
Localisation et navigation

de robots

UPJV, Département EEA

M2 3EA, EC32, parcours RoVA

Fabio MORBIDI

 Laboratoire MIS

Équipe Perception Robotique

E-mail: fabio.morbidi@u-picardie.fr

Année Universitaire 2025-2026

Mercredi et Jeudi 9h30-12h00,
salle CURI 8 ou 305 : CM & TD

Jeudi, salle TP204 : TP

1

Plan du chapitre

Stratégies de navigation

Architectures de contrôle

Navigation vers un but

Partie 2

Partie 3

Partie 1

Partie 4
Planification de trajectoire
et évitement d’obstacles

3. Fenêtre dynamique

2

Partie 4 : Planification de trajectoire

et évitement d’obstacles

Fenêtre dynamique

• Sélection d’un couple

: vitesse longitudinale du robot

: vitesse angulaire du robot

selon des contraintes :

 Evitement d’obstacles

 Atteindre un but

 Modèle cinématique/dynamique du robot

3

“The dynamic window approach to collision avoidance", D. Fox, W. Burgard,
S. Thrun, IEEE Robot. & Autom. Magazine, vol. 4, n. 1, pp. 23-33, 1997

“High-speed navigation using the global dynamic window approach", O. Brock,
O. Khatib, in Proc. IEEE Int. Conf. Robotics and Automation, pp. 341-346, vol. 1, 1999

Robot unicycle

CIR

• Contrainte principale : évitement d’obstacles
▫ Contrainte dure

 Binaire : succès/échec

 Elle doit être obligatoirement satisfaite

▫ Évaluation :
 À partir de l’environnement perçu

 À partir de la position future estimée du robot

4

Fenêtre dynamique

• Illustration de la contrainte d’évitement d’obstacles

5

robot robot
obstacle

obstacle

Fenêtre dynamique

Environnement réel Perceptions du robot

• Construction du graphe des vitesses

▫ Ensemble des couples de vitesse (et donc des trajectoires)
possibles du robot

6

Fenêtre dynamique

• Dans ce graphe, on peut tracer la fenêtre des vitesses accessibles
au prochain pas de temps :

où
: intervalle de temps pendant lequel les accelerations linéaires
 et angulaires du robot seront appliquées

: vitesse courante du robot

Remarque :
La fenêtre dynamique est centrée sur la vitesse courante du robot et elle
contient les vitesses du robot accessibles dans le prochain intervalle de temps

7

Fenêtre

dynamique

obstacle

Fenêtre dynamique

• Fenêtre dynamique

Exemple :

Vitesse courante

Vitesses conduisant à percuter un obstacleVitesses conduisant à un déplacement sûr

Vitesses accessibles au prochain

pas de temps

• Fenêtre dynamique pour le robot RHINO B21 de Real World Interface,
avec un système synchro-drive à 3 roues [Fox et al., RAM’97]

8

Fenêtre dynamique

Vitesse courante

Obstacles

Vitesses accessibles au
prochain pas de temps

Fenêtre dynamique

90 cm/s

90 deg/s

▪ Max vitesse de translation du robot : 95 cm/s

Couloir

Porte

_ 90 deg/s

• Fenêtre

▪ Prise en compte des obstacles

▪ Choix d’un couple conduisant
à un déplacement sûr

▪ Problème : grande nombre de couples de vitesses
possibles dans la fenêtre dynamique

9

Fenêtre dynamique

• Solution possible
▪ Ajout de contraintes souples : fonction

de coût à optimiser
▪ Expression de préférences dans l’espace

des vitesses accessibles

• Coût :

▫ Somme de trois termes :

1. Préférence de direction (« heading ») : utile si nous avons
une estimation de la direction d’un but à long terme

2. Préférence sur l’éloignement maximal des obstacles

3. Préférence a priori sur les vitesses (longitudinales)

La fonction lisse la somme pondérée des trois termes
(pour garantir plus d’espace latéral libre par rapport aux
obstacles) et sont trois gains positifs

▫ Le couple dans la fenêtre dynamique qui maximise
le coût est alors choisi

▫ Ce couple garantit l’évitement d’obstacles (contrainte dure)
et les contraintes souples

10

Fenêtre dynamique

• Exemple de contrainte souple
▫ Préférence directionnelle :

11

Direction
préférentielle

Fenêtre

dynamique

Fenêtre dynamique

G

• En pratique :
▫ Evaluation des contraintes en points du graphe

des vitesses (c’est-à-dire, sur une grille)
 La valeur de dépend des ressources de calcul

disponibles et de la complexité des contraintes

▫ Utilisation intéressante pour :
 Robots rapides
 Robots à forte accélération/décélération

Déplacement
sûr et régulier

12

“High-speed navigation using the global dynamic window approach", O. Brock, O. Khatib,
in Proc. IEEE Int. Conf. Robotics and Automation, pp. 341-346, vol. 1, 1999

• Carte de 30 m × 30 m de l’environnement avec une résolution de 5 cm

• Fréquence de commande : supérieure à 15 Hz

• Vitesse longitudinale moyenne du robot : supérieure à 1 m/s

Fenêtre dynamique

* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

4. Graphe de Voronoï

13

Partie 4 : Planification de trajectoire
et évitement d’obstacles

Graphe de Voronoï

• Soit un ensemble de points
différents (appelés
générateurs ou germes)
dans un environnement

• Le diagramme de Voronoï
partitionne en régions

les plus proches de
chaque point

14

Georgy F. Voronoï (1868-1908)
mathématicien russe

6 régions

Graphe de Voronoï

• Le diagramme de Voronoï est
l’ensemble des régions

• Le graphe de Voronoï est défini
par la frontière des régions
(bleue dans la figure)

15

Exemple Matlab :
 Plot_Voronoi.m

• Plus formellement, la région
est définie par :

où indique la norme Euclidienne

Graphe de Voronoï

16

• Plusieurs algorithmes existent pour le calcul du
diagramme de Voronoï d'un ensemble de points

• L’algorithme de Fortune est un algorithme
de balayage (« sweepline ») : une droite balaie
les points dans une certaine direction,
l'algorithme met à jour la construction,
et lorsque tous les points ont été balayés,
le diagramme est construit

• Complexité de l’algorithme de Fortune :
▪ en temps
▪ en espace mémoire

“Voronoi Diagrams and Delaunay Triangulations“, S. Fortune,
Ch. 27 du Handbook of Discrete and Computational Geometry,
3rd ed., CRC press, 2018

droite

Graphe de Voronoï : exemples et applications

• Le poisson Tilapia mossambica crée des diagrammes
de Voronoï au cours du processus d'élevage des petits

(voir l’image à gauche)

17

Emplacement de nouveaux
magasins dans un quartier

Couverture d’une région
par une cohorte de robots

[Cortés et al., TRA’04]

• Les diagrammes de Voronoï sont utilisés

dans plusieurs domaines (biologie, géographie,

hydrologie, reconnaissance des formes,

infographie, recherche opérationnelle, etc.)

et pour de nombreuses applications :

▪ Localisation de nouvelles installations

▪ Couverture optimale d’une région limitée

Salar d’Uyuni, lac salé en Bolivie (3700 m)

Graphe de Voronoï : exemples et applications

Le médecin John Snow utilisa un diagramme de Voronoï pour montrer que la majorité des
personnes décédées à Londre suite à l’épidémie de choléra de 1854 (disques rouges), vivait

plus près d’une pompe d’eau infecte (cercle vert) que de toutes les autres pompes (bleues)

18

Pompe d’eau
infecte entre

Broad Street
et Cambridge

Street à Londre

19

a) Diagramme de Voronoï 3D

b) Diagramme de Voronoï généralisé défini
à partir de générateurs de dimension 1 ou 2
(segments de droite ou surfaces)

c) Diagramme de Voronoï d‘étendue :
chaque région de Voronoï est définie par :

Diagramme de Voronoï :
Générateurs de dim. 1 (segments)

Diagramme de

Voronoï 3D

où

Diagramme de Voronoï :
Générateurs de dim. 2 (surfaces)

Diagramme de Voronoï
d’étendue

x
y

z

Graphe de Voronoï : extensions

est un disque de rayon centré sur

(a)

(b) (c)

20

• Fonctions de distance autres que le distance euclidienne

Distance euclidienne Distance de Manhattan ou distance

Région non convexe !
Graphe de Voronoï : extensions

“Spatial tessellations: concepts and applications of Voronoi diagrams”, A. Okabe,
B.N. Boots, K. Sugihara, S.N. Chiu, Wiley & Sons, 1992

Graphe de Voronoï

▫ On représente le robot par un point qui perçoit
un ensemble d’obstacles (ponctuels) tout autour de lui

 Distance des obstacles les plus proches :

 Angle vers les obstacles :

▫ Loi de contrôle du mouvement :

 Quand 2 obstacles sont détectés : se déplacer dans

la direction (suivre la ligne médiane)

 Quand il y a 3 obstacles proches ou plus :
définir un « lieu »

21

Evitement d’obstacles :

22

B

Graphe de Voronoï

• Détection d’un troisième obstacle

• Mouvement selon une arête du graphe de Voronoï

A

C

Robot

B

A

• Déplacement à équidistance des trois obstacles et définition d’un lieu

B

A

C

23

Graphe de Voronoï

Robot Robot

Algorithme
1. On part du point
2. Se déplacer en maintenant une distance égale

entre les obstacles A et B :
3. Sélectionner un obstacle C avec une distance

telle que :
 Utiliser une tolérance sur l’égalité
 Éviter les cas où ces distances ne sont jamais égales

 Attention au cas où les (une des) distances sont égales
à la distance maximale perceptible du robot

4. Arrêt et définition d’un lieu

24

Graphe de Voronoï

25

5. Dès que le robot est sur un lieu
• Sélectionner une arête de

sortie du graphe de Voronoï
(selon un certain critère)

• Effectuer une rotation
pour faire face à l’arête

6. Lancer le robot sur la
nouvelle arête, et répéter
la procédure précédente
(« go to 3. ») jusqu’au but

B

A

C

Graphe de Voronoï

26

Départ

But

• Exemple de chemin sans collisions (il n’est pas unique !)

obstacle

Graphe de Voronoï

• Extension 1 : obstacles non ponctuels (polygones)

27

But

obstacle

Graphe de Voronoï

Départ

▪ Arête du graphe de Voronoï :

▫ Ensembles de points équidistants de deux bordures

▪ Sommet du graphe de Voronoï :

▫ Ensembles de points équidistants de trois bordures ou plus

28

Salle
Sommet

Arête

• Extension 2 : obstacles non ponctuels (par ex. les murs
d’une salle)

Graphe de Voronoï

29

Graphe de Voronoï
• L'axe médian (« medial axis ») permet de représenter

la forme d’une région en trouvant son squelette
topologique, c'est-à-dire un ensemble de courbes
qui court le long du « milieu » de la région

• Soit la frontière de l’environnement . L’axe médian
de est défini par :

• Construction de cartes topologiques (cf. le Ch. 1.3)

▫ Démarrage

 Trouver l’objet le plus proche

 Se déplacer jusqu’à trouver un second objet

 Suivre la ligne médiane vers un troisième objet

 Définition du lieu initial

▫ Tant qu’il existe une arête inexplorée

 Suivre cette arête vers le lieu situé à l’autre bout

▫ Arrêt quand toutes les arêtes ont été explorées

30

Graphe de Voronoï

Autre application du graphe de Voronoï en robotique mobile :

• Exemple

31

Construction de la carte
topologique d’un

bâtiment (8 lieux)

Départ

Graphe de Voronoï

5. Planification probabiliste

32

Partie 4 : Planification de trajectoire

et évitement d’obstacles

33

Méthodes déterministes (champs de potentiel, fenêtre dynamique,
graphe de Voronoï)

• Elles permettent de retrouver le même chemin sans collisions à chaque
exécution, sous réserve d'avoir des conditions initiales équivalentes

• Les méthodes déterministes sont dites complètes en résolution car elles
garantissent de trouver une solution ou d'indiquer s'il n'y a pas de solution

Méthodes probabilistes

• Ces méthodes ne trouveront pas forcément le même chemin sans
collisions à chaque exécution, même avec les mêmes conditions initiales

• Ces méthodes ne sont pas complètes en résolution, mais elles garantissent
de trouver un chemin sans collisions s'il en existe un. On dit qu'elles sont
complètes en probabilité

Méthodes déterministes et probabilistes

Planification probabiliste

34

Les planificateurs probabilistes font partie de la grande famille des méthodes
basées sur l'échantillonnage (« sampling-based methods », en anglais)

• Très efficaces, spécialement pour problèmes définis dans un espace
des configurations de très haute dimensionalité

Idée de base des méthodes basées sur l'échantillonnage :
Déterminer un ensemble fini de configurations sans collisions qui représentent
adéquatement l’espace libre dans l’environnement et utiliser ces configurations
pour construire une “roadmap” (carte de route) entre deux poses données et

du robot

• À chaque iteration, on choisit une configuration candidate et on vérifie
qu’elle ne comporte pas de collisions entre le robot et les obstacles

• Si il y a une collision, la configuration candidate est rejetée. Sinon, elle est
rajoutée à la roadmap et elle est connectée, si possible, aux autres configurations
déjà mémorisées

Planification probabiliste

35

▪ Approche déterministe : les configurations candidates sont choisies
à travers une grille régulière appliquée à l’environnement (voir, par ex.
[Janson et al., IJRR’18])

Cette procédure est assez générale. Il y a deux façons de choisir les candidats :

Deux méthodes importantes qui utilisent l’approche stochastique sont :

1. PRM (Probabilistic Roadmap)

▪ Approche stochastique : les configurations candidates sont choisies
selon une certaine fonction de densité de probabilité (pdf)

2. RRT (Rapidly-exploring Random Tree)

Remarque : l’étude de l’optimalité de ces méthodes est assez récente (elle
s’appuie sur la théorie des graphes aléatoires et de la percolation), voir les articles :

"Sampling-based algorithms for optimal motion planning”, S. Karaman, E. Frazzoli,
Int. Journal of Robotics Research, vol. 30, no. 7, pp. 846-894, 2011

"Exploring implicit spaces for constrained sampling-based planning", Z. Kingston, M. Moll,
L.E. Kavraki, Int. Journal of Robotics Research, vol. 38, no. 10-11, pp. 1151–1178, 2019

Planification probabiliste : PRM

1. Probabilistic Roadmap (PRM)

36

"Probabilistic roadmaps for path planning in high-dimensional configuration spaces", L.E. Kavraki,
P. Svestka, J.-C. Latombe, M.H. Overmars, IEEE Trans. Robotics and Automation, vol. 12, n. 4,

pp. 566-580, 1996

• On génère un échantillon aléatoire de l’espace des configurations
en utilisant une pdf uniforme

Algorithme :

• est testé pour les collisions

• Si ne génère pas de collisions, il est ajouté à la roadmap (PRM) et
connecté (si possible) à travers des chemins locaux sans collisions, à des
configurations ‘suffisamment’ proches déjà présentes dans la roadmap

37

• La génération d’un chemin local sans collisions entre et une
configuration proche est effectuée par un planificateur local.
Typiquement, on considère un chemin droit entre et ,
et on vérifie s’il y a des collisions (par ex. on vérifie que les échantillons
individuels du segment ne génèrent pas de collisions)

• Si le chemin droit provoque une collision, il est rejeté et et
ne sont pas connectés dans la roadmap

• La procédure incrémentale de la méthode PRM s’arrête lorsque un
nombre maximal d’itérations a été atteint ou le nombre de composantes
connexes dans la roadmap dévient inférieur à un seuil-limite

• On vérifie si il est possible de connecter et à la même composante
connexe de la PRM en utilisant des chemins locaux sans collisions

Remarque : si une solution n’a pas été trouvée, la PRM peut être améliorée
en effectuant plus d’itérations ou en utilisant des stratégies pour réduire
le nombre de composantes connexes

Planification probabiliste : PRM

38

PRM : illustration de l’algorithme

(3 cas de figure : A, B et C)
A

B

C

2 composantes
connexes de la PRM

roadmap

roadmap

roadmap

39

Utilisation de la PRM
pour trouver un chemin

sans collisions entre et

3 composantes
connexes de la PRM

Planification probabiliste : PRM

Exemple

40

Avantages de la méthode PRM :

• Elle trouve un chemin sans collisions très rapidement
(à condition que la PRM ait été bien développée)

• Nouvelles instances du même problème produisent une amélioration
potentielle de la PRM. La PRM améliore, en termes de connexité et
d’efficacité temporelle, avec l’utilisation (la méthode PRM est donc
intrinsèquement « multiple-query » ou à demande multiple)

• Dans des espaces à très haute dimensionnalité (dimension > 4)
la méthode PRM est très efficace pour trouver rapidement une solution

• Simplicité de mise en œuvre : il n’est pas nécessaire d’avoir
une représentation géométrique des obstacles

Planification probabiliste : PRM

41

Inconvénients de la méthode PRM

• PRM est seulement complet en probabilité : la probabilité de trouver une
solution (s’il y a une) tend vers 1 comme le temps d’exécution tend vers l’infini.
Donc, s’il n’y a pas de solutions, l’algorithme ne terminera jamais : en pratique,
un nombre maximum d’itérations est fixé pour garantir la terminaison

• Les passages étroits dans l’environnement
sont critiques. En utilisant une pdf uniforme
pour générer , la probabilité de placer
un candidat dans une certaine région de
l’espace libre est proportionnelle à son
volume. Par conséquent, il serait peu
probable d’avoir un chemin à travers un
passage étroit dans un délai raisonnable

Solution possible : utiliser une pdf
non uniforme

Planification probabiliste : PRM

• Le contrôle de collision est chronophage. Avec Lazy PRM [Bohlin & Kavraki,
ICRA’00], on réduit le nombre de contrôles pendant la planification et par
conséquent, on minimise le temps d’exécution

Planification probabiliste : PRM

Chemin sans collisions
du robot choisi (vert)

42

Obstacle

“Robotics, Vision and Control: Fundamental
Algorithms in MATLAB", P. Corke, Springer, 2011

Deux composantes
connexe de la PRM

Robotics Toolbox de P. Corke :
 >> prm.plan()

Exécution 1 Exécution 2

>> PathPlanningExample.m

Dans la Robotics System Toolbox de Matlab (R2017) :

Planification probabiliste : RRT

43

2. Rapidly-exploring Random Tree (RRT)

"Randomized Kinodynamic Planning", S.M. LaValle, J.J. Kuffner Jr., Int. Journal of Robotics
Research, vol. 20, n. 5, pp. 378-400, 2001

▪ RRT est un algorithme de planification probabiliste « single-query »

• L’algorithme ne génère pas une roadmap qui représente de façon
exhaustive la connexité de l’espace libre dans tout l’environnement.
On explore uniquement une portion de l’espace libre qui est
pertinente à la résolution du problème (ce qui engendre une
forte réduction du temps de calcul)

▪ La méthode RRT utilise une structure de données qui s’appelle
Rapidly-exploring Random Tree (RRT)

• L’expansion incrémentale de l’RRT (on appelle cet arbre « T »)
est basée sur une simple procédure stochastique répétée
à chaque itération

44

• On génère un échantillon aléatoire de l’espace des configurations
en utilisant une pdf uniforme (comme pour la méthode PRM)

Algorithme

• La configuration dans T la plus proche à est déterminée, et une
nouvelle configuration candidate est générée sur le segment joignant
à , à une distance préfixée de

• On vérifie que soit soit le segment de à n’engendre pas
de collisions. Si tel est le cas, T est élargi en incluant et le segment le
joignant à (n’est pas rajouté à T, donc il n’est pas nécessaire de
vérifier s’il engendre des collisions : sa seule fonction est d’indiquer la
direction d’expansion de l’arbre T)

Planification probabiliste : RRT

T

45

• Si le segment joignant Ts et Tb est sans collisions, l’expansion est complète
et les deux arbres sont raccordés

• Si la procédure de connexion n'aboutisse pas à une solution après un certain
nombre d’itérations, on peut conclure que les deux arbres sont encore distants
et la phase d’expansion peut recommencer

• Après un certain nombre de pas d’expansion, l’algorithme entre dans une
phase où il essaie de connecter Ts et Tb en étendant chaque arbre vers l’autre.
Ceci est fait en générant un comme une expansion de Ts et en essayant de
connecter Tb à

Planification probabiliste : RRT

• Pour accélérer la recherche d’un chemin entre et , la méthode RRT
bidirectionnelle utilise deux arbres Ts et Tb ancrés en et , respectivement.
À chaque itération, les deux arbres sont élargis avec la méthode décrite dans
la slide précédente

46

• Illustration de la méthode RRT bidirectionnelle ou « RRT-Connect »

Procédure stochastique pour

l’expansion d’un arbre (Ts)
Les arbres Ts et Tb ont été raccordés

grâce au arc bleu

Ts

Planification probabiliste : RRT

Tb

Ts

Tb

47

Avantages de la méthode RRT

• La procédure d’expansion de RRT est simple et très efficace pour « explorer »
l’espace libre dans un environnement (même non convexe). Elle est biaisée
vers les parties de l’environnement qui n’ont pas été encore visitées

• Au lieu d’utiliser une constante pour générer , on peut définir un pas qui est
une fonction de l’espace libre disponible (on peut aller jusqu’à , comme dans
la phase expansion de la méthode PRM). Cette version gloutonne (« greedy »)
de la méthode peut être beaucoup plus efficace, si il y a des vastes zones vides

• RRT* garantie la convergence vers un chemin qui est optimal par rapport
à une certaine fonction de coût [Karaman & Frazzoli, IJRR’11]

• On peut facilement utiliser la méthode RRT avec des contraintes différentielles
(non-holonômes et cinématiques/dynamiques) sur le robot

• Comme la méthode PRM, la méthode RRT est complète en probabilité

Plusieurs variantes possibles :

• La probabilité que une configuration générique de l’espace libre soit rajoutée
à le RRT tend vers 1 comme le temps d’exécution tend vers l’infini (à condition
que la configuration se trouve dans la même composante connexe de l’espace
libre où le RRT est ancré)

Planification probabiliste : RRT

Planification probabiliste : RRT

48

Extension pour robots non-holonômes

• Solution simple et efficace : utiliser des primitives de mouvement

• Exemple : pour un robot unicycle, l’ensemble de vitesses suivant

produit trois chemins locaux admissibles : 1) virage à gauche le long d’un arc
de cercle, 2) trajet en ligne droit, 3) virage à droite le long d’un arc de cercle

Remarque : ces primitives de mouvement n’autorisent pas la marche
arrière ou une rotation sur place (en effet,)

• Elles sont un ensemble fini et admissible de chemins
locaux dans l’espace des configurations

• Chaque primitive est produite par un choix spécifique
des vitesses dans le modèle cinématique

• Les chemins admissibles sont générés par concaténation
des primitives de mouvement

Pour un robot de type unicycle, les chemins en ligne droite pour aller de à
générés par la méthode RRT, ne sont pas admissibles, en général

1

2

3

49

Les 3 primitives
de mouvement
pour un robot

unicycle

Un exemple de RRT (sa projection
dans l’espace opérationnel du robot)

Obstacle

Robot

Robot

Planification probabiliste : RRT

Extension pour robots non-holonômes

50

Robotics Toolbox de P. Corke :
 >> rrt.plan()

y



• L’expansion d’un RRT pour un robot
non-holonôme est similaire à la procédure
vue précédemment (seulement
la génération de est différente)

• Sous des hypothèses appropriées, on peut
montrer que si la configuration finale peut
être atteinte de la configuration initiale à
travers une concaténation sans collisions
de primitives, la probabilité que soit
rajouté à l’arbre T tend vers 1 comme
le temps d’exécution tend vers l’infini

• Pour augmenter l’efficacité de la
méthode, une version bidirectionnelle
peut être envisagée

RRT pour un robot unicycle avec
configuration initiale Chaque
sommet (vert) représente une pose
admissible du robot dans l’espace libre

Espace des poses du robot

x

Pose initiale

Planification probabiliste : RRT

Extension pour robots non-holonômes

51

Planification probabiliste : logiciel et variantes

Planificateurs multiple-query :
▪ PRM

• Lazy PRM
• PRM* : version asymptot.

optimale de PRM
• Lazy PRM*

▪ SPARS (SPArse Roadmap Spanner
algorithm) : planificateur
asymptot. quasi-optimal

▪ SPARS2

• Implémentation efficace des méthodes basées sur l’échantillonnage (C++/Python) :
Open Motion Planning Library (OMPL), https://ompl.kavrakilab.org

• Nombreuses variantes et améliorations de PRM et RRT dans la littérature :

Planificateurs single-query :
▪ RRT

• Lazy RRT, RRT-Rope

• RRT* : version asymptot. optimale de RRT
• RRT# et RRTX : deux variantes de RRT*

avec une vitesse de convergence plus rapide

• (Neural) Informed RRT*, neural RRT*
• SST (Sparse Stable RRT) : planificateur

ciné-dynamique asymptot. quasi-optimal

• VF-RRT (Vector Field RRT)
• pRRT (Parallel RRT)

• TSRRT (Task-Space RRT)

▪ EST (Expansive Space Trees)
▪ KPIECE (Kinematic Planning by Interior-Exterior Cell

Exploration)

▪ STRIDE (Seach Tree with Resolution Independent
Density Estimation)

▪ PDST (Path-Directed Subdivision Trees)

▪ FMT* (Fast Marching Tree) : plus rapide que RRT*
▪ BIT* (Batch Informed Trees), AIT* (Adaptively

Informed Trees), EIT* (Effort Informed Trees)

▪ QRRT (Quotient-Space RRT)

https://ompl.kavrakilab.org

Fin du CM

52

	Slide 0: Localisation et navigation de robots
	Slide 1: Plan du chapitre
	Slide 2: Partie 4 : Planification de trajectoire et évitement d’obstacles
	Slide 3: Fenêtre dynamique
	Slide 4: Fenêtre dynamique
	Slide 5: Fenêtre dynamique
	Slide 6: Fenêtre dynamique
	Slide 7: Fenêtre dynamique
	Slide 8: Fenêtre dynamique
	Slide 9: Fenêtre dynamique
	Slide 10: Fenêtre dynamique
	Slide 11: Fenêtre dynamique
	Slide 12: Fenêtre dynamique
	Slide 13
	Slide 14: Graphe de Voronoï
	Slide 15: Graphe de Voronoï
	Slide 16: Graphe de Voronoï
	Slide 17: Graphe de Voronoï : exemples et applications
	Slide 18: Graphe de Voronoï : exemples et applications
	Slide 19: Graphe de Voronoï : extensions
	Slide 20: Graphe de Voronoï : extensions
	Slide 21: Graphe de Voronoï
	Slide 22: Graphe de Voronoï
	Slide 23: Graphe de Voronoï
	Slide 24: Graphe de Voronoï
	Slide 25: Graphe de Voronoï
	Slide 26: Graphe de Voronoï
	Slide 27: Graphe de Voronoï
	Slide 28: Graphe de Voronoï
	Slide 29: Graphe de Voronoï
	Slide 30: Graphe de Voronoï
	Slide 31: Graphe de Voronoï
	Slide 32: Partie 4 : Planification de trajectoire et évitement d’obstacles
	Slide 33: Méthodes déterministes et probabilistes
	Slide 34: Planification probabiliste
	Slide 35: Planification probabiliste
	Slide 36: Planification probabiliste : PRM
	Slide 37: Planification probabiliste : PRM
	Slide 38: PRM : illustration de l’algorithme (3 cas de figure : A, B et C)
	Slide 39: Planification probabiliste : PRM
	Slide 40: Planification probabiliste : PRM
	Slide 41: Planification probabiliste : PRM
	Slide 42: Planification probabiliste : PRM
	Slide 43: Planification probabiliste : RRT
	Slide 44: Planification probabiliste : RRT
	Slide 45: Planification probabiliste : RRT
	Slide 46: Planification probabiliste : RRT
	Slide 47: Planification probabiliste : RRT
	Slide 48: Planification probabiliste : RRT
	Slide 49: Planification probabiliste : RRT
	Slide 50: Planification probabiliste : RRT
	Slide 51: Planification probabiliste : logiciel et variantes
	Slide 52: Fin du CM

