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3.  Fenêtre dynamique
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Partie 4 : Planification de trajectoire 

et évitement d’obstacles



Fenêtre dynamique

• Sélection d’un couple  

: vitesse longitudinale du robot

: vitesse angulaire du robot

selon des contraintes :

 Evitement d’obstacles

 Atteindre un but

 Modèle cinématique/dynamique du robot
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“The dynamic window approach to collision avoidance", D. Fox, W. Burgard, 
S. Thrun, IEEE Robot. & Autom. Magazine, vol. 4, n. 1, pp. 23-33, 1997

“High-speed navigation using the global dynamic window approach", O. Brock, 
O. Khatib, in Proc. IEEE Int. Conf. Robotics and Automation, pp. 341-346, vol. 1, 1999

Robot unicycle

CIR



• Contrainte principale : évitement d’obstacles
▫ Contrainte dure

 Binaire : succès/échec

 Elle doit être obligatoirement satisfaite

▫ Évaluation :
 À partir de l’environnement perçu

 À partir de la position future estimée du robot
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Fenêtre dynamique



• Illustration de la contrainte d’évitement d’obstacles
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robot robot
obstacle

obstacle

Fenêtre dynamique

Environnement réel Perceptions du robot



• Construction du graphe des vitesses

▫ Ensemble des couples de vitesse (et donc des trajectoires) 
possibles du robot 
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Fenêtre dynamique

• Dans ce graphe, on peut tracer la fenêtre des vitesses accessibles 
au prochain pas de temps :

où
: intervalle de temps pendant lequel les accelerations linéaires   
  et angulaires             du robot seront appliquées

: vitesse courante du robot

Remarque :
La fenêtre dynamique       est centrée sur la vitesse courante du robot et elle 
contient les vitesses du robot accessibles dans le prochain intervalle de temps
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Fenêtre 

dynamique

obstacle

Fenêtre dynamique

• Fenêtre dynamique

Exemple :

Vitesse courante

Vitesses conduisant à percuter un obstacleVitesses conduisant à un déplacement sûr  

Vitesses accessibles au prochain 

pas de temps



• Fenêtre dynamique pour le robot RHINO B21 de Real World Interface,          
avec un système synchro-drive à 3 roues [Fox et al., RAM’97]
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Fenêtre dynamique

Vitesse courante

Obstacles

Vitesses accessibles au 
prochain pas de temps

Fenêtre dynamique

90 cm/s

90 deg/s  

▪ Max vitesse de translation du robot : 95 cm/s

Couloir

Porte

_ 90 deg/s



• Fenêtre

▪ Prise en compte des obstacles

▪ Choix d’un couple           conduisant                                            
à un déplacement sûr

▪ Problème : grande nombre de couples de vitesses                                     
possibles dans la fenêtre dynamique

9

Fenêtre dynamique

• Solution possible
▪ Ajout de contraintes souples : fonction                                   

de coût              à optimiser
▪ Expression de préférences dans l’espace  

des vitesses accessibles



• Coût :

▫ Somme de trois termes :

1. Préférence de direction (« heading ») : utile si nous avons 
une estimation de la direction d’un but à long terme

2. Préférence sur l’éloignement maximal des obstacles

3. Préférence a priori sur les vitesses (longitudinales)

La fonction         lisse la somme pondérée des trois termes 
(pour garantir plus d’espace latéral libre par rapport aux 
obstacles) et              sont trois gains positifs

▫ Le couple            dans la fenêtre dynamique      qui maximise                  
le coût             est alors choisi

▫ Ce couple garantit l’évitement d’obstacles (contrainte dure)   
et les contraintes souples
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Fenêtre dynamique



• Exemple de contrainte souple
▫ Préférence directionnelle : 
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Direction 
préférentielle

Fenêtre 

dynamique

Fenêtre dynamique

G



• En pratique :
▫ Evaluation des contraintes en     points du graphe             

des vitesses (c’est-à-dire, sur une grille)
 La valeur de     dépend des ressources de calcul              

disponibles et de la complexité des contraintes

▫ Utilisation intéressante pour :
 Robots rapides
 Robots à forte accélération/décélération

Déplacement           
sûr et régulier
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“High-speed navigation using the global dynamic window approach", O. Brock, O. Khatib, 
in Proc. IEEE Int. Conf. Robotics and Automation, pp. 341-346, vol. 1, 1999

• Carte de 30 m × 30 m de l’environnement avec une résolution de 5 cm

• Fréquence de commande : supérieure à 15 Hz   

• Vitesse longitudinale moyenne du robot : supérieure à 1 m/s

Fenêtre dynamique

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *



4. Graphe de Voronoï
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Partie 4 : Planification de trajectoire 
et évitement d’obstacles



Graphe de Voronoï

• Soit un ensemble de points 
différents      (appelés 
générateurs ou germes)
dans un environnement

• Le diagramme de Voronoï
partitionne      en régions                                        

les plus proches de           
chaque point
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Georgy F. Voronoï (1868-1908)
mathématicien russe

6 régions



Graphe de Voronoï

• Le diagramme de Voronoï est                  
l’ensemble des régions

• Le graphe de Voronoï est défini                  
par la frontière des régions 
(bleue dans la figure)
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Exemple Matlab :
  Plot_Voronoi.m

• Plus formellement, la région      
est définie par :

où             indique la norme Euclidienne



Graphe de Voronoï
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• Plusieurs algorithmes existent pour le calcul du                               
diagramme de Voronoï d'un ensemble de points

• L’algorithme de Fortune est un algorithme                           
de balayage (« sweepline ») : une droite balaie                                 
les points dans une certaine direction,                                     
l'algorithme met à jour la construction,                                             
et lorsque tous les points ont été balayés,                                           
le diagramme est construit 

• Complexité de l’algorithme de Fortune : 
▪ en temps
▪ en espace mémoire

“Voronoi Diagrams and Delaunay Triangulations“, S. Fortune, 
Ch. 27 du Handbook of Discrete and Computational Geometry, 
3rd ed., CRC press, 2018

droite



Graphe de Voronoï : exemples et applications

• Le poisson Tilapia mossambica crée des diagrammes 
de Voronoï au cours du processus d'élevage des petits 

(voir l’image à gauche)
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Emplacement de nouveaux 
magasins dans un quartier

Couverture d’une région  
par une cohorte de robots

[Cortés et al., TRA’04]

•   Les diagrammes de Voronoï sont utilisés 

dans plusieurs domaines (biologie, géographie, 

hydrologie, reconnaissance des formes, 

infographie, recherche opérationnelle, etc.)        

et pour de nombreuses applications :

▪ Localisation de nouvelles installations

▪ Couverture optimale d’une région limitée

Salar d’Uyuni, lac salé en Bolivie (3700 m)



Graphe de Voronoï : exemples et applications

Le médecin John Snow utilisa un diagramme de Voronoï pour montrer que la majorité des
personnes décédées à Londre suite à l’épidémie de choléra de 1854 (disques rouges), vivait

plus près d’une pompe d’eau infecte (cercle vert) que de toutes les autres pompes (bleues)
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Pompe d’eau 
infecte entre

Broad Street 
et Cambridge 

Street à Londre
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a) Diagramme de Voronoï 3D

b) Diagramme de Voronoï généralisé défini                   
à partir de générateurs de dimension 1 ou 2     
(segments de droite ou surfaces)

c) Diagramme de Voronoï d‘étendue    :             
chaque région de Voronoï est définie par :

Diagramme de Voronoï : 
Générateurs de dim. 1 (segments)

Diagramme de 

Voronoï 3D

où

Diagramme de Voronoï : 
Générateurs de dim. 2 (surfaces)

Diagramme de Voronoï
d’étendue

x
y

z

Graphe de Voronoï : extensions

est un disque de rayon     centré sur   

(a)

(b) (c)
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• Fonctions de distance autres que le distance euclidienne

Distance euclidienne Distance de Manhattan ou distance

Région non convexe !
Graphe de Voronoï : extensions

“Spatial tessellations: concepts and applications of Voronoi diagrams”, A. Okabe, 
B.N. Boots,  K. Sugihara, S.N. Chiu, Wiley & Sons, 1992



Graphe de Voronoï

▫ On représente le robot par un point qui perçoit               
un ensemble d’obstacles (ponctuels) tout autour de lui

 Distance des obstacles les plus proches : 

 Angle vers les obstacles :

▫ Loi de contrôle du mouvement :

 Quand 2 obstacles sont détectés : se déplacer dans                              

la direction                            (suivre la ligne médiane)

 Quand il y a 3 obstacles proches ou plus :                           
définir un « lieu » 

21

Evitement d’obstacles :
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B

Graphe de Voronoï

• Détection d’un troisième obstacle

• Mouvement selon une arête du graphe de Voronoï

A

C

Robot

B

A



• Déplacement à équidistance des trois obstacles et définition d’un lieu

B

A

C

23

Graphe de Voronoï

Robot Robot



Algorithme
1. On part du point
2. Se déplacer en maintenant une distance égale              

entre les obstacles A et B :
3. Sélectionner un obstacle C avec une distance                      

telle que : 
 Utiliser une tolérance sur l’égalité
 Éviter les cas où ces distances ne sont jamais égales

 Attention au cas où les (une des) distances sont égales 
à la distance maximale perceptible du robot

4. Arrêt et définition d’un lieu

24

Graphe de Voronoï
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5. Dès que le robot est sur un lieu
• Sélectionner une arête de       

sortie du graphe de Voronoï
(selon un certain critère)

• Effectuer une rotation                
pour faire face à l’arête

6. Lancer le robot sur la            
nouvelle arête, et répéter                    
la procédure précédente                      
(« go to 3. ») jusqu’au but

B

A

C

Graphe de Voronoï
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Départ

But

• Exemple de chemin sans collisions (il n’est pas unique !)

obstacle

Graphe de Voronoï



• Extension 1 : obstacles non ponctuels (polygones) 
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But

obstacle

Graphe de Voronoï

Départ



▪ Arête du graphe de Voronoï :  

▫ Ensembles de points équidistants de deux bordures

▪ Sommet du graphe de Voronoï : 

▫ Ensembles de points équidistants de trois bordures ou plus

28

Salle
Sommet

Arête

• Extension 2 : obstacles non ponctuels (par ex. les murs 
d’une salle)

Graphe de Voronoï
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Graphe de Voronoï
• L'axe médian (« medial axis ») permet de représenter 

la forme d’une région en trouvant son squelette 
topologique, c'est-à-dire un ensemble de courbes             
qui court le long du « milieu » de la région 

• Soit         la frontière de l’environnement     . L’axe médian
de      est défini par :



• Construction de cartes topologiques (cf. le Ch. 1.3)

▫ Démarrage

 Trouver l’objet le plus proche

 Se déplacer jusqu’à trouver un second objet

 Suivre la ligne médiane vers un troisième objet

 Définition du lieu initial

▫ Tant qu’il existe une arête inexplorée

 Suivre cette arête vers le lieu situé à l’autre bout

▫ Arrêt quand toutes les arêtes ont été explorées
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Graphe de Voronoï

Autre application du graphe de Voronoï en robotique mobile :



• Exemple

31

Construction de la carte 
topologique d’un 

bâtiment (8 lieux)

Départ

Graphe de Voronoï



5. Planification probabiliste
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Partie 4 : Planification de trajectoire 

et évitement d’obstacles
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Méthodes déterministes (champs de potentiel, fenêtre dynamique,      
graphe de Voronoï)

• Elles permettent de retrouver le même chemin sans collisions à chaque 
exécution, sous réserve d'avoir des conditions initiales équivalentes

• Les méthodes déterministes sont dites complètes en résolution car elles 
garantissent de trouver une solution ou d'indiquer s'il n'y a pas de solution

Méthodes probabilistes

• Ces méthodes ne trouveront pas forcément le même chemin sans 
collisions à chaque exécution, même avec les mêmes conditions initiales

• Ces méthodes ne sont pas complètes en résolution, mais elles garantissent 
de trouver un chemin sans collisions s'il en existe un. On dit qu'elles sont 
complètes en probabilité

Méthodes déterministes et probabilistes



Planification probabiliste
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Les planificateurs probabilistes font partie de la grande famille des méthodes 
basées sur l'échantillonnage (« sampling-based methods », en anglais)

•  Très efficaces, spécialement pour problèmes définis dans un espace     
des configurations     de très haute dimensionalité

Idée de base des méthodes basées sur l'échantillonnage :                   
Déterminer un ensemble fini de configurations sans collisions qui représentent 
adéquatement l’espace libre dans l’environnement et utiliser ces configurations 
pour construire une “roadmap” (carte de route) entre deux poses données      et 

du robot

•  À chaque iteration, on choisit une configuration candidate et on vérifie 
qu’elle ne comporte pas de collisions entre le robot et les obstacles

•  Si il y a une collision, la configuration candidate est rejetée. Sinon, elle est 
rajoutée à la roadmap et elle est connectée, si possible, aux autres configurations 
déjà mémorisées  



Planification probabiliste
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▪  Approche déterministe : les configurations candidates sont choisies                   
à travers une grille régulière appliquée à l’environnement (voir, par ex. 
[Janson et al., IJRR’18])

Cette procédure est assez générale. Il y a deux façons de choisir les candidats :

Deux méthodes importantes qui utilisent l’approche stochastique sont :

1.  PRM (Probabilistic Roadmap)

▪  Approche stochastique : les configurations candidates sont choisies          
selon une certaine fonction de densité de probabilité (pdf) 

2.  RRT (Rapidly-exploring Random Tree)

Remarque : l’étude de l’optimalité de ces méthodes est assez récente (elle 
s’appuie sur la théorie des graphes aléatoires et de la percolation), voir les articles :

"Sampling-based algorithms for optimal motion planning”, S. Karaman, E. Frazzoli,            
Int. Journal of Robotics Research, vol. 30, no. 7, pp. 846-894, 2011

"Exploring implicit spaces for constrained sampling-based planning", Z. Kingston, M. Moll, 
L.E. Kavraki, Int. Journal of Robotics Research, vol. 38, no. 10-11, pp. 1151–1178, 2019



Planification probabiliste : PRM

1. Probabilistic Roadmap (PRM) 
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"Probabilistic roadmaps for path planning in high-dimensional configuration spaces", L.E. Kavraki,             
P. Svestka, J.-C. Latombe, M.H. Overmars,  IEEE Trans. Robotics and Automation, vol. 12, n. 4,                   

pp. 566-580, 1996

• On génère un échantillon aléatoire de l’espace des configurations                   
en utilisant une pdf uniforme

Algorithme :

•   est testé pour les collisions

• Si  ne génère pas de collisions, il est ajouté à la roadmap (PRM) et 
connecté (si possible) à travers des chemins locaux sans collisions, à des 
configurations ‘suffisamment’ proches déjà présentes dans la roadmap
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• La génération d’un chemin local sans collisions entre            et une 
configuration proche           est effectuée par un planificateur local. 
Typiquement, on considère un chemin droit entre            et          ,            
et on vérifie s’il y a des collisions (par ex. on vérifie que les échantillons 
individuels du segment ne génèrent pas de collisions) 

• Si le chemin droit provoque une collision, il est rejeté et            et                 
ne sont pas connectés dans la roadmap

• La procédure incrémentale de la méthode PRM s’arrête lorsque un   
nombre maximal d’itérations a été atteint ou le nombre de composantes 
connexes dans la roadmap dévient inférieur à un seuil-limite

• On vérifie si il est possible de connecter      et       à la même composante 
connexe de la PRM en utilisant des chemins locaux sans collisions 

Remarque : si une solution n’a pas été trouvée, la PRM peut être améliorée      
en effectuant plus d’itérations ou en utilisant des stratégies pour réduire            
le nombre de composantes connexes   

Planification probabiliste : PRM
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PRM : illustration de l’algorithme 

(3 cas de figure : A, B et C)
A

B

C

2 composantes 
connexes de la PRM

roadmap

roadmap

roadmap



39

Utilisation de la PRM     
pour trouver un chemin 

sans collisions entre       et

3 composantes 
connexes de la PRM

Planification probabiliste : PRM

Exemple
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Avantages de la méthode PRM :

• Elle trouve un chemin sans collisions très rapidement                
(à condition que la PRM ait été bien développée)

• Nouvelles instances du même problème produisent une amélioration 
potentielle de la PRM. La PRM améliore, en termes de connexité et 
d’efficacité temporelle, avec l’utilisation (la méthode PRM est donc 
intrinsèquement « multiple-query » ou à demande multiple)

• Dans des espaces à très haute dimensionnalité (dimension > 4)         
la méthode PRM est très efficace pour trouver rapidement une solution

• Simplicité de mise en œuvre : il n’est pas nécessaire d’avoir                            
une représentation géométrique des obstacles

Planification probabiliste : PRM
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Inconvénients de la méthode PRM

• PRM est seulement complet en probabilité : la probabilité de trouver une 
solution (s’il y a une) tend vers 1 comme le temps d’exécution tend vers l’infini. 
Donc, s’il n’y a pas de solutions, l’algorithme ne terminera jamais : en pratique, 
un nombre maximum d’itérations est fixé pour garantir la terminaison

• Les passages étroits dans l’environnement       
sont critiques. En utilisant une pdf uniforme   
pour générer          , la probabilité de placer         
un candidat dans une certaine région de        
l’espace libre est proportionnelle à son 
volume. Par conséquent, il serait peu 
probable d’avoir un chemin à travers un 
passage étroit dans un délai raisonnable

Solution possible : utiliser une pdf
non uniforme

Planification probabiliste : PRM

• Le contrôle de collision est chronophage. Avec Lazy PRM [Bohlin & Kavraki, 
ICRA’00], on réduit le nombre de contrôles pendant la planification et par 
conséquent, on minimise le temps d’exécution



Planification probabiliste : PRM

Chemin sans collisions                                 
du robot choisi (vert)
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Obstacle

“Robotics, Vision and Control: Fundamental
Algorithms in MATLAB", P. Corke, Springer, 2011

Deux composantes 
connexe de la PRM

Robotics Toolbox de P. Corke : 
 >> prm.plan()

Exécution 1 Exécution 2

>> PathPlanningExample.m

Dans la Robotics System Toolbox de Matlab (R2017) :



Planification probabiliste : RRT
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2. Rapidly-exploring Random Tree (RRT)

"Randomized Kinodynamic Planning", S.M. LaValle, J.J. Kuffner Jr., Int. Journal of Robotics 
Research, vol. 20, n. 5, pp. 378-400, 2001

▪ RRT est un algorithme de planification probabiliste « single-query »

• L’algorithme ne génère pas une roadmap qui représente de façon 
exhaustive la connexité de l’espace libre dans tout l’environnement.     
On explore uniquement une portion de l’espace libre qui est 
pertinente à la résolution du problème (ce qui engendre une             
forte réduction du temps de calcul)

▪ La méthode RRT utilise une structure de données qui s’appelle            
Rapidly-exploring Random Tree (RRT)

• L’expansion incrémentale de l’RRT (on appelle cet arbre « T »)                  
est basée sur une simple procédure stochastique répétée                                
à chaque itération   
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•  On génère un échantillon aléatoire de l’espace des configurations                   
en utilisant une pdf uniforme (comme pour la méthode PRM)

Algorithme

•  La configuration dans T la plus proche à            est déterminée, et une 
nouvelle configuration candidate           est générée sur le segment joignant     
à           , à une distance préfixée de    

•  On vérifie que soit           soit le segment de           à          n’engendre pas    
de collisions. Si tel est le cas, T est élargi en incluant           et le segment le 
joignant à            (          n’est pas rajouté à T, donc il n’est pas nécessaire de 
vérifier s’il engendre des collisions : sa seule fonction est d’indiquer la 
direction d’expansion de l’arbre T) 

Planification probabiliste : RRT

T
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•  Si le segment joignant Ts et Tb est sans collisions, l’expansion est complète     
et les deux arbres sont raccordés

• Si la procédure de connexion n'aboutisse pas à une solution après un certain 
nombre d’itérations, on peut conclure que les deux arbres sont encore distants 
et la phase d’expansion peut recommencer

•  Après un certain nombre de pas d’expansion, l’algorithme entre dans une 
phase où il essaie de connecter Ts et Tb en étendant chaque arbre vers l’autre. 
Ceci est fait en générant un           comme une expansion de Ts et en essayant de 
connecter Tb à

Planification probabiliste : RRT

•  Pour accélérer la recherche d’un chemin entre       et      , la méthode RRT 
bidirectionnelle utilise deux arbres Ts et Tb ancrés en       et       , respectivement.
À chaque itération, les deux arbres sont élargis avec la méthode décrite dans               
la slide précédente
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• Illustration de la méthode RRT bidirectionnelle ou « RRT-Connect »

Procédure stochastique pour      

l’expansion d’un arbre (Ts)
Les arbres Ts et Tb  ont été raccordés 

grâce au arc bleu

Ts

Planification probabiliste : RRT

Tb

Ts

Tb
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Avantages de la méthode RRT

• La procédure d’expansion de RRT est simple et très efficace pour « explorer » 
l’espace libre dans un environnement (même non convexe). Elle est biaisée       
vers les parties de l’environnement qui n’ont pas été encore visitées

• Au lieu d’utiliser une constante pour générer           , on peut définir un pas qui est 
une fonction de l’espace libre disponible (on peut aller jusqu’à           , comme dans    
la phase expansion de la méthode PRM). Cette version gloutonne (« greedy »)           
de la méthode peut être beaucoup plus efficace, si il y a des vastes zones vides

• RRT* garantie la convergence vers un chemin qui est optimal par rapport                       
à une certaine fonction de coût                               [Karaman & Frazzoli, IJRR’11]

• On peut facilement utiliser la méthode RRT avec des contraintes différentielles  
(non-holonômes et cinématiques/dynamiques) sur le robot

• Comme la méthode PRM, la méthode RRT est complète en probabilité

Plusieurs variantes possibles :

• La probabilité que une configuration générique de l’espace libre soit rajoutée      
à le RRT tend vers 1 comme le temps d’exécution tend vers l’infini (à condition 
que la configuration se trouve dans la même composante connexe de l’espace 
libre où le RRT est ancré)

Planification probabiliste : RRT



Planification probabiliste : RRT
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Extension pour robots non-holonômes

•  Solution simple et efficace : utiliser des primitives de mouvement        

•  Exemple : pour un robot unicycle, l’ensemble de vitesses suivant 

produit trois chemins locaux admissibles : 1) virage à gauche le long d’un arc    
de cercle, 2) trajet en ligne droit, 3) virage à droite le long d’un arc de cercle 

Remarque : ces primitives de mouvement n’autorisent pas la marche     
arrière ou une rotation sur place (en effet,            )

•  Elles sont un ensemble fini et admissible de chemins                    
locaux dans l’espace des configurations 

•  Chaque primitive est produite par un choix spécifique                         
des vitesses dans le modèle cinématique

•  Les chemins admissibles sont générés par concaténation                       
des primitives de mouvement 

Pour un robot de type unicycle, les chemins en ligne droite pour aller de       à 
générés par la méthode RRT, ne sont pas admissibles, en général

1

2

3
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Les 3 primitives 
de mouvement                
pour un robot                

unicycle

Un exemple de RRT (sa projection      
dans l’espace opérationnel du robot)

Obstacle

Robot

Robot

Planification probabiliste : RRT

Extension pour robots non-holonômes
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Robotics Toolbox de P. Corke : 
  >> rrt.plan() 

y



•  L’expansion d’un RRT pour un robot                
non-holonôme est similaire à la procédure 
vue précédemment (seulement        
la génération de           est différente)

•  Sous des hypothèses appropriées, on peut 
montrer que si la configuration finale peut 
être atteinte de la configuration initiale à 
travers une concaténation sans collisions    
de primitives, la probabilité que       soit 
rajouté à l’arbre T tend vers 1 comme            
le temps d’exécution tend vers l’infini

•  Pour augmenter l’efficacité de la    
méthode, une version bidirectionnelle   
peut être envisagée

RRT pour un robot unicycle avec 
configuration initiale                    Chaque 
sommet (vert) représente une pose 
admissible du robot dans l’espace libre

Espace des poses du robot

x

Pose initiale

Planification probabiliste : RRT

Extension pour robots non-holonômes
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Planification probabiliste : logiciel et variantes

Planificateurs multiple-query :
▪ PRM

• Lazy PRM
• PRM* : version asymptot. 

optimale de PRM
• Lazy PRM*

▪ SPARS (SPArse Roadmap Spanner
algorithm) : planificateur     
asymptot. quasi-optimal

▪ SPARS2

• Implémentation efficace des méthodes basées sur l’échantillonnage (C++/Python) :                  
Open Motion Planning Library (OMPL), https://ompl.kavrakilab.org

• Nombreuses variantes et améliorations de PRM et RRT dans la littérature :

Planificateurs single-query :
▪ RRT

• Lazy RRT, RRT-Rope

• RRT* : version asymptot. optimale de RRT
• RRT# et RRTX : deux variantes de RRT*                     

avec une vitesse de convergence plus rapide

• (Neural) Informed RRT*, neural RRT*
• SST (Sparse Stable RRT) : planificateur                     

ciné-dynamique asymptot. quasi-optimal 

• VF-RRT (Vector Field RRT)
• pRRT (Parallel RRT)

• TSRRT (Task-Space RRT)

▪ EST (Expansive Space Trees)
▪ KPIECE (Kinematic Planning by Interior-Exterior Cell

Exploration)

▪ STRIDE (Seach Tree with Resolution Independent 
Density Estimation) 

▪ PDST (Path-Directed Subdivision Trees)

▪ FMT* (Fast Marching Tree) : plus rapide que RRT*
▪ BIT* (Batch Informed Trees), AIT* (Adaptively 

Informed Trees), EIT* (Effort Informed Trees) 

▪ QRRT (Quotient-Space RRT)

https://ompl.kavrakilab.org


Fin du CM
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