J‘% s
\ . , . "
a savoir, 'aire sous une pdf est 1 01 2 3 4 5 6 T & 9 10

i

2. Les pdf sont des fonctions non négatives, c'est-a-dire :

p(x) >0,Vx eR



Notions de base de theorie des probabilites

Etant donnée un v.a. X avec une pdf p(z), on peut définir les quantités suivantes :

o0

o Espérancedelav.a. X: E[X] = p = / zp(x)dx

— o0

. Variancedelav.a. X: E[(X — p)?] = var[X] £ / (z — ) p(x) dx

— OO0

oo

o Moment centré d'ordre n > 1delav.a. X: E[(X — p)"] & / (x — p)" p(x) dz

— OO0

Exemple :

Soit X une v.a. qui suit la loi exponentielle. Alors, nous avons que :

1 1 !
E[X] = 1, varlX] = , E[X"] = % ne{l,2,...}
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Notions de base de theorie des probabilites

Variables aléatoires multivariées

« La pdf d’une v.a. vectorielle m-dimensionnelle X = [X1, Xo, ..., X,,]"
est une pdf conjointe des m éléments :

p(X) — p(xla L2, .. axm)

Cette pdf est une fonction scalaire d'une variable vectorielle. Elle est non négative
et elle a la propriéteé :

/ p(x)dx:/ / p(x1, T2y ..., Ty)drydre - - day, = 1

« Espérancedelav.a. X:

 E[Xq] T
EX] = p £ /_OO xp(x)dx = E[XQ]
| E[X]
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Notions de base de theorie des probabilites

e Matrice de covariancedelav.a. X :

S = EIX - p)(X - )] = varlx] £ T (x - w)(x — ) p(x)dx

— o0

Remarques :

« La matrice 3 € R"*™ est symétrique (X = X7 et semi-définie positive (X > 0)

 La matrice 3 contient les variances de X; sur la diagonale principale et
les covariances croisées de X; et X;, ¢ # j sur les éléments hors diagonale

Exemple (matrice de covariance 3 x 3) :

- E[(X1 — )7 E[(X1 — p1)( X2 — p2)]  E[(X1 — p1)(X3 — p3)]]
Y = |E[(X2 — p2) (X1 — p1)] E[(X2 — p2)?] E[(X3 — p3) (X1 — p1)]
E[(X3 — p3)(X1 —p1)] E[(X3 — p3)(Xe — p2)] E[(X3 —p3)’] |
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Notions de base de theorie des probabilites

1) La loi gaussienne (ou normale) est I'une des lois de probabilité les plus
adaptées pour modéliser des phénomenes naturels issus de plusieurs événements
aléatoires. Sa pdf dépend de deux parametres, son espérance, un nombre réel
noté /., et son écart type, un nombre réel positif, noté o:

plx) = — L exp (_ ( —M)Q) A ()

s 2072

* Lorsque unev.a. X suit la loi
gaussienne, il est courant d’utiliser
la notation suivante : ——

X ~ N(p,
,u Remarque:

/l \ Sipg=0eto=1,

la loi gaussienne est appelée
moyenne  variance . .
standard (ou centrée réduite)




Notions de base de theorie des probabilites

Sila v.a. X est m-dimensionnelle, la 1oi gaussienne multivariée
est caractérisée par la pdf :

! 1 T s—1
p(x) = exp (~ 5 (x = ) =7 o)
J/(2m)m det(D) 2
avec
R™ . Gaussienne
< - Thoyenhe bivariée
> € R™*™ . matrice de 1_62
covariance X
(définie positive) = . ,
On écrira alors : X ~ N (p, X) e 10
Commande Matlab : oo

randn(m, n) retourne une matrice ™m X n qui contient des valeurs
pseudo-aléatoires tirées d’une loi gaussienne standard
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Notions de base de theorie des probabilites
p()

2) Loi uniforme
1
. ®

La densité de probabilité de la loi uniforme
est une function porte sur l'intervalle [a, 0]:

b—a

1 i i
pour x € [a, D] j j
p(z) = S b—a | i
0 sinon
Si X est une v.a. uniforme, on écrit X ~ U(a, b) a b X
Commande Matlab : rand(m, n) N
3) Distribution de Dirac
. avec la contrainte :
400 sixzx =0
o(z) = o
0 sixz #0 / d(x)dr =1 O -
oo 0



Notions de base de theorie des probabilites

Pdf unimodale : un seul mode ou « un seul maximum »

Exemples : loi gaussienne, de Laplace, de Cauchy, de Student, exponentielle, du X
(chi carré)

Pdf multimodale : « plusieurs maxima »

Exemple: mélange de 2 gaussiennes, a N (1, 07) + (1 — a) N(p2, 03), a € [0, 1]

Pdf unimodale Pdf bimodale
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Notions de base de theorie des probabilites

Densité de probabilité conjointe
La pdf conjointe de deux variables aléatoires X et Y est donnée par p(z, y)

Elle décrit la probabilité que la v.a. X prend la valeur = et que Y prend la valeur y

Siles v.a. X et Y sont indépendantes, nous avons que :

p(z, y) = p(x)p(y)

Densité de probabilité conditionnelle

La densité de probabilité conditionnelle décrit la probabilité que la v.a. X
prend la valeur x sous la condition que stirement la v.a. Y prend la valeur y.

La densité de probabilité conditionnelle est indiquée p(z | y) . Si p(y) > 0

elle est définie comme suit :
p(z, y)

p(y)

p(z|y) =
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Notions de base de theorie des probabilites

Siles v.a. X et Y sont indépendantes :

pe|y) = p(%@ _ (o)

a savoir, la connaissance de Y n’apporte aucune information
utile sur la valeur de X

Théoreme des probabilités totales

Le théoreme des probabilités totales tire son origine des axiomes de théorie
des probabilités et il établit que :

po) = | " e |y) ply) dy

— OO

On dit alors que la v.a. Y a été marginalisée
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Notions de base de theorie des probabilites

Théoreme de Bayes

Le théoreme de Bayes met en relation la densité de probabilité
conditionnelle p(z |y) avec son inverse p(y | =)

Sous I'’hypothése que p(y) > 0, on peut écrire le théoreme
de Bayes comme suit :

p(y|z)p(z)
p(y)

p(zly) =

T. Bayes (1701-1761)

Remarque : La version originale du théoreme était pour des probabilités
(v.a. discretes). La version énoncée ci-dessus est pour des fonctions de densité
de probabilité (pdf)
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Notions de base de theorie des probabilites

Fonction de v.a. gaussiennes multivariées

Soient deux v.a. multivariées indépendantes et gaussiennes
X1 NN(H’D 21)7 X2 NN(”’Z? 22)
et la fonction des deux v.a. suivante :
Y = £(X1, X»)

Probleme : Quelle est la moyenne et la matrice de covariance delav.a. Y ?

» Sila fonction est linéare, c’est-a-dire f(X1, X5) = AX; + BX5 (A, B matrices
constantes connues), la v.a. Y est aussi gaussienne, et (comme simple conséquence
du théoreme des probabilités totales) nous avons que :

Y ~N(Ap, + Bu,, AX, A" + BX,BY)
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Notions de base de theorie des probabilites

« Si f(X1, X5) est non linéare, Y n’est pas gaussienne, en général !

Cependant, si f est differentiable on peut considérer une approximation
au 1°r ordre de (X1, X52) au point (1, o) :

Y ~ f(pg, pg) + Fy (X1 — pq) + Fyy (X2 — p1g)

avec

F, = of et Fy = of (matrices jacobiennes de f

X / /
- 0 Xs oo,  CGvaluéesen pu, f1y)

La moyenne et la matrice de covariance de Y sont alors :

E[Y] = f(“’la #2)
Sy = E[(Y —E[Y])(Y —E[Y])T] ~ Fx, 3 FL + Fy, 5, FL
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Notions de base de theorie des probabilites
Définition :

On définit un processus stochastique comme une famille de variables aléatoires
X (), associées a toutes les valeurs t € T'. L'ensemble des observations (%)
disponibles, constitue une réalisation du processus  y

| sBt=

« Sil'ensemble 7' est indénombrable, on parle
de processus continu (par ex. le mouvement
brownien d'une particule) '

Mouvement
brownien

-0,024

 Sil'ensemble 1" est dénombrable, on parle _
de processus discret ou de série temporelle .

Remarque . “Tlobos 0 omos oo o015 omo 005
Un processus stochastique (ou aléatoire) représente

une évolution, discrete ou a temps continu, d'une
variable aléatoire

-.._._Q‘ ———-
‘\
\
N \
£ \
o000
/
I
)
/
- -0-&

En d'autres termes, il est une v.a. indexée dans le temps
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Notions de base de theorie des probabilites

Définition :
Un processus stochastique est dit stationnaire si 'ensemble des statistiques

ne varie pas dans le temps (ou plus précisément, si ses propriétés statistiques
caractérisées par des espérances mathématiques sont indépendantes du temps)

« Un processus stochastique est un ensemble X (¢) de 4
: o ( MM“IF L/ “t

fonctions ordinaires x(t), chacune d'elles étant une

réalisation du processus. On peut caractériser ce & \ T
processus en lui associant a chaque instant ¢g ikl it I"V“ AR
une densité de probabilité px (x, to)

=

Réalisations
(- ¥

« Ala densité de probabilité px(z, to), on peut
associer a son tour les moments appelés moyennes 0} |

d'ensemble : °W%AAWAVAV*Q";

E[X"(tg)] = / " px(z, to) dr

— o0

Temps

Si ces moyennes d'ensemble, et par conséquent la densité de probabilité,
ne dépendent pas de l'instant ¢(, on parle de processus stationnaire
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Partie 3 : Localisation par filtre de Kalman

Généralités sur le filtre de Kalman

Filtre de Kalman étendu (EKF)

Classification des problemes de localisation

Localisation incrémentielle avec le filtre de Kalman
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Le filtre de Kalman

* Le filtre de Kalman est couramment utilisé en automatique,
robotique et traitement du signal, mais aussi en finance,
météorologie, océanographie, sciences des transports, etc.

* Une grande variété d’estimateurs inspirés par le filtre de
Kalman a été développée a partir de la formulation originale
pour les systemes linéaires a temps discret (Kalman, 1960) : R.E. Kalman

(1930 - 2016)
 Filtre de Kalman étendu, « extended Kalman filter » ou EKF  avec la National
(Schmidt, 1966) Medal of Science

en 2009

e Filtre de Kalman a temps continu (Kalman & Bucy, 1968)

* Filtre de Kalman non parfumé, « unscented Kalman filter »
ou UKF (Julier & Uhlmann, 2004 )



. |

Filtre de Kalman linéaire
« Soit le systeme dynamique linéaire a temps discret, k£ € {1,2,...}:

Equaton 5 X = Ap_1Xp—1 + Br_1up—1 + Wi

d’état T
Bquaton 5 7, = Hp Xy + 't Entrée de commande (connue)
de mesure

 Le bruit de modele wg_1 et le bruit de mesure rx sont supposés blancs
(sans mémoire), a moyenne zéro, et gaussiens avec matrices de

covariance Qy et R;,, respectivement. Les bruits de modele et de
mesure sont aussi supposés non corrélés. En résumé, nous avons que :

E[Wk] =0 Erk] =0
Elwiw,]=0,j#k Elryr;]=0,j#k

E:I‘k Wf] — 0, \V/], k
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Filtre de Kalman linéaire

Le filtre de Kalman linéaire a temps discret est un estimateur récursif

= Pour estimer 1'état courant X;, on a besoin seulement de connaitre
I'estimé de l'état précédent et les mesures courantes : I'historique
des mesures et des estimés n'est pas nécessaire

« L'« état » du filtre est représenté par deux variables :

1. X k|l © estime del'état du systeme X al'instant k, en utilisant
I'information jusqu’a 'instant k&

2, Pk|k = E[(Xk — §k|k)(xk — §k|k)T] : matrice de covariance de l'erreur

R — d’estimation de I’état a l'instant k,
X1 P en utilisant 'information jusqu’a
I'instant k

Erreur d'estimation
de I’état Xx du systéme
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Filtre de Kalman linéaire

Imitialisation du filtre :

Xolo = E[x0] ot xo € R" est I’état initial du systéme

Pojo = El(xo — Xgj0)(x0 — Xoj0)" | € R**"

Pour k € {1,2,...}:
Phase de prédiction :

Xglk—1 = Ap—1Xp_1jk—1 + Br_1uk_1

Prir—1 Ak—lpk—1|k—1A£_1 + Qr—1



R,

Filtre de Kalman linéaire

Phase de correction : Innovation Vi

-
~ Ty

= Xpp—1 + Ki(zr — HpXp5p-1)

ol
-
ES
|

Prir = (P,;|}€_1 +H; R, 'Hy) " = (I, - Ky Hp)Pyp s
avec
Gain de Kalman

Kk — Pk|k—1 H%(Hk Pk|k—1HZ + Rk)_l (Remarque : ce gain peut

étre calculé hors ligne)

P, |k—1 : matrice d'estimation a priori de la covariance de 'erreur

Pk|k : matrice d'estimation a posteriori de la covariance de l'erreur

Innovation vy = zj, — Hy X1 : partie de la mesure qui contient de nouvelles

informations sur 1'état. L'innovation (ou résidu de la mesure) est un processus
h . bl ’ . H P HT R

stochastique blanc avec moyenne zéro et covariance Hy EFp 1 H;, + Ik
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Propriétés du filtre de Kalman

« Probleme E »
Trouver l'estimateur qui minimise (a chaque instant de temps £) I'espérance
de la norme pondérée de 1'erreur d'estimation X, = X, — Xk, & savoir:

Xk

ou S, est une matrice de pondération définie positive

* Sile bruit de modele et de mesure sont gaussiens, blancs, a moyenne zéro,
et non corrélés, le filtre de Kalman est la solution du Probleme E

» Sile bruit de modele et de mesure sont blancs, a moyenne zéro et non corrélés,
le filtre de Kalman est la meilleure solution linéaire du Probleme E
« Il peut exister un estimateur non linéaire qui donne une meilleure
solution, mais le filtre de Kalman est le meilleur estimateur linéaire
» Donc, méme si le bruit n'est pas gaussien, le filtre de Kalman reste
toujours le filtre optimal linéaire (I’estimateur linéaire a erreur
quadratique moyenne minimale ou linear MMSE estimator, en anglais)
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Intensité (dB)

Propriétés du filtre de Kalman

« Sile bruit de modele et de

mesure sont corrélés (3j,k : E[ryw) | # 0)

ou colorés (c’est-a-dire, avec mémoire), on peut adapter la formulation
du filtre de Kalman linéaire pour résoudre le Probleme E

Exemples de densité spectrale de puissance dun bruit

o] ” 0

(a) Bruit blanc

-5 -5

-10 -10

-15

20

25

Intensité (dB)

-30

Spectre uniforme (plat) 35

-40

(c) Bruit rouge ou brownien

N
w

Intensité (dB)

-30

La densité de puissance diminue

de 3 dB par octave (comme 1/f) s

-40

1
100 1000 10000 100 1000 10000 100 1000 10000

Fréquence f (Hz)

Fréquence f (Hz) Fréquence f (Hz)

* Pour les systemes dynamiques non linéaires, plusieurs formulations
de filtres de Kalman non linéaires se rapprochent de la solution du Probleme E

(par ex. 'EKF et 'UKF)

Probleéme : toute forme d'optimalité est perdue !
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Partie 3 : Localisation par filtre de Kalman

 Filtre de Kalman étendu (EKF)
» Classification des problemes de localisation

e Localisation incrémentielle avec le filtre de Kalman
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Filtre de Kalman etendu (EKF)

- Soit le systéme dynamique non linéaire a temps discret, k € {1,2,...}:

Equation __—> Xk — f(Xk_l, uk—l) + Wi_q
d’état

Entrée de commande (connue)

Equation _—> Zp — h(Xk) + Ik

de mesure

ou f(-, -) et h(-) sont deux fonctions différentiables arbitraires

« Comme pour le filtre de Kalman linéaire :

Le bruit de modele w1 et le bruit de mesure ry sont supposés
blancs (sans mémoire), a moyenne zéro, et gaussiens avec matrices
de covariance Qj et Ry, respectivement. Les bruits de modele et
de mesure sont aussi supposés non corrélés
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Filtre de Kalman etendu (EKF)

Initialisation du filtre :

Xol0 = E[xo] ott xg € R™ est I'état initial du systéme

Py = E[(x0 — Rojo) (X0 — i) ]

Pour k € {1,2,...}:
Phase de prédiction :
I’A<l~c\1f—1 = f(ﬁk—uk—b ui_1)
T
Prr—1 = FraPr_1p—1Fr_1 + Qe

 Matrice jacobienne de la fonction f

F b1 = of (X’ Uk —1 ) * On a considéré ici le développement
- 00X N en série de Taylor a 'ordre 1 de £
X=Xkg—-1|k—1 enxk:—1|k:—1
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Filtre de Kalman etendu (EKF)

Phase de correction :
Xglk = Xglk—1 T K (zr — h(Xk|k—1))

Pur = (Py_y + Hy R THy)™

avec
k — Lt klk—1 11k EL klk—1L4Lg | k Gain de Kalman

et

(9 h (X) * Matrice jacobienne de la fonction h

H, =

Ox * On a considéré ici le développement en
X =Xp|k—1 sériedeTayloralordre1de h en Xg|k—1
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Filtre de Kalman non parfumé (UKF)

* L'UKEF est plus précis que 'EKF avec des systemes fortement non linéaires

e L’UKEF utilise une technique d’échantillonnage déterministe (la transformation
non parfumeée) pour choisir un nombre minimal de points échantillons (points

« sigma ») autour de la moyenne. Ces points sont propagés a travers les équations
non linéaires du systeme dont on récupere la moyenne et la covariance

* L’UKF n’a pas besoin du calcul explicite des matrices jacobiennes comme 'EKF

Pour d'autres propriétés et d’autres variantes du filtre de Kalman (filtre d'information,
filtre Hy,, filtre adaptative, filtre de Kalman d'ensemble ou EnKF, problemes de
prédiction et de smoothing, etc.), voir les livres :

* “Optimal State Estimation: Kalman, H,,, and Nonlinear Approaches”,
D. Simon, John Wiley & Sons, 2006, Partie II et IV

» “Optimal Control and Estimation”, R.F. Stengel, Dover Publications, 1994, Ch. 4
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Horizon temporel et estimation

Prédiction
Estimé
a posteriori
Estimé .,
lissé Estlrpe .
l a priori

— | >

L1 1
T 1T 1
12345678910 temps &

Dans I’exemple en figure, on suppose d’avoir recu des mesures (losanges rouges)
jusqu’a l'instant k£ = 5 (temps présent) inclus :

« Un estimé de I’état a k < 5, s’appelle estimé lissé (« smoothed estimate »)
« Un estimé de I’état a k = 5, s’appelle estimé a posteriori

Cf. filtre de Kalman
« Un estimé de I’état a k = 6, s’appelle estimé a priori
« Un estimé de I’état a k£ > 6, s’appelle prédiction

“Optimal State Estimation: Kalman, H,,, and Nonlinear Approaches”, D. Simon,
John Wiley & Sons, 2006 (Sect. 5.1, page 126)
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Partie 3 : Localisation par filtre de Kalman

» Classification des problemes de localisation

e Localisation incrémentielle avec le filtre de Kalman
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Classification des problemes de localisation

« Dans toute localisation probabiliste basée carte, la « eroyance » sur I’état
du robot (belief state, en anglais) est représentée par une pdf

1 — Probléme de localisation incrémentielle
 On assume que la pose initiale p(0) du robot soit connue
et que l'incertitude associée soit “petite”

« La pose courante du robot, p(t), est mise a jour en utilisant
la connaissance de la pose précédente (“suivi ou tracking de pose”)

 La croyance sur I’état du robot est typiquement modelisée
avec une pdf unimodale, comme par ex. une pdf gaussienne
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Classification des problemes de localisation

2 — Probleme de localisation globale

« On assume que la pose initiale du robot ne soit pas connue. Ca veut dire

que le robot peut étre placé partout dans I'environnement et il doit se localiser
 La croyance initiale sur ’état du robot est typiquement une pdf uniforme

%{ p(.t) i

3 — Probleme du robot kidnappé

 Le robot est kidnappé et déplacé en un autre endroit

» Ce probleme est similaire au probleme de localisation globale seulement
si le robot se rend compte d’étre été kidnappé
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Localisation de Markov (resolution des problemes 1, 2 et 3)
 La croyance sur I’état du robot peut étre représentée par une pdf arbitraire
* Localisation a partir de toute position initiale inconnue
» Approche recursive : phase de prédiction et de correction

* On peut sortir de situations ambigués (en effet, plusieurs positions
possibles du robot sont “suivies” en méme temps)

» Pour mettre a jour la probabilité de toutes les positions dans tout ’espace
des états a chaque instant, on a besoin d’'une représentation discréte de I'espace
(par ex. une grille avec cellules de taille fixe ou un graphe topologique)

* Puissance de calcul et mémoire requise importantes (par consequent,
la résolution et la taille de la carte sont limitées)

Réduction de la complexité de calcul par échantillonnage aléatoire
(random sampling, en anglais):

 La croyance sur I’état est approchée (on répresente
que un sous-ensemble des positions possibles du robot)

 Algorithmes de condensation ou Monte Carlo
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Localisation par filtre de Kalman (resolution du probleme 1)

 La position initiale du robot est connue

 La croyance sur I’état du robot est représentée par une seule pdf gaussienne.
Il donc suffit de mettre a jour a chaque itération les parametres de la gaussienne
(c’est-a-dire, la moyenne et la matrice de covariance)

* Localisation precise et efficace

- Utilisable avec une représentation continue de I'environnement

« Si I'incertitude sur la position du robot devient trop importante (par ex. suite

a la collision avec un obstacle) et la pdf n’est plus vraiment unimodale, le filtre
de Kalman peut n’étre pas capable de capturer la multitude de positions possibles
du robot et il peut échouer (par conséquent, le robot sera perdu a jamais)

Remarque :

On peut montrer que la localisation de Markov se réduit a la localisation
par filtre de Kalman si on représente la croyance sur I’état du robot avec
une pdf gaussienne
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Partie 3 : Localisation par filtre de Kalman

e Localisation incrémentielle avec le filtre de Kalman
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Localisation incrementielle

« Hypothese : position initiale connue précisément

- Le robot mobile se déplace : 'odométrie permet de mesurer
son mouvement

* Perception proprioceptive : croissance permanente
de I'incertitude de localisation

 Pour borner cette incertitude :
1. Localisation par rapport a une carte (« M »)

2. Observation de I’environnement (perception
extéroceptive)
= Laser, capteur a ultrasons, caméra, etc.
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Localisation incrementielle

» Localisation consistante =
odométrie + observations extéroceptives
« Comment les combiner ?

Deux étapes :

1. Prédiction

2. Correction
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Localisation incrementielle

1. La prédiction
= Pose estimée par les capteurs

proprioceptifs

> Dans notre cas: —T— e
- Les encodeurs des roues o .- S SRR -
(odométrie) 5 S S
p' = f(p, Asq, Asy) i T A ;T : \

gosf 4= -+ o - ) :

= L’incertitude sur la B SR SETERE I\ B
position du robot e et \ ------ -
croit strictement au o2f 1< - mam o Sy -1
cours du temps Rl B -1

—
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Localisation incrementielle

2. La correction
= Utilisation des mesures ou perceptions
extéroceptives
= On corrige la pose estimée par la prédiction
= L'incertitude se réduit

Exemple:
/1 7 A\ ° b
« Télémetre laser pour mesurer la distance d'un mur

» Correction suivant la position estimée
dans la phase de prédiction
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Localisation par filtre de Kalman (KF)

» Loocalisation robuste

= Fusion de capteurs hétérogenes
(« filtre de fusion de capteurs »)

» Localisation « optimale »

= Procédure récursive adaptée au probleme
de localisation incrémentielle

s Exploitation maximale de I'information disponible
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Localisation par filtre de Kalman (KF)

 Si on utilise le KF standard :
= Le systeme est suppose :
- Linéaire
> Les bruits sont supposés :
- Blancs, gaussiens, a moyenne zéro, non corrélés

... mais pour des robots mobiles

» Equations d’état et/ou de mesure non linéaires.
Une linéarisation est nécessaire : filtre de Kalman
étendu (EKF) !
+ Toute garantie d’optimalité est perdue ...

« Hypothese de bruit gaussien : elle rend les calculs
plus faciles, mais elle n’est pas nécessairement
une description fidele de la réalité !



Illustration graphique (1D)

A 1. Phase de prédiction

1 Erreur due a I'odométrie
Croyance N
initiale 7
du robot /\
° °
To xq L2

2. Phase de correction

- d
": ‘\
[ N
I '
] [l
r '
' [
[] 1
H Yl e
r 1 * -
r T - .~
’ * # -
r LY - )
P O—= ™ ® =
/ T /! T o

On utilise un télémetre laser pour
mesurer la distance d du mur
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croyance(xg) 4

— p(Z|CE, M)

Application
du théoréme
de Bayes

—_—
7

correction

N

croyance(x) |

7

Croyance initiale sur
la position du robot

%

1 .

l Pdf gaussienne

— croyance(x) 4 Mouvement et prédiction :

=

gaussienne décalée,
- aplatie et élargie
' | (application du théoréme

des probabilités totales)

h_)

M Pdf (gaussienne)
% ] apres la mesure z
| _ M = « map » (modele

' de I'environnement)

=

Fusion des
gaussiennes

4

Remarque : 1a variance de la croyance résultante est a la fois plus petite que la variance
de la pdf apres la mesure (ou observation) et de la précédente croyance du robot
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Localisation par EKF

- On peut poser le probleme de localisation comme
un probleme de fusion de capteurs

mise a jour de

p n
(estimation)

prédictions
appariées avec
les observations
réelles

estimé de position

prédicti osition,
prédictio servation

[ base de données | >

données brutes des capteurs
Deux phases : ou primitives extraites

1. Prédiction observ. réelles

(capteu erocep.)

2. Correction

uondaotad
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Localisation par EKF

1. Prediction (cf. Ch. 1, partie 2)

2. Correction

a. Observation
+ Mesures des capteurs
- Extraction de primitives (par ex. droites, cercles, blobs)

b. Prédiction de mesure (ou d’observation)

- Détermination des primitives que le robot s‘attend
a observer a partir de la position ou il croit se trouver
(c’est-a-dire, la position prédite en phase 1)
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Localisation par EKF

c. Appariement (data association)
- Calcul de la meilleure correspondance possible entre:
- Les primitives extraites de 'observation

= Les primitives trouvées par la prédiction de mesure

d. Estimation
- Fusion de I'information apportée par ces appariements
- Mise a jour de la croyance sur ’état du robot
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Changement de notation
Phase de prédiction de ’EKF :
2/~cyk—1 = f(£k—1|k—1a ui_1)

T
Prir—1 = FraPr_p—1Fr_1 + Qi1
Phase de correction de PEKF :

— §k|k—1 + Kk(zk — h(§k|k—1))
Pyp = Py, + Hy Ry Hy) ™

o
o
ES
|

Par la suite, on utilisera la notation simplifiée du livre de Siegwart (Sect. 5.6.8) :

k — t : pourindiquer le temps discret

Ly e Xklk—1 —7 Xt . Xglk — Xt
Prédiction : Correction :

Prr—1 — P, Ppr — Py
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Distance de Mahalanobis [ o

°
o o
Z ®

5
L

Définition :
La distance de Mahalanobis d'un vecteur z € R" vers un ensemble

de vecteurs de valeur moyenne g € R" et possédant une matrice
de covariance X (définie positive), est définie comme suit :

drien(2) 2 /(2 — )T 57z~ )

Remarque :

Si ¥ = I,, (la matrice identité n x n) la distance de Mahalanobis
est simplement la distance euclidienne de z vers p, en effet :

dran(z) = /(@ — )T (2 — ) = |z — pi;
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1. Prediction

- La pose prédite x; dépend de x;—: et u; (commande)
X; = f(Xt—la ut)

= f : fonction d’estimation odométrique de position

- On peut calculer la prédiction de covariance P; :

AN

P, = F,P; 4 Fz + F,Qq Fg (rappel Xy, Xp, XA, Vpf,Va, 1
Ch. 1, partie 2)

o P;_1: covariance de I’état précédent du robot x;_;

= QQ; : covariance du bruit du modele de mouvement

» Fy, Fu: matrices jacobiennes de f (calculées par rapport
a I’état estimé et a la commande courants)
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1. Prediction

- Les deux équations précédentes permettent
= De prédire la pose du robot

= De prédire son incertitude apres un mouvement
du robot spécifié par la commande u,

- Rappel
= La croyance sur 'état est gaussienne

= Mise a jour de la moyenne et de la covariance
de la pdf uniquement
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2. Correction (4 etapes, 1/4)

a. Observation
s Zi : mesure du capteur au temps ¢
» Ensemble de n observations uniques extraites
du capteur : z!, i € {0,1,...,n — 1}
= Observation : marqueur point, droite ou valeur brute
» Equation de mesure : z; = h(x;, M)
Pose du / \ Modéle de
Probleme: robot I’environnement

+ Coordonnées dans un repere local au robot

 Pour 'appariement, toutes les mesures et prédictions
doivent étre exprimées dans le méme repere
* On a besoin d’'un changement de repere : de global a local
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2. CO rreCt]On (2/4) j # 1 car’appariement
n’a pas encore €té fait
b. Prédiction de mesure !

» X; et la carte M : prédiction de mesure
» Ce que le robot s’attend a percevoir a la pose estimée X;

Exemple :

 Le robot prédit qu’il se trouve face a une porte
* Le laser renvoie la perception d’un mur
» La porte est la mesure préedite z

« Le mur est la mesure réelle Z;




2. Correction (2/4)

= Calcul de prédiction de mesure :
- Transformer les primitives m? de M dans le repére local
- Fonction d’observation de la primitive j:

zt — hJ(Xt, mj)

- Dépend de ’estimé courant de la pose du robot X;
- Dépend de la position de chaque primitive m’ dans la carte M
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2. Correction (3/4)

c. Appariement
= A ce point, on a :
- Un ensemble de mesures courantes } dans le repére
- Un ensemble de primitives prédites | local {R} du robot
s But de 'appariement :
- Identifier toutes les mesures correspondant
aux primitives prédites
= En pratique :
- Il faut associer la mesure z; & sa prédiction z?
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2. Correction (3/4)

= Pour chaque apparlement
- Calcul de I'innovation v,

- Elle est la différence entre les mesures
observées et prédites :

(R R o R A NN J
v, =z, — 7Z; = z; — h’(X;, m’)

. 9e o .
Covariance de I'innovation : Matrice de covariance

Ei{\u - H f)t (HJ)T + R; < delamesure réelle z;

Jacobienne de h’ par rapport a I’état estimé X,
» Validité de 'appariement :

 Distance de Mahalanobis (au carré)
avec un seuil g > 0 fixé:

(Vt])T(Eqﬂy\It)_l th < g
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2. Correction (4/4)

d. Estimation

» Calcul du meilleur estimé x; de la pose du robot
et de la matrice covariance P,

s Se base sur :
- La pose prédite x;
- Les mesures courantes z,
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2. Correction (4/4)

- Etapes a suivre : .
- On calcule I'innovation composite v; a partir des v,’
(qui ont validé I'appariement)
+ On empile les H’ en H,
- On assemble les covariances : R; = blkdiag(R;,R7,..., R})
* On calcule la covariance de I'innovation composite Xy,
+ On met a jour ’estimé de pose X; et sa covariance Py :

M x =X + Kivy
(H) Pt — ist — Kt EINtK;r

ou K; = P,HY (Z1y,) ! est le gain de 'EKE
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TD2 : étude de cas sur Matlab

= Localisation par filtre de Kalman étendu (EKF)
= Robot unicycle a conduite différentielle

= Primitives dans 'environnement (M) : droites
= Capteur extéroceptif : télémetre laser 2D

(a)

y [m]

—
T

] L] 1 ]
. L] 5] =
T T T T

] L o n
T T T T

Données brutes (points 2D) .

(b)

y[m]

5] L o wm
T T T T

1] ) 1 1 ]
wm L L 2] -
T T T T

Mesure de

la droite 7 en

coordonnées
polaires :

Zy

|

i
g

i
Ty

|



Plan du chapitre

- Autres techniques de localisation Partie 4

\& N\ N\
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Localisation Monte Carlo

 Filtre de Kalman
- Pdf gaussienne

- Filtre particulaire (particle filter*, en anglais)
+ Pas limité a pdf unimodales

Localisation Monte Carlo : le filtre particulaire est utilisé
pour représenter la croyance sur I’état du robot

- Ensemble de N poses initiales dans une carte

- On fait évoluer ces N poses possibles en fonction des perceptions
proprioceptives et extéroceptives via un modele probabiliste

+ Quand les N poses (a savoir, les N particules), convergent vers
un meéme état, la localisation est la plus stire possible

* "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking",
M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, IEEE Trans. Signal Proces., vol. 50,
n. 2, pp. 174-188, 2002



Exemple

Etat initiale
Les N particules sont en rouge

_—
Le robot
se déplace
Itération 2 Itération 4
- -
Itération 8 Itération 12 Itération 16

Localisation Monte Carlo : tres utilisée dans les applications a cause de sa robustesse
(cf. le livre "Probabilistic Robotics", S. Thrun, W. Burgard, D. Fox, MIT press, 2005)



Construction autonome de carte

« SLAM (Simultaneous Localization And Mapping)

= Localisation et cartographie simultanées
(pas de connaissance a priori de carte)

= Solution efficace du SLAM : « Saint Graal »
de la robotique mobile

= Formalisme du filtre de Kalman étendu (« EKF SLAM »)

* On estime :
- L’état du robot et son incertitude

- L’état et I'incertitude de chaque primitive
(point, droite, etc.) percue de I'environnement

Recherche tres active : SLAM visuel (une caméra: MonoSLAM,
LSD-SLAM, ORB-SLAM, OpenVSLAM, PTAM), SLAM basé filtre - =
particulaire, SLAM cooperatlf ou C-SLAM, « Pose Graph Optimization » (PSO), etc.

"Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age”,
C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, J.J. Leonard, IEEE Trans.
Robotics, vol. 32, n. 6, pp. 1309-1332, 2016



Construction autonome de carte

Le “réve” des roboticiens : Scene du film Prometheus (Ridley Scott, 2012)

https://www.youtube.com/watch?v=yA60KoW30Pk
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Localisation basee balises

- Balise/amer (beacon ou landmark, en anglais)
= Objet passif ou actif dans le champ
de perception du robot

s La position globale des balises
est connue avec précision

a. Balise passive
- Considérée avec la localisation par filtre de Kalman
» Probleme : répartition judicieuse des
balises dans I’environnement
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Localisation basee balises

Exemple 1 : balises rétro réflectives
- Robot équipé avec une nappe laser
« Mesure d’énergie renvoyée vers le robot
- 3 balises minimum (moins si 'odométrie est disponible)

E— ? =3
Ulmns | % | |

Laser du robot

Balise
rétro réflective
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Localisation basee balises

Exemple 2 : balises colorées
 Chaque balise a un code couleur unique

- Le robot est équipé avec une caméra (standard ou
panoramique) qui permet de détecter les balises

Robot avec caméra Balises avec code coleur
panoramique embarquée (3 couleurs : noir, jaune, rose)



Localisation basee balises

Exemple 3 : codes a barres

 Kiva Systems (acquise par Amazon en 2011) :
systeme robotisé pour le stockage en entrepot

nr , g .
s || \.:’ Etagére mobile

-~ o m— =




Localisation basee balises

b. Balise active
- Applications industrielles et militaires
» Localisation robuste ...
... mais pré-équipement cotiteux de I’environnement

Exemple : balises a ultrasons

- Localisation précise
* Peu flexible !

Station de base

Balise

Balise R
a ultrasons

a ultrasons

Robots avec récepteurs
a ultrasons

N
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Localisation basee chemin

- Encore plus fiable que les balises
 Le chemin du robot est explicitement tracé
» Localisation relative au chemin

Exempiles :
» Tracé de peinture UV réflective

- Cable guide sous le sol détecté par induction
électromagnétique

Inconvénients

> Encore moins flexible que les balises actives
= Le robot ne doit pas trop dévier du chemin prévu
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