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•  Notions de base de théorie des probabilités

•  Généralités sur le filtre de Kalman

•  Classification des problèmes de localisation

•  Filtre de Kalman étendu (EKF)

•  Localisation incrémentielle avec le filtre de Kalman



Notions de base de théorie des probabilités

Soit      une variable aléatoire (v.a.) et      une valeur spécifique (ou réalisation) 
qu’elle peut prendre. 

: probabilité que la variable aléatoire      prenne la valeur

Exemples :

1. Le résultat d'un lancé de dé est caractérisé par (6 valeurs possibles) :
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2. Pièce de monnaie équilibrée lancée en l’air (2 valeurs possibles,     
« pile » ou « face ») :



Dans un espace continu, les v.a. peuvent prendre un continuum de valeurs 

• Dans ce cas, on introduit la notion de fonction de densité de probabilité                     
(abréviation « pdf »: probability density function).                        

Une v.a. continue      a une pdf si :                    
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• On peut obtenir la pdf d’une v.a. continue en calculant la dérivée de la 
fonction de répartition                                                       de la v.a. (abréviation
« cdf »: cumulative distribution function), à savoir :

Notions de base de théorie des probabilités

La cdf d’une variable aléatoire réelle est toujours croissante, continue 
à droite, avec une limite nulle en   et une limite qui vaut 1 en   
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Notions de base de théorie des probabilités

Exemple (loi exponentielle) :

•  Support : 

•  Paramètre :             (intensité)
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1. Nous avons que :

à savoir, l’aire sous une pdf est 1
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Propriétés d’une pdf :

Notions de base de théorie des probabilités

2. Les pdf sont des fonctions non négatives, c'est-à-dire :



• Espérance de la v.a.  :
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• Variance de la v.a.  : 

Notions de base de théorie des probabilités

Étant donnée un v.a.     avec une pdf , on peut définir les quantités suivantes :

Exemple :

Soit      une v.a. qui suit la loi exponentielle. Alors, nous avons que :

• Moment centré d’ordre             de la v.a.     : 



• Espérance de la v.a.  :
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Variables aléatoires multivariées

Cette pdf est une fonction scalaire d’une variable vectorielle. Elle est non négative 
et elle a la propriété :

• La pdf d’une v.a. vectorielle -dimensionnelle                                                  

est une pdf conjointe des éléments :

Notions de base de théorie des probabilités



• La matrice                        est symétrique (                ) et semi-définie positive (            )
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• Matrice de covariance de la v.a.  : 

Remarques :

• La matrice      contient les variances de        sur la diagonale principale et          
les covariances croisées de       et                    sur les éléments hors diagonale

Notions de base de théorie des probabilités

Exemple (matrice de covariance           ) : 



Notions de base de théorie des probabilités

1) La loi gaussienne (ou normale) est l'une des lois de probabilité les plus 
adaptées pour modéliser des phénomènes naturels issus de plusieurs événements 
aléatoires. Sa pdf dépend de deux paramètres, son espérance, un nombre réel 
noté    , et son écart type, un nombre réel positif, noté    : 

• Lorsque une v.a.      suit la loi 
gaussienne, il est courant d’utiliser    
la notation suivante :

moyenne variance
la loi gaussienne est appelée 
standard (ou centrée réduite)

Si              et             , 

Remarque:
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Si la v.a.      est -dimensionnelle, la loi gaussienne multivariée
est caractérisée par la pdf :

avec

: moyenne

: matrice de  
  covariance     
s(définie positive) 

Commande Matlab :

retourne une matrice  qui contient des valeurs        
pseudo-aléatoires tirées d’une loi gaussienne standard

Gaussienne 
     bivariée
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Notions de base de théorie des probabilités

On écrira alors :



2) Loi uniforme 

La densité de probabilité de la loi uniforme 
est une function porte sur l'intervalle :

Commande Matlab :

Si      est une v.a. uniforme, on écrit

3) Distribution de Dirac

avec la contrainte :
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Notions de base de théorie des probabilités



Pdf unimodale : un seul mode ou « un seul maximum »

Exemples : loi gaussienne, de Laplace, de Cauchy, de Student, exponentielle, du       
(chi carré)

Pdf multimodale : « plusieurs maxima »

Exemple: mélange de 2 gaussiennes,

Pdf unimodale Pdf bimodale
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Notions de base de théorie des probabilités



Densité de probabilité conjointe

La pdf conjointe de deux variables aléatoires X et Y est donnée par

Elle décrit la probabilité que la v.a. X prend la valeur et que Y prend la valeur 

Si les v.a. X et Y sont indépendantes, nous avons que :

Densité de probabilité conditionnelle

La densité de probabilité conditionnelle décrit la probabilité que la v.a. X  

prend la valeur sous la condition que sûrement la v.a. Y prend la valeur .

 
La densité de probabilité conditionnelle est indiquée               . Si                          
elle est définie comme suit :
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Notions de base de théorie des probabilités



Si les v.a. X et Y sont indépendantes :

à savoir, la connaissance de Y n’apporte aucune information 
utile sur la valeur de X

Théorème des probabilités totales

Le théorème des probabilités totales tire son origine des axiomes de théorie 
des probabilités et il établit que : 
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On dit alors que la v.a. Y a été marginalisée

Notions de base de théorie des probabilités



Le théorème de Bayes met en relation la densité de probabilité 
conditionnelle avec son inverse                 

Sous l’hypothèse que                 , on peut écrire le théorème 
de Bayes comme suit : 

Théorème de Bayes 
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T. Bayes (1701-1761)

Remarque : La version originale du théorème était pour des probabilités     
(v.a. discrètes). La version énoncée ci-dessus est pour des fonctions de densité 
de probabilité (pdf)

Notions de base de théorie des probabilités



et la fonction des deux v.a. suivante : 

Soient deux v.a. multivariées indépendantes et gaussiennes

Fonction de v.a. gaussiennes multivariées

Problème : Quelle est la moyenne et la matrice de covariance de la v.a.     ? 

•  Si la fonction est linéare, c’est-à-dire                                                    (           matrices 
constantes connues), la v.a.     est aussi gaussienne, et (comme simple conséquence 
du théorème des probabilités totales) nous avons que : 
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Notions de base de théorie des probabilités



Cependant, si     est differentiable on peut considérer une approximation  
au 1er ordre de                      au point                 :

• Si                      est non linéare,      n’est pas gaussienne, en général !               

avec

et

La moyenne et la matrice de covariance de      sont alors : 

(matrices jacobiennes de    
évaluées en             )
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Notions de base de théorie des probabilités
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Définition :

On définit un processus stochastique comme une famille de variables aléatoires          
, associées à toutes les valeurs           . L'ensemble des observations 

disponibles, constitue une réalisation du processus

•  Si l'ensemble      est indénombrable, on parle                        
de processus continu (par ex. le mouvement 
brownien d'une particule)

•  Si l'ensemble      est dénombrable, on parle                         
de processus discret ou de série temporelle                       

Notions de base de théorie des probabilités

Mouvement
brownien

Un processus stochastique (ou aléatoire) représente 
une évolution, discrète ou à temps continu, d'une 
variable aléatoire

En d'autres termes, il est une v.a. indexée dans le temps
v.a.

Remarque :
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Un processus stochastique est dit stationnaire si l’ensemble des statistiques        
ne varie pas dans le temps (ou plus précisément, si ses propriétés statistiques 
caractérisées par des espérances mathématiques sont indépendantes du temps)

Notions de base de théorie des probabilités

Définition :

Temps

• Un processus stochastique est un ensemble   de 
fonctions ordinaires   , chacune d'elles étant une 
réalisation du processus. On peut caractériser ce 
processus en lui associant à chaque instant            
une densité de probabilité 

• À la densité de probabilité   , on peut 
associer à son tour les moments appelés moyennes 
d'ensemble :

Si ces moyennes d'ensemble, et par conséquent la densité de probabilité, 
ne dépendent pas de l'instant   , on parle de processus stationnaire
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Le filtre de Kalman

• Le filtre de Kalman est couramment utilisé en automatique, 
robotique et traitement du signal, mais aussi en finance, 
météorologie, océanographie, sciences des transports, etc.
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R.E. Kalman 
(1930 - 2016)

• Une grande variété d’estimateurs inspirés par le filtre de     
Kalman a été développée à partir de la formulation originale     
pour les systèmes linéaires à temps discret (Kalman, 1960) :

• Filtre de Kalman étendu, « extended Kalman filter » ou EKF 
(Schmidt, 1966)

• Filtre de Kalman à temps continu (Kalman & Bucy, 1968)

• Filtre de Kalman non parfumé, « unscented Kalman filter »  
ou UKF (Julier & Uhlmann, 2004)

avec la National 
Medal of Science 

en 2009



Filtre de Kalman linéaire

• Soit le système dynamique linéaire à temps discret,                          :
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• Le bruit de modèle et le bruit de mesure sont supposés blancs 
(sans mémoire), à moyenne zéro, et gaussiens avec matrices de 
covariance        et , respectivement. Les bruits de modèle et de  
mesure sont aussi supposés non corrélés. En résumé, nous avons que :

Entrée de commande (connue)

Équation  
d’état

Équation 
de mesure



• Le filtre de Kalman linéaire à temps discret est un estimateur récursif

▫ Pour estimer l'état courant , on a besoin seulement de connaître     
l'estimé de l'état précédent et les mesures courantes : l'historique
des mesures et des estimés n'est pas nécessaire

• L' « état » du filtre est représenté par deux variables :
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:  estimé de l'état du système        à l'instant , en utilisant 
l’information jusqu’à l’instant

:  matrice de covariance de l'erreur 
d’estimation de l’état à l'instant , 
en utilisant l’information jusqu’à 
l’instant Erreur d'estimation

de l’état        du système

1.

2.

Filtre de Kalman linéaire



Initialisation du filtre :
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Phase de prédiction :

Pour                           : 

où                  est l’état initial du système

Filtre de Kalman linéaire
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Phase de correction :

: matrice d'estimation a posteriori de la covariance de l'erreur

avec

Gain de Kalman
(Remarque : ce gain peut 

être calculé hors ligne)

Innovation

: matrice d'estimation a priori de la covariance de l'erreur

Innovation                                        : partie de la mesure qui contient de nouvelles 
informations sur l'état. L’innovation (ou résidu de la mesure) est un processus 
stochastique blanc avec moyenne zéro et covariance

Filtre de Kalman linéaire



Propriétés du filtre de Kalman
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où       est une matrice de pondération définie positive

« Problème E » 
Trouver l'estimateur qui minimise (à chaque instant de temps ) l’espérance 
de la norme pondérée de l'erreur d'estimation                           , à savoir:

•  Si le bruit de modèle et de mesure sont gaussiens, blancs, à moyenne zéro,                      
et non corrélés, le filtre de Kalman est la solution du Problème E 

•  Si le bruit de modèle et de mesure sont blancs, à moyenne zéro et non corrélés, 
le filtre de Kalman est la meilleure solution linéaire du Problème E 

• Il peut exister un estimateur non linéaire qui donne une meilleure 
solution, mais le filtre de Kalman est le meilleur estimateur linéaire 
• Donc, même si le bruit n'est pas gaussien, le filtre de Kalman reste 
toujours le filtre optimal linéaire (l’estimateur linéaire à erreur
quadratique moyenne minimale ou linear MMSE estimator, en anglais)
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•  Si le bruit de modèle et de mesure sont corrélés
ou colorés (c’est-à-dire, avec mémoire), on peut adapter la formulation 
du filtre de Kalman linéaire pour résoudre le Problème E 

•  Pour les systèmes dynamiques non linéaires, plusieurs formulations         
de filtres de Kalman non linéaires se rapprochent de la solution du Problème E                
(par ex. l’EKF et l’UKF) 

   Problème : toute forme d'optimalité est perdue !

Propriétés du filtre de Kalman

Exemples de densité spectrale de puissance d’un bruit

Fréquence f (Hz) Fréquence f (Hz) Fréquence f (Hz)
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(a) Bruit blanc (b) Bruit rose

La densité de puissance diminue 
de 3 dB par octave (comme 1/f)

La densité de puissance 
diminue de 6 dB par 
octave (comme 1/f2)

Spectre uniforme (plat) 
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(c) Bruit rouge ou brownien
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Filtre de Kalman étendu (EKF)

• Soit le système dynamique non linéaire à temps discret,                           :
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• Comme pour le filtre de Kalman linéaire : 

Le bruit de modèle et le bruit de mesure sont supposés     
blancs (sans mémoire), à moyenne zéro, et gaussiens avec matrices      
de covariance        et       , respectivement. Les bruits de modèle et              
de mesure sont aussi supposés non corrélés

Entrée de commande (connue)

Équation 
d’état

Équation 
de mesure

où              et           sont deux fonctions différentiables arbitraires



Initialisation du filtre :
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Phase de prédiction :

Pour                           : 

où                   est l’état initial du système

Filtre de Kalman étendu (EKF)

avec
• Matrice jacobienne de la fonction 

• On a considéré ici le développement 

en série de Taylor à l’ordre 1 de 
en 
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Phase de correction :

avec

Gain de Kalman

Filtre de Kalman étendu (EKF)

et

•  Matrice jacobienne de la fonction

•  On a considéré ici le développement en 

série de Taylor à l’ordre 1 de en 
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Filtre de Kalman non parfumé (UKF)

• L’UKF est plus précis que l’EKF avec des systèmes fortement non linéaires

• L’UKF utilise une technique d’échantillonnage déterministe (la transformation  
non parfumée) pour choisir un nombre minimal de points échantillons (points
« sigma ») autour de la moyenne. Ces points sont propagés à travers les équations 
non linéaires du système dont on récupère la moyenne et la covariance

• L’UKF n’a pas besoin du calcul explicite des matrices jacobiennes comme l’EKF

•  “Optimal State Estimation: Kalman, H∞ , and Nonlinear Approaches”, 

D. Simon, John Wiley & Sons, 2006, Partie II et IV

Pour d'autres propriétés et d’autres variantes du filtre de Kalman (filtre d'information, 
filtre H∞, filtre adaptative, filtre de Kalman d'ensemble ou EnKF, problèmes de 
prédiction et de smoothing, etc.), voir les livres :

•  “Optimal Control and Estimation”, R.F. Stengel, Dover Publications, 1994, Ch. 4
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“Optimal State Estimation: Kalman, H∞ , and Nonlinear Approaches”, D. Simon, 
John Wiley & Sons, 2006 (Sect. 5.1, page 126)

Horizon temporel et estimation

temps k1 2 3 54 6 7 8 9 10

Dans l’exemple en figure, on suppose d’avoir reçu des mesures (losanges rouges) 
jusqu’à l’instant k = 5 (temps présent) inclus :

• Un estimé de l’état à k < 5, s’appelle estimé lissé (« smoothed estimate »)

• Un estimé de l’état à k = 5, s’appelle estimé a posteriori

• Un estimé de l’état à k = 6, s’appelle estimé a priori

• Un estimé de l’état à k > 6, s’appelle prédiction

Estimé 
lissé 

Estimé            
a posteriori 

Estimé          
a priori 

Prédiction

Cf. filtre de Kalman

…
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Classification des problèmes de localisation

1 – Problème de localisation incrémentielle
•  On assume que la pose initiale           du robot soit connue                           
et que l’incertitude associée soit “petite” 

•  La pose courante du robot, , est mise à jour en utilisant                     
la connaissance de la pose précédente (“suivi ou tracking de pose”) 

•  La croyance sur l’état du robot est typiquement modelisée                    
avec une pdf unimodale, comme par ex. une pdf gaussienne 

 

• Dans toute localisation probabiliste basée carte, la « croyance » sur l’état 
du robot (belief state, en anglais) est représentée par une pdf

38



2 – Problème de localisation globale
•  On assume que la pose initiale du robot ne soit pas connue. Ça veut dire      
que le robot peut être placé partout dans l’environnement et il doit se localiser
•  La croyance initiale sur l’état du robot est typiquement une pdf uniforme

3 – Problème du robot kidnappé
•  Le robot est kidnappé et déplacé en un autre endroit 
•  Ce problème est similaire au problème de localisation globale seulement         
si le robot se rend compte d’être été kidnappé 
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Classification des problèmes de localisation



Localisation de Markov (resolution des problèmes 1, 2 et 3) 

•  La croyance sur l’état du robot peut être représentée par une pdf arbitraire

• Localisation à partir de toute position initiale inconnue

•  Approche recursive : phase de prédiction et de correction 

•  On peut sortir de situations ambiguës (en effet, plusieurs positions                               
possibles du robot sont “suivies” en même temps)

•  Pour mettre à jour la probabilité de toutes les positions dans tout l’espace            
des états à chaque instant, on a besoin d’une représentation discrète de l’espace 
(par ex. une grille avec cellules de taille fixe ou un graphe topologique) 

•  Puissance de calcul et mémoire requise importantes (par consequent,                      
la résolution et la taille de la carte sont limitées)
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Réduction de la complexité de calcul par échantillonnage aléatoire 
(random sampling, en anglais):

•  La croyance sur l’état est approchée (on répresente                       
que un sous-ensemble des positions possibles du robot)

•  Algorithmes de condensation ou Monte Carlo



Localisation par filtre de Kalman (resolution du problème 1)

•  La position initiale du robot est connue 

• La croyance sur l’état du robot est représentée par une seule pdf gaussienne.     
Il donc suffit de mettre à jour à chaque itération les paramètres de la gaussienne 
(c’est-à-dire, la moyenne et la matrice de covariance)

•  Localisation precise et efficace

• Utilisable avec une représentation continue de l’environnement

•  Si l’incertitude sur la position du robot devient trop importante (par ex. suite     
à la collision avec un obstacle) et la pdf n’est plus vraiment unimodale, le filtre    
de Kalman peut n’être pas capable de capturer la multitude de positions possibles 
du robot et il peut échouer (par conséquent, le robot sera perdu à jamais)  

41

Remarque : 
On peut montrer que la localisation de Markov se réduit à la localisation 
par filtre de Kalman si on représente la croyance sur l’état du robot avec 

une pdf gaussienne
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Localisation incrémentielle

• Hypothèse : position initiale connue précisément

• Le robot mobile se déplace : l’odométrie permet de mesurer     
son mouvement

 Perception proprioceptive : croissance permanente                
de l’incertitude de localisation

 Pour borner cette incertitude :

1. Localisation par rapport à une carte (« M »)

2. Observation de l’environnement (perception 
extéroceptive)
▫ Laser, capteur à ultrasons, caméra, etc.

43



• Localisation consistante =

odométrie + observations extéroceptives

• Comment les combiner ?

Deux étapes :

1. Prédiction

2. Correction

44

Localisation incrémentielle



1. La prédiction
▫ Pose estimée par les capteurs 

proprioceptifs

▫ Dans notre cas:
 Les encodeurs des roues

(odométrie)

▫ L’incertitude sur la
position du robot
croît strictement au
cours du temps

45

Localisation incrémentielle



2. La correction

▫ Utilisation des mesures ou perceptions 
extéroceptives

▫ On corrige la pose estimée par la prédiction

▫ L’incertitude se réduit

46

Exemple:

• Télémètre laser pour mesurer la distance d’un mur

• Correction suivant la position estimée                        
dans la phase de prédiction

Localisation incrémentielle



Localisation par filtre de Kalman (KF)

• Localisation robuste

▫ Fusion de capteurs hétérogènes                             
(« filtre de fusion de capteurs »)

• Localisation « optimale »

▫ Procédure récursive adaptée au problème                    
de localisation incrémentielle

▫ Exploitation maximale de l’information disponible

47



• Si on utilise le KF standard :
▫ Le système est supposé :

 Linéaire

▫ Les bruits sont supposés : 
 Blancs, gaussiens, à moyenne zéro, non corrélés

... mais pour des robots mobiles
▫ Equations d’état et/ou de mesure non linéaires.

Une linéarisation est nécessaire : filtre de Kalman
étendu (EKF) !
 Toute garantie d’optimalité est perdue …

▫ Hypothèse de bruit gaussien : elle rend les calculs 
plus faciles, mais elle n’est pas nécessairement                        
une description fidèle de la réalité !

48

Localisation par filtre de Kalman (KF)
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Illustration graphique (1D)

1. Phase de prédiction

2. Phase de correction

Erreur due à l'odométrie

On utilise un télémètre laser pour 
mesurer la distance du mur

Croyance 

initiale 
du robot
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Croyance initiale sur    
la position du robot

Mouvement et prédiction :
gaussienne décalée,
aplatie et élargie
(application du théorème 
des probabilités totales)

Pdf (gaussienne) 

après la mesure 

Fusion des 
gaussiennes

Pdf gaussienne

Application 
du théorème 
de Bayes 

Remarque : la variance de la croyance résultante est à la fois plus petite que la variance 
de la pdf après la mesure (ou observation) et de la précédente croyance du robot

= « map » (modèle  
de l’environnement)

correction



Localisation par EKF

• On peut poser le problème de localisation comme               
un problème de fusion de capteurs
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encodeurs
prédiction de position, 

prédiction d’observation

observations réelles
(capteurs extérocep.)

appariement

mise à jour de 
position 

(estimation)

observations prédites

p
erce

p
tio

n

données brutes des capteurs
ou primitives extraites

OK

prédictions 
appariées avec
les observations
réelles

estimé de position

1. Prédiction 

2. Correction

Deux phases :

base de données



1. Prédiction (cf. Ch. 1, partie 2)

2. Correction

a. Observation
 Mesures des capteurs

 Extraction de primitives (par ex. droites, cercles, blobs)

b. Prédiction de mesure (ou d’observation)
 Détermination des primitives que le robot s’attend                   

à observer à partir de la position où il croit se trouver      
(c’est-à-dire, la position prédite en phase 1)
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Localisation par EKF



c.  Appariement (data association)

 Calcul de la meilleure correspondance possible entre:

▪ Les primitives extraites de l’observation

▪ Les primitives trouvées par la prédiction de mesure

d.  Estimation

 Fusion de l’information apportée par ces appariements

 Mise à jour de la croyance sur l’état du robot

53

Localisation par EKF



Changement de notation

54

Phase de prédiction de l’EKF :

Phase de correction de l’EKF :

Par la suite, on utilisera la notation simplifiée du livre de Siegwart (Sect. 5.6.8) :

:  pour indiquer le temps discret

Prédiction : Correction :



Distance de Mahalanobis
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La distance de Mahalanobis d’un vecteur               vers un ensemble 

de vecteurs de valeur moyenne               et possédant une matrice          
de covariance      (définie positive), est définie comme suit :

Définition :

Si               (la matrice identité           ) la distance de Mahalanobis 

est simplement la distance euclidienne de     vers    , en effet :

Remarque :



1. Prédiction

• La pose prédite      dépend de         et      (commande)

▫ : fonction d’estimation odométrique de position

• On peut calculer la prédiction de covariance      :

▫ : covariance de l’état précédent du robot

▫ : covariance du bruit du modèle de mouvement

▫ : matrices jacobiennes de    (calculées par rapport     
à l’état estimé et à la commande courants)       
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(rappel                                      

Ch. 1, partie 2)



1. Prédiction

• Les deux équations précédentes permettent

▫ De prédire la pose du robot

▫ De prédire son incertitude après un mouvement      
du robot spécifié par la commande

• Rappel

▫ La croyance sur l’état est gaussienne

▫ Mise à jour de la moyenne et de la covariance             
de la pdf uniquement
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a. Observation
▫ : mesure du capteur au temps
▫ Ensemble de observations uniques extraites               

du capteur : 
▫ Observation : marqueur point, droite ou valeur brute
▫ Equation de mesure :

Problème:
 Coordonnées dans un repère local au robot
 Pour l’appariement, toutes les mesures et prédictions 

doivent être exprimées dans le même repère
 On a besoin d’un changement de repère : de global à local
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Modèle de
l’environnement

Pose du 
robot

2. Correction (4 étapes, 1/4)



2. Correction (2/4)

b. Prédiction de mesure

▫ et la carte     : prédiction de mesure

 Ce que le robot s’attend à percevoir à la pose estimée

Exemple :
• Le robot prédit qu’il se trouve face à une porte

• Le laser renvoie la perception d’un mur

• La porte est la mesure prédite

• Le mur est la mesure réelle
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car l’appariement
n’a pas encore été fait



▫ Calcul de prédiction de mesure :

 Transformer les primitives de dans le repère local

 Fonction d’observation de la primitive   :

 Dépend de l’estimé courant de la pose du robot

 Dépend de la position de chaque primitive dans la carte
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2. Correction (2/4)



c.  Appariement

▫ À ce point, on a :

 Un ensemble de mesures courantes

 Un ensemble de primitives prédites

▫ But de l’appariement :

 Identifier toutes les mesures correspondant            
aux primitives prédites

▫ En pratique :

 Il faut associer la mesure     à sa prédiction
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dans le repère 
local du robot

2. Correction (3/4)



▫ Pour chaque appariement:

 Calcul de l’innovation

 Elle est la différence entre les mesures           
observées et prédites :

▫ Covariance de l’innovation :

▫ Validité de l’appariement :

 Distance de Mahalanobis (au carré)                           
avec un seuil           fixé:
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Jacobienne de       par rapport à l’état estimé 

Matrice de covariance  
de la mesure réelle

2. Correction (3/4)



d.  Estimation

▫ Calcul du meilleur estimé     de la pose du robot                                         
et de la matrice covariance 

▫ Se base sur :

 La pose prédite

 Les mesures courantes 
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2. Correction (4/4)



▫ Étapes à suivre :
 On calcule l’innovation composite     à partir des                

(qui ont validé l’appariement)

 On empile les       en 
 On assemble les covariances :

 On calcule la covariance de l’innovation composite 

 On met à jour l’estimé de pose      et sa covariance       :

où                                        est le gain de l’EKF
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(I)

(II)

2. Correction (4/4)



TD2 : étude de cas sur Matlab
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▫ Localisation par filtre de Kalman étendu (EKF)

▫ Robot unicycle à conduite différentielle 

▫ Primitives dans l’environnement (M) : droites

▫ Capteur extéroceptif : télémètre laser 2D 

droite 

robot

Mesure de            
la droite en 
coordonnées 

polaires :

Données brutes (points 2D)

(a) (b)



Plan du chapitre

• Introduction et défis

• Odométrie

• Localisation par filtre de Kalman

• Autres techniques de localisation
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Partie 2

Partie 3

Partie 1

Partie 4



Localisation Monte Carlo 

• Filtre de Kalman

 Pdf gaussienne

• Filtre particulaire (particle filter*, en anglais)

 Pas limité à pdf unimodales

Localisation Monte Carlo : le filtre particulaire est utilisé             
pour représenter la croyance sur l’état du robot

 Ensemble de N poses initiales dans une carte

 On fait évoluer ces N poses possibles en fonction des perceptions 
proprioceptives et extéroceptives via un modèle probabiliste

 Quand les N poses (à savoir, les N particules), convergent vers                
un même état, la localisation est la plus sûre possible
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* "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking", 
M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, IEEE Trans. Signal Proces., vol. 50, 

n. 2, pp. 174-188, 2002



Exemple

68

Localisation Monte Carlo : très utilisée dans les applications à cause de sa robustesse 
(cf. le livre "Probabilistic Robotics", S. Thrun, W. Burgard, D. Fox, MIT press, 2005)

État initiale 
Les N particules sont en rouge

Le robot 

se déplace



Construction autonome de carte
• SLAM (Simultaneous Localization And Mapping) 

▫ Localisation et cartographie simultanées                               
(pas de connaissance a priori de carte)

▫ Solution efficace du SLAM : « Saint Graal »                             
de la robotique mobile 

▫ Formalisme du filtre de Kalman étendu (« EKF SLAM »)
 On estime : 

 L’état du robot et son incertitude
 L’état et l’incertitude de chaque primitive                                        

(point, droite, etc.) perçue de l’environnement 
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Recherche très active : SLAM visuel (une caméra: MonoSLAM,                                                       
LSD-SLAM, ORB-SLAM, OpenVSLAM, PTAM), SLAM basé filtre                      
particulaire, SLAM coopératif ou C-SLAM, « Pose Graph Optimization » (PSO), etc. 

"Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age", 
C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, J.J. Leonard, IEEE Trans.
Robotics, vol. 32, n. 6, pp. 1309-1332, 2016
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Le “rêve” des roboticiens : Scène du film Prometheus (Ridley Scott, 2012)

https://www.youtube.com/watch?v=yA6OKoW30Pk

Construction autonome de carte



• Balise/amer (beacon ou landmark, en anglais)

▫ Objet passif ou actif dans le champ                             
de perception du robot

▫ La position globale des balises                                   
est connue avec précision

a.  Balise passive

 Considérée avec la localisation par filtre de Kalman

 Problème : répartition judicieuse des           

balises dans l’environnement 
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Localisation basée balises



Localisation basée balises

Exemple 1 : balises rétro réflectives

 Robot équipé avec une nappe laser 

 Mesure d’énergie renvoyée vers le robot

 3 balises minimum (moins si l’odométrie est disponible)

63

Laser du robot
Balise

rétro réflective



Localisation basée balises

Exemple 2 : balises colorées

 Chaque balise a un code couleur unique

 Le robot est équipé avec une caméra (standard ou 
panoramique) qui permet de détecter les balises
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Balises avec code coleur  
(3 couleurs : noir, jaune, rose)

Robot avec caméra 
panoramique embarquée



Localisation basée balises

Exemple 3 : codes à barres

 Kiva Systems (acquise par Amazon en 2011) :
système robotisé pour le stockage en entrepôt

65

robot

Étagère mobile



b.  Balise active

 Applications industrielles et militaires

 Localisation robuste …

… mais pré-équipement coûteux de l’environnement

Exemple : balises à ultrasons

 Localisation précise

 Peu flexible !
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Balise

à ultrasons

Robots avec récepteurs

à ultrasons

Balise

à ultrasons

Station de base

Localisation basée balises



• Encore plus fiable que les balises
• Le chemin du robot est explicitement tracé 

▫ Localisation relative au chemin
Exemples :
 Tracé de peinture UV réflective
 Câble guide sous le sol détecté par induction 

électromagnétique

▫ Encore moins flexible que les balises actives

▫ Le robot ne doit pas trop dévier du chemin prévu

67

Localisation basée chemin

Inconvénients
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