Localisation et navigation
de robots

UPJV, Département EEA

M2 3EA, EC32, parcours RoVA

Année Universitaire 2025-2026
Fabio MORBIDI

Laboratoire MIS
Equipe Perception Robotique UNIVERSITE

de Picardie

E-mail: fabio.morbidi@u-picardie.fr
Mercredi et Jeudi 9h3o0-12hoo,]qu %4
salle CURI 8 ou 305 : CM & TD

§ Automatique Jeudi, salle TP204 : TP

. Energie Electrique

R —————

Plan du chapitre

Partie 1

Partie 2

Partie

Planification de trajectoire

. , Part;
et évitement d’obstacles artie 4

Y YAYS
\& N\ N\

EEEEEE————————!,

Partie 4 : Planification de trajectoire
et évitement d’obstacles

3. Fenétre dynamique

S —-
Fenétre dynamique

» Sélection d’un couple (v, w)
v : vitesse longitudinale du robot
w : vitesse angulaire du robot

selon des contraintes :

- Evitement d’obstacles
- Atteindre un but

- Modele cinématique/dynamique du robot

Robot unicycle

“The dynamic window approach to collision avoidance", D. Fox, W. Burgard,
S. Thrun, IEEE Robot. & Autom. Magazine, vol. 4, n. 1, pp. 23-33, 1997

“High-speed navigation using the global dynamic window approach", O. Brock,
O. Khatib, in Proc. IEEE Int. Conf. Robotics and Automation, pp. 341-346, vol. 1, 1999

S —

Fenétre dynamique

- Contrainte principale : évitement d’'obstacles

» Contrainte dure
- Binaire : succes/échec
- Elle doit étre obligatoirement satisfaite

> Evaluation :
+ A partir de 'environnement percu

- A partir de la position future estimée du robot

e —-

Fenétre dynamique
 Illustration de la contrainte d’évitement d’obstacles

Environnement réel Perceptions du robot

I

~ (v1, wy) = échec (v1, wi)

obstacle _ . .
| | |
| o | |
LT . ! I
4 _—— (v2, wy) = succes V4 — (v2, wo)
17 -
- [o
P ; - =
.ll /
[
|
]
I L

-

-

|

|

|

I i
[
|

l

|
|
p |
I i
"I I ! |II
!
I hY

\J
obstacle
robot robot

Fenétre dynamique

« Construction du graphe des vitesses

» Ensemble des couples de vitesse (et donc des trajectoires)
possibles du robot

- Dans ce graphe, on peut tracer la fenétre des vitesses accessibles
au prochain pas de temps :

Vi = {(v,w) | v € v, —0t, vy + 0t] et w € |wy —wt, w, + Wt}

ou
t : intervalle de temps pendant lequel les accelerations linéaires
et angulaires (v, w) du robot seront appliquées

(Va, wa) : vitesse courante du robot
Remarque :

La fenétre dynamique Vy est centrée sur la vitesse courante du robot et elle
contient les vitesses du robot accessibles dans le prochain intervalle de temps

——
Fenétre dynamique

» Fenétre dynamique

Vg = {(v,w) | v € vy — vt, vy + Vt] et w € |w, — wt, wy + Wt}

Exemple :

Vitesses conduisant a un déplacement siir Vitesses conduisant a percuter un obstacle

v,/ \

i — Vitesse courante

|
\ . . .
Vitesses accessibles au prochain

| pas de temps
|
|

Fenétre
dynamique

Fenétre dynamique

* Fenétre dynamique pour le robot RHINO B21 de Real World Interface,
avec un systeme synchro-drive a 3 roues [Fox et al., RAM’97]

= Max vitesse de translation du robot : 95 cm/s

v
Wmin A 90 cm/s Wmax
Umax \/ .
Couloir Obstacles
Porte
Fenétre dynamique ~ 7

°

Vitesses accessibles au ,/ \

prochain pas de temps Vitesse courante

Umin
- b == (J

—90 deg/s 90 deg/s

O
Fenétre dynamique

- Fenétre
= Prise en compte des obstacles
= Choix d’un couple (v, w) conduisant
a un déplacement sir
= Probleme : grande nombre de couples de vitesses
possibles dans la fenétre dynamique

 Solution possible
= Ajout de contraintes souples : fonction
de colit G(v, w) a optimiser
= Expression de préférences dans ’espace
des vitesses accessibles

A,

Fenétre dynamique

. Colit : G(v, w) = o|aheading(v, w) + Bdist(v, w) + 7 vel(v, w)]

= Somme de trois termes :
1. Préférence de direction (« heading ») : utile si nous avons
une estimation de la direction d'un but a long terme

2. Préférence sur I'éloignement maximal des obstacles
3. Préférence a priori sur les vitesses (longitudinales)

La fonction o -] lisse la somme pondérée des trois termes
(pour garantir plus d’espace latéral libre par rapport aux
obstacles) et a, 3, v sont trois gains positifs

> Le couple (v, w) dans la fenétre dynamique V; qui maximise
le cotlit G(v, w) est alors choisi

= Ce couple garantit I’évitement d’obstacles (contrainte dure)
et les contraintes souples

.
Fenétre dynamique

- Exemple de contrainte souple
> Préférence directionnelle : G(v, w) = aheading(v, w)

Umax

Fenétre
dynamiqu

Umin

Wmin 1\ Wmax

Direction
préférentielle

BB,

Fenétre dynamique

=

(3

- En pratique :
» Evaluation des contraintes en N points du graphe
des vitesses (c’est-a-dire, sur une grille)

- La valeur de IV dépend des ressources de calcul W
disponibles et de la complexité des contraintes

= Utilisation intéressante pour :

* Robots rapides Déplacement
- Robots a forte accélération/décelération | sir et régulier

% sk ok ok ok
k sk ok ok 3k
% %k %k ok ok
k sk ok ok ok
k %k %k %k 3k

“High-speed navigation using the global dynamic window approach", O. Brock, O. Khatib,
in Proc. IEEE Int. Conf. Robotics and Automation, pp. 341-346, vol. 1, 1999

» Carte de 30 m x 30 m de I'’environnement avec une résolution de 5 cm
» Fréquence de commande : supérieure a 15 Hz

* Vitesse longitudinale moyenne du robot : supérieure a 1 m/s

.

Partie 4 : Planification de trajectoire
et evitement d’obstacles

4. Graphe de Voronoi

S —

Graphe de Vorono1

6 régions V7, ..., Vg

Q

 Soit un ensemble de n points
différents p: (appelés
générateurs ou germes)
dans un environnement Q c R”

- Le diagramme de Voronoi
partitionne © en regions

Vi,ie{l,...,n}

les plus proches de
chaque point p;

i

Georgy F. Voronoi (1868-1908) i
mathématicien russe

.

Graphe de Vorono1 0

* Plus formellement, la région V;
est définie par :

Vi={ze€Qlllz—pil2 < z—p;l2, VJj # i}

ou || - |2 indique la norme Euclidienne

. . Exemple Matlab :
» Le diagramme de Voronoi est Plot_Voronoi.m

I’ensemble des régions {V1,...,V,,}

- Le graphe de Voronoi est défini
par la frontiere des régions V1, ..., V,
(bleue dans la figure)

s,

Graphe de Vorono1

* Plusieurs algorithmes existent pour le calcul du
diagramme de Voronoi d'un ensemble de n points droite

- L’algorithme de Fortune est un algorithme
de balayage (« sweepline ») : une droite balaie
les points dans une certaine direction,
'algorithme met a jour la construction,

et lorsque tous les points ont été balayés,

le diagramme est construit

* Complexité de I'algorithme de Fortune :
= O(nlogn) en temps
= O(n) en espace mémoire

“Voronoi Diagrams and Delaunay Triangulations®, S. Fortune,
Ch. 27 du Handbook of Discrete and Computational Geometry,
3rd ed., CRC press, 2018

1

Graphe de Voronoi : exemples et applications

* Le poisson Tilapia mossambica crée des diagrammes
de Voronoi au cours du processus d'élevage des petits
(voir 'image a gauche)

* Les diagrammes de Voronoi sont utilisés
dans plusieurs domaines (biologie, géographie,
hydrologie, reconnaissance des formes,
infographie, recherche opérationnelle, etc.)
et pour de nombreuses applications :

» Localisation de nouvelles installations

= Couverture optimale d'une région limitée

Emplacement de nouveaux / s AT
magasins dans un quartier | s 2o /P8 /

‘.
.0 .
| e
r S
" % :..

= Couverture d’une région
\ ‘ par une cohorte de robots
| [Cortés et al., TRA’04]

Salar d’Uyuni, lac salé en Bolivie (3700 m)

=,

Graphe de Voronoi : exemples et applications

Pompe d’eau

infecte entre

Broad Street

et Cambridge
Street a Londre

Le médecin John Snow utilisa un diagramme de Voronoi pour montrer que la majorité des
personnes décédées a Londre suite a 'épidémie de choléra de 1854 (disques rouges), vivait
plus pres d’'une pompe d’eau infecte (cercle vert) que de toutes les autres pompes (bleues)

—

Graphe de Voronori : extensions ~_ Diagrammede

.. Voronoi 3D

a) Diagramme de Voronoi 3D
b) Diagramme de Voronoi généralisé défini
a partir de générateurs de dimension 1 ou 2
(segments de droite ou surfaces) N
c) Diagramme de Voronoi d‘étendue 7 :
chaque région de Voronoi est définie par :

‘/i,r — V;, M E(pza T)

ouB(pi,r) = {z€Q |z — pill < 7}
est un disque de rayon 7 centré sur p;

Diagramme de Voronoi : Diagramme de Voronoi : Diagramme de Voronoi
Générateurs de dim. 1 (segments) Générateurs de dim. 2 (surfaces) d’étendue r

2

Graphe de Vorono1 : extensions

Région non convexe !

- Fonctions de distance autres que le distance euclidienne

Distance euclidienne Distance de Manhattan ou distance {1
2
dist(z, p;) = ||z — pil2 dist(z, pi) = ||z — pill1 = Z|Z(J) —pi(J)|
j=1

“Spatial tessellations: concepts and applications of Voronoi diagrams”, A. Okabe,
B.N. Boots, K. Sugihara, S.N. Chiu, Wiley & Sons, 1992

R ——
Graphe de Voronoi

Evitement d’obstacles :

= On représente le robot par un point qui percoit
un ensemble d’obstacles (ponctuels) tout autour de lui

- Distance des m obstacles les plus proches : dy, ..., dn
- Angle vers les obstacles : ai, ..., an
= Loi de controle du mouvement :
- Quand 2 obstacles sont détectés : se déplacer dans
la direction v = (a1 + a2)/2 (suivre la ligne médiane)

- Quand il y a 3 obstacles proches ou plus :
définir un « lieu »

EEEEEEE—EE=mEmBBBBme R,

Graphe de Voronoi

- Mouvement selon une aréte du graphe de Voronoi

« Détection d’un troisiéme obstacle

S —

Graphe de Voronoi

- Déplacement a équidistance des trois obstacles et définition d'un lieu

EEEEEE———————
Graphe de Voronoi

Algorithme
1. On part du point g,

2. Se déplacer en maintenant une distance égale
entre les obstacles A et B : da(t) = dp(t)
3. Sélectionner un obstacle C avec une distance d¢(t)
telle que : do(t) = da(t) = dp(t)
- Utiliser une tolérance sur I’égalité
- Eviter les cas ot ces distances ne sont jamais égales

- Attention au cas ou les (une des) distances sont égales
a la distance maximale perceptible du robot

4. Arrét et définition d’un lieu

Graphe de Voronoi

5. Des que le robot est sur un lieu

e Sélectionner une aréte de

sortie du graphe de Voronoi

(selon un certain critere)

 Effectuer une rotation
pour faire face a I'aréte

6. Lancer le robot sur la
nouvelle aréte, et répéter
la procédure précédente
(« goto 3. ») jusqu’au but qp

<

Graphe de Voronoi

- Exemple de chemin sans collisions (il n’est pas unique !)
But

Graphe de Voronoi

- Extension 1 : obstacles non ponctuels (polygones)

obstacle

R,

Graphe de Voronoi

- Extension 2 : obstacles non ponctuels (par ex. les murs
d’une salle)

Sommet

////’/ Aréte

= Aréte du graphe de Voronoi :
» Ensembles de points équidistants de deux bordures
= Sommet du graphe de Voronoi :

- Ensembles de points équidistants de trois bordures ou plus

—

Graphe de Voronoi

* L'axe meédian (« medial axis ») permet de représenter
la forme d’une région en trouvant son squelette
topologique, c'est-a-dire un ensemble de courbes
qui court le long du « milieu » de la région

« Soit 09 la frontiere de 'environnement Q. L’axe médian M (Q)
de Q est défini par :

M = 1z € z—p;llo = ||z—D:ll2 = I z — :
(Q) = {zc Q| llz—pill2 = [z —pjll2 Jmin |z -yl
p;,p; €09, p; #p;}

-
Graphe de Voronoi

Autre application du graphe de Voronoi en robotique mobile :

- Construction de cartes topologiques (cf. le Ch. 1.3)

= Démarrage
« Trouver I'objet le plus proche
- Se déplacer jusqu’a trouver un second objet
* Suivre la ligne médiane vers un troisieme objet
+ Définition du lieu initial
= Tant qu’il existe une aréte inexplorée
- Suivre cette aréte vers le lieu situé a I’autre bout

= Arrét quand toutes les arétes ont été explorées

Graphe de Voronoi

Construction de la carte
topologique d’'un
batiment (8 lieux)

N —: 1

Partie 4 : Planification de trajectoire
et évitement d’obstacles

5. Planification probabiliste

S —

Méthodes deterministes et probabilistes

Méthodes déterministes (champs de potentiel, fenétre dynamique,
graphe de Voronoi)

« Elles permettent de retrouver le méme chemin sans collisions a chaque
exécution, sous réserve d'avoir des conditions initiales équivalentes

» Les méthodes déterministes sont dites completes en résolution car elles
garantissent de trouver une solution ou d'indiquer s'il n'y a pas de solution

Méthodes probabilistes

» Ces méthodes ne trouveront pas forcément le méme chemin sans
collisions a chaque exécution, méme avec les mémes conditions initiales

* Ces méthodes ne sont pas completes en résolution, mais elles garantissent
de trouver un chemin sans collisions s'il en existe un. On dit qu'elles sont
completes en probabilité

e —:

Planification probabiliste

Les planificateurs probabilistes font partie de la grande famille des méthodes
basées sur l'échantillonnage (« sampling-based methods », en anglais)

 Tres efficaces, spécialement pour problemes définis dans un espace
des configurations C de trés haute dimensionalité

Idée de base des méthodes basées sur 1'échantillonnage :
Déterminer un ensemble fini de configurations sans collisions qui représentent
adéquatement 'espace libre dans I'’environnement et utiliser ces configurations

pour construire une “roadmap” (carte de route) entre deux poses données q; et qy
du robot

« A chaque iteration, on choisit une configuration candidate et on vérifie
qu’elle ne comporte pas de collisions entre le robot et les obstacles

» Siil y a une collision, la configuration candidate est rejetée. Sinon, elle est

rajoutée a la roadmap et elle est connectée, si possible, aux autres configurations
déja mémorisées

S —

Planification probabiliste

Cette procédure est assez générale. Il y a deux facons de choisir les candidats :
= Approche déterministe : les configurations candidates sont choisies
a travers une grille réguliere appliquée a '’environnement (voir, par ex.
[Janson et al., IJRR’18])

= Approche stochastique : les configurations candidates sont choisies
selon une certaine fonction de densité de probabilité (pdf)

Deux méthodes importantes qui utilisent ’approche stochastique sont :

1. PRM (Probabilistic Roadmap)
2. RRT (Rapidly-exploring Random Tree)

Remarque : I'étude de l'optimalité de ces méthodes est assez récente (elle
s’appuie sur la théorie des graphes aléatoires et de la percolation), voir les articles :

"Sampling-based algorithms for optimal motion planning”, S. Karaman, E. Frazzoli,
Int. Journal of Robotics Research, vol. 30, no. 7, pp. 846-894, 2011

"Exploring implicit spaces for constrained sampling-based planning", Z. Kingston, M. Moll,
L.E. Kavraki, Int. Journal of Robotics Research, vol. 38, no. 10-11, pp. 1151-1178, 2019

e —

Planification probabiliste : PRM

1. Probabilistic Roadmap (PRM)

"Probabilistic roadmaps for path planning in high-dimensional configuration spaces", L.E. Kavraki,
P. Svestka, J.-C. Latombe, M.H. Overmars, IEEE Trans. Robotics and Automation, vol. 12, n. 4,

pp- 566-580, 1996

Algorithme :

* On génere un échantillon aléatoire de I'espace des configurations qrand
en utilisant une pdf uniforme

* Jrand est testé pour les collisions

* Si Qrand ne génere pas de collisions, il est ajouté a la roadmap (PRM) et
connecté (si possible) a travers des chemins locaux sans collisions, a des
configurations ‘suffisamment’ proches déja présentes dans la roadmap

1

Planification probabiliste : PRM

« La génération d’'un chemin local sans collisions entre grand €t une

configuration proche qnear est effectuée par un planificateur local.
Typiquement, on considere un chemin droit entre Qrand et Qnear,
et on vérifie s’il y a des collisions (par ex. on vérifie que les échantillons

individuels du segment ne génerent pas de collisions)

« Sile chemin droit provoque une collision, il est rejeté et qrand €t Anear
ne sont pas connectés dans la roadmap

« La procédure incrémentale de la méthode PRM s’arréte lorsque un
nombre maximal d’itérations a été atteint ou le nombre de composantes
connexes dans la roadmap dévient inférieur a un seuil-limite

« On vérifie si il est possible de connecter q; et q; a la méme composante
connexe de la PRM en utilisant des chemins locaux sans collisions

Remargque : si une solution n’a pas été trouvée, la PRM peut étre améliorée
en effectuant plus d’itérations ou en utilisant des stratégies pour réduire
le nombre de composantes connexes

o d

S
‘ Qrand
X

ds

roadmap

PRM : illustration de ’algorithme
(3 cas de figure : A, B et ()

o Us

o)

rand

el
roadmap ¢ ° 2 composantes
connexes de la PRM
o qS ® q qS
A o A . A o
L 3)
K Qrand Jrand
9 ds QG
roadmap Onear / ° °

Planification probabiliste : PRM

Exemple

| q
>/

V/

3 composantes
connexes de la PRM

Utilisation de la PRM
pour trouver un chemin
sans collisions entre qs et qp

—

Planification probabiliste : PRM

Avantages de la méthode PRM :

Elle trouve un chemin sans collisions tres rapidement
(a condition que la PRM ait été bien développée)

Nouvelles instances du méme probleme produisent une amélioration
potentielle de la PRM. La PRM améliore, en termes de connexité et
d’efficacité temporelle, avec I'utilisation (Ia méthode PRM est donc
intrinsequement « multiple-query » ou a demande multiple)

Dans des espaces a tres haute dimensionnalité (dimension > 4)
la méthode PRM est tres efficace pour trouver rapidement une solution

Simplicité de mise en ceuvre : il n’est pas nécessaire d’avoir
une représentation géométrique des obstacles

Planification probabiliste : PRM

Inconvénients de la méthode PRM

PRM est seulement complet en probabilité : 1a probabilité de trouver une
solution (s’il y a une) tend vers 1 comme le temps d’exécution tend vers 'infini.
Donc, s’il n’y a pas de solutions, ’algorithme ne terminera jamais : en pratique,
un nombre maximum d’itérations est fixé pour garantir la terminaison

Les passages étroits dans ’environnement
sont critiques. En utilisant une pdf uniforme
pour générer q,and, la probabilité de placer *
un candidat dans une certaine région de j

I'espace libre est proportionnelle a son

volume. Par conséquent, il serait peu Us

probable d’avoir un chemin a travers un
passage étroit dans un délai raisonnable

Solution possible : utiliser une pdf
non uniforme

Le controle de collision est chronophage. Avec Lazy PRM [Bohlin & Kavraki,
ICRA’00], on réduit le nombre de contréles pendant la planification et par
conséquent, on minimise le temps d’exécution

—

Planification probabiliste : PRM

Exécution 1

3 885883888

10 20 30 40 50 60 70 8 9 100
Chemin sans collisions
du robot choisi (vert)

2

| Deux composantes
connexe de la PRM

3888383838

-
=

Obstacle
“Robotics, Vision and Control: Fundamental
Algorithms in MATLAB", P. Corke, Springer, 2011

Robotics Toolbox de P. Corke :
>> prm.plan()

Dans la Robotics System Toolbox de Matlab (R2017) :
>> PathPlanningExample.m

N —

Planification probabiliste : RRT
2. Rapidly-exploring Random Tree (RRT)

"Randomized Kinodynamic Planning", S.M. LaValle, J.J. Kuffner Jr., Int. Journal of Robotics
Research, vol. 20, n. 5, pp. 378-400, 2001

= RRT est un algorithme de planification probabiliste « single-query »

- L’algorithme ne génere pas une roadmap qui représente de facon
exhaustive la connexité de I'espace libre dans tout I’environnement.
On explore uniquement une portion de l'espace libre qui est
pertinente a la résolution du probleme (ce qui engendre une
forte réduction du temps de calcul)

= La méthode RRT utilise une structure de données qui s’appelle
Rapidly-exploring Random Tree (RRT)

- L’expansion incrémentale de 'RRT (on appelle cet arbre « T »)
est basée sur une simple procédure stochastique répétée
a chaque itération

S —

Planification probabiliste : RRT

Algorithme

* On génere un échantillon aléatoire de ’espace des configurations qrang
en utilisant une pdf uniforme (comme pour la méthode PRM)

 La configuration qnesr dans T la plus proche a qyanq est déterminée, et une
nouvelle configuration candidate qn.w est générée sur le segment joignant Quear
A Qrand, a une distance préfixée 6 de Qnear

« On vérifie que soit qnew Soit le segment de Qpear @ Anew N'engendre pas
de collisions. Si tel est le cas, T est élargi en incluant qnew et le segment le
joignant a Qnear (Qrand N’est pasrajouté a T, donc il n’est pas nécessaire de
vérifier s’il engendre des collisions : sa seule fonction est d’indiquer la
direction d’expansion de I’arbre T)

————

Planification probabiliste : RRT

* Pour accélérer la recherche d'un chemin entre q; et qp, la méthode RRT
bidirectionnelle utilise deux arbres T, et T, ancrés en q, et qp , respectivement.
A chaque itération, les deux arbres sont élargis avec la méthode décrite dans

la slide précédente

« Apres un certain nombre de pas d’expansion, I’algorithme entre dans une
phase ou il essaie de connecter T et T, en étendant chaque arbre vers I'autre.
Ceci est fait en générant un qnew comme une expansion de T, et en essayant de

connecter T) a Qnew

« Sile segment joignant T, et T, est sans collisions, ’expansion est complete
et les deux arbres sont raccordés

« Sila procédure de connexion n'aboutisse pas a une solution apres un certain
nombre d’itérations, on peut conclure que les deux arbres sont encore distants

et la phase d’expansion peut recommencer

Planification probabiliste : RRT

e Tllustration de la méthode RRT bidirectionnelle ou « RRT-Connect »

Procédure stochastique pour Les arbres T, et T;, ont été raccordeés
I’expansion d'un arbre (T,) grace au arc bleu

S —————

Planification probabiliste : RRT

Avantages de la méthode RRT

« Laprocédure d’expansion de RRT est simple et tres efficace pour « explorer »
I’'espace libre dans un environnement (méme non convexe). Elle est biaisée
vers les parties de 'environnement qui n’ont pas été encore visitées

- La probabilité que une configuration générique de I’espace libre soit rajoutée
a le RRT tend vers 1 comme le temps d’exécution tend vers l'infini (a condition
que la configuration se trouve dans la méme composante connexe de I’'espace
libre ou le RRT est ancré)

¢ Comme la méthode PRM, la méthode RRT est compléete en probabilité

Plusieurs variantes possibles :

* Aulieu d'utiliser une d constante pour générer Qnew , on peut définir un pas qui est
une fonction de l'espace libre disponible (on peut aller jusqu’a qrand, comme dans
la phase expansion de la méthode PRM). Cette version gloutonne (« greedy »)
de la méthode peut étre beaucoup plus efficace, si il y a des vastes zones vides

- RRT* garantie la convergence vers un chemin qui est optimal par rapport
a une certaine fonction de cotit ¢ : X¢ — R [Karaman & Frazzoli, IJRR’11]

* On peut facilement utiliser la méthode RRT avec des contraintes différentielles
(non-holonémes et cinématiques/dynamiques) sur le robot

S —

Planification probabiliste : RRT

Extension pour robots non-holonémes

Pour un robot de type unicycle, les chemins en ligne droite pour aller de qs a gy
générés par la méthode RRT, ne sont pas admissibles, en général

» Solution simple et efficace : utiliser des primitives de mouvement
* Elles sont un ensemble fini et admissible de chemins
locaux dans I’espace des configurations
» Chaque primitive est produite par un choix spécifique
des vitesses dans le modele cinématique
 Les chemins admissibles sont générés par concaténation
des primitives de mouvement

- Exemple : pour un robot unicycle, 'ensemble de vitesses suivant 2

1 3
v(t) = v, w(t)e{—w,0,w}, telts,ts+A4A], U,w>0 \m/

produit trois chemins locaux admissibles : 1) virage a gauche le long d’un arc
de cercle, 2) trajet en ligne droit, 3) virage a droite le long d’un arc de cercle
Remarque : ces primitives de mouvement n’autorisent pas la marche
arriere ou une rotation sur place (en effet, v > 0)

e —

Planification probabiliste : RRT

Extension pour robots non-holonémes

(Ib

il R

Robot
Obstacle
Les 3 primitives Un exemple de RRT (sa projection
de mouvement dans l'espace opérationnel du robot)

pour un robot
unicycle

S —-L

Planification probabiliste : RRT

Extension pour robots non-holonémes

Espace des poses du robot (C = SO(2))

« L’expansion d'un RRT pour un robot
non-holondéme est similaire a la procédure
vue précédemment (seulement

la génération de Qnew est différente)

* Sous des hypothéeses appropriées, on peut
montrer que sila configuration finale peut
étre atteinte de la configuration initiale a
travers une concaténation sans collisions
de primitives, la probabilité que qp soit
rajouté a 'arbre T tend vers 1 comme

le temps d’exécution tend vers I'infini RRT pour un robot unicycle avec
configuration initiale [0, 0, 0]7. Chaque
sommet (vert) représente une pose
admissible du robot dans I'espace libre

« Pour augmenter 'efficacité de la
meéthode, une version bidirectionnelle

peut étre envisagée Robotics Toolbox de P. Corke :

>> rrt.plan()

R

Planification probabiliste : logiciel et variantes

* Implémentation efficace des méthodes basées sur I’échantillonnage (C++/Python) :
Open Motion Planning Library (OMPL),

e Nombreuses variantes et améliorations de PRM et RRT dans la littérature :

Planificateurs multiple-query : Planificateurs single-query :
= PRM = RRT
« Lazy PRM « Lazy RRT, RRT-Rope e
. % . : * RRT*: version asymptot. optimale de RRT
PRM : version asymptot. « RRT#etRRTX: d}efzu}() Variagtes de RRT*
optimale de PRM avec une vitesse de convergence plus rapide
* Lazy PRM* ¢ (Neural) Informed RRT*, neural RRT*
= SPARS (SPArse Roadmap Spanner « SST (Sparse Stable RRT) : planificateur
algorithm) : planificateur ciné-dynamique asymptot. quasi-optimal
asymptot. quasi-optimal « VF-RRT (Vector Field RRT)
= SPARS> * pRRT (Parallel RRT)

» TSRRT (Task-Space RRT)

» EST (Expansive Space Trees)

» KPIECE (Kinematic Planning by Interior-Exterior Cell
Exploration)

» STRIDE (Seach Tree with Resolution Independent
Density Estimation)

» PDST (Path-Directed Subdivision Trees)

» FMT* (Fast Marching Tree) : plus rapide que RRT*

» BIT* (Batch Informed Trees), AIT* (Adaptively
Informed Trees), EIT* (Effort Informed Trees)

* QRRT (Quotient-Space RRT)

https://ompl.kavrakilab.org

52
Fin du CM

R:0.B:-0.T. Comics

2= Re0.B-0.T- Comics
= =y {o)
'2/ ~'_i
1y Q
\ll.u“
LLOWGARAGE.COM JORGE CHAM %
"I HAVE A BAD FEELING
ABOUT THIS DEMO."

"DO YOU EVER FEEL LIKE
YOU'RE IN THE MATRIX?"

	Slide 0: Localisation et navigation de robots
	Slide 1: Plan du chapitre
	Slide 2: Partie 4 : Planification de trajectoire et évitement d’obstacles
	Slide 3: Fenêtre dynamique
	Slide 4: Fenêtre dynamique
	Slide 5: Fenêtre dynamique
	Slide 6: Fenêtre dynamique
	Slide 7: Fenêtre dynamique
	Slide 8: Fenêtre dynamique
	Slide 9: Fenêtre dynamique
	Slide 10: Fenêtre dynamique
	Slide 11: Fenêtre dynamique
	Slide 12: Fenêtre dynamique
	Slide 13
	Slide 14: Graphe de Voronoï
	Slide 15: Graphe de Voronoï
	Slide 16: Graphe de Voronoï
	Slide 17: Graphe de Voronoï : exemples et applications
	Slide 18: Graphe de Voronoï : exemples et applications
	Slide 19: Graphe de Voronoï : extensions
	Slide 20: Graphe de Voronoï : extensions
	Slide 21: Graphe de Voronoï
	Slide 22: Graphe de Voronoï
	Slide 23: Graphe de Voronoï
	Slide 24: Graphe de Voronoï
	Slide 25: Graphe de Voronoï
	Slide 26: Graphe de Voronoï
	Slide 27: Graphe de Voronoï
	Slide 28: Graphe de Voronoï
	Slide 29: Graphe de Voronoï
	Slide 30: Graphe de Voronoï
	Slide 31: Graphe de Voronoï
	Slide 32: Partie 4 : Planification de trajectoire et évitement d’obstacles
	Slide 33: Méthodes déterministes et probabilistes
	Slide 34: Planification probabiliste
	Slide 35: Planification probabiliste
	Slide 36: Planification probabiliste : PRM
	Slide 37: Planification probabiliste : PRM
	Slide 38: PRM : illustration de l’algorithme (3 cas de figure : A, B et C)
	Slide 39: Planification probabiliste : PRM
	Slide 40: Planification probabiliste : PRM
	Slide 41: Planification probabiliste : PRM
	Slide 42: Planification probabiliste : PRM
	Slide 43: Planification probabiliste : RRT
	Slide 44: Planification probabiliste : RRT
	Slide 45: Planification probabiliste : RRT
	Slide 46: Planification probabiliste : RRT
	Slide 47: Planification probabiliste : RRT
	Slide 48: Planification probabiliste : RRT
	Slide 49: Planification probabiliste : RRT
	Slide 50: Planification probabiliste : RRT
	Slide 51: Planification probabiliste : logiciel et variantes
	Slide 52: Fin du CM

