UNIVERSITE

de Picardie

']u/fea %!‘4

Localisation et navigation de robots

TD1 : Odomeétrie
Fabio MORBIDI

2025-2026

TD1 : Odometrie

Objectif : Estimation de la trajectoire d’un robot mobile

* Calculer la pose (z, y, #) d’'un robot unicycle
(a conduite différentielle) a partir de 'odométrie

* Tracer la position instantanée et simuler
la trajectoire du robot

* |dentification de I'erreur (incertitude) par le calcul
de la matrice de covariance

e Extraction et affichage des ellipses d’incertitude
sur la trajectoire

TD1 : Odometrie

Matériel: Répertoire packTD1.zip

Fichier « simu.m » utilise :
* Fichier « initRobot » pour les parametres du robot

* Fichier « initBruits » pour simuler:
* Le bruit d'une commande mal appliquée
* Le bruit de perception des capteurs

* Fichier « genereTrajs »

* Pour générer la trajectoire du robot:
e S’il applique parfaitement la commande
* Sion prends en compte les bruits

* Donne les valeurs des angles de chaque roue: ¢4 et ¢4

TD1 : Odometrie

Matériel: Répertoire packTD1.zip

Répertoire « outils » contient des fonctions:

 « Drawarrow » : Dessiner une fleche
 « Drawroundedrect » : Dessiner un rectangle
* « Drawellipse » : Dessiner une ellipse

e « Drawrobot » : Dessiner un robot

Exercice 1

Fonction « MAJEtatOdometrie »

 Entrées:

* Les distances parcourues par la roue gauche et droite entre
deux instants de temps et la pose courante p du robot

 Lalargeur de l'essieu L

* Sortie:

e Mise ajourdelapose: p' = [z, v, 8"
Utiliser cette fonction dans le fichier « simu.m » pour tracer
le robot a chaque instant

Exercice 1

Fonction « MAJEtatOdometrie »

(] As = ASCH_ASQ’ Axr = Ascos(f + Ab/2)
P=1Y], :
0 AO = Asa Z ASQ) Ay = Assin(0 + A6/2)
e [Ascos(§ +A0/2)
p =Y | =p+ | Assin(f + Ab/2)
|0 Af

Exercice 1

Fonction « MAJEtatOdometrie »

As

Asg + ASQ

2

ASd — ASQ

Ax

= Ascos(0 + Ad/2)

Ay

Asd—|—A89

2

Asd-l—ASg

2

Assin(0 + A0/2)

(9 X Asg LASQ) i
(6’ . Asg LASQ)

ASd — Asg

L i

Exercice 1

Fonction « MAJEtatOdometrie »

function [x_p, y_p, theta_p] = MAJEtatOdometrie(x, y, theta, delta_sg, delta_sd, L)

delta_s = (delta_sg + delta_sd)/2;
delta_theta = (delta_sd - delta_sg)/L;

= x + delta_sx*xcos(theta + delta_theta/2); % Mise a jour sur x
y_p =y + delta_s*sin(theta + delta_theta/2); % Mise a jour sur vy
= theta + delta_theta; % Mise a jour sur theta

Exercice 1

Dans le ficher « simu.m »

cle
clear all
close all

addpath{ 'outils/")

% nbIter est le nombre d'instants de la simulation
nbIter = 100;

% Figure pour afficher tous les resultats
figure(l)

clf

hold on

% Initialisation des scripts

initRobot; % pour les dimensions du robot (r est le rayon d'une roue
% et L est la longueur de 1l'essieu)

initBruits: % pour les parametres des bruits aléatoires de la commande
% et des capteurs

generaTrajs;

Exercice 1

% Initialisation de la position du robot

x0dom{1l) = 0.0;
yOdom{1l) = 0.0;
thetaOdom({1l) = 0.0;

for i=1l:nblter

diff phig = phig{i+l)-phig(i);
diff phid = -(phid(i+l)-phid{i));

delta sg = diff phig#*r;
delta sd = diff phid#*r;
$% Exercice 1 %%
[#0com{i+1), vOdom(i+l), thetaOdom(i+l)] = ...
MAJEtatOdometrie(x0Odom(i), yOdom(i), thetaOdom(i),delta sg, delta sd,L);

% Affiche les positions successives du robot
drawrobot { [x0dom{i) yOdom(i) thetaOdom{i)], "k’
plot (®x0dom,yOdom, 'r', 'LineWidth', 3)
pause (0.02)

end

hold off

axis eaqual

. 4, 250, 300);

title(Trajectoires'])
h = legend(' Application parfaite de la commande',...
" Réelle (commande bruitée)’ ;...
Obtenue par odométrie’', 'Location' , 'NorthWest'):
xlabel('x [m]')
viabel('y [m]")

Exercice 2

Propagation de l'erreur:

Fonction « propageErreurs » pour le calcul de la matrice
de covariance X,

* Entrées:
* La matrice de covariance 25 associéee a |'état précédent
* Lincrément courant
e [état al'instant précédent

* Les parametres L, kg, kg

e Sortie:

* La matrice de covariance 2ip’

11

Exercice 2

Yp = Vpf 25 (Vpf)' + Va, f-Za-(Va, D)

kd |A8d| 0

YA = cov(Asg, Asy) = 0 k| As |
g |28y

1 0 —Assin(0+ A6/2)7]
Vpf of of of 0 1 Ascos(0+ A6/2)
— — S
P Oox Oy 00
0 0 1 i
s cos(f + AG/2) — —sm(@—l—AQ/Q) Lcos(0+ A0/2) + £2sin(6 + A /2)
Va, f = [aizd aiig] = | 2sin(0+ A0/2) + 2 cos(0 + AG/2) Lsin(0+ AG/2) — —COS(9+A9/2)
1/L _1/L
Ag = DsatAsg np A5 As

2 ’ L

Exercice 2

Propagation de l'erreur:

Fonction « propageErreurs » pour le calcul de la matrice de
covariance 3

function SIGMApp = propageErreurs(S5IGMAp, delta sg, delta sd, theta, L, kg, kd)

delta s = (delta_sd + delta_sg)/2;
delta theta = (delta sd - delta sg)/L;

§IGMAdelta = [kd*abs(delta_sd) 0z
0 kg*abs (delta_sg)];

1 0 -delta s*sin(theta + delta_theta/2);
0 1 delta s*cos(theta + delta theta/2);
a 0 1 17

nabla f p = [

nabla f Ddgll
nabla f Ddgl2
nabla f Ddg2l
nabla f Ddg22
nabla f Ddg3l
nabla f Ddg3z

0.5*cos(theta + delta theta/2) (delta s/(2*L))*sin(theta + delta theta/2);
0.5*cos(theta + delta theta/2) + (delta s/(2*L))*sin(theta + delta theta/2);
0.5*sin(theta + delta theta/2) + (delta s/(2*L))*cos(theta + delta theta/2);
0.5*sin(theta + delta theta/2) (delta s/(2*L))*cos(theta + delta theta/2);
1/L;
-lfi;

mmmmmnanm
]

nabla f Ddg = [nabla f Ddgll, nabla f Ddgl2;
nabla f Ddg2l, nabla f Ddg2i;
nabla f Ddg3l, nabla f Ddg32];

SIGMApp = nabla f p*SIGMAp*nabla f p' + nabla f Ddg*SIGMAdelta*nabla f Ddg':

13

Exercice 2

Propagation de l'erreur:

Fonction « propageErreurs » pour le calcul de la matrice de
covariance 3

Dans le ficher « simu.m »

% Matrice de covariance initiale
SIGMAp = le—-4xeye(3);

for i=1l:nblter

diff phig = phig(i+l)-phig(i);
diff phid = -(phid(i+l)=-phid(i));

delta sqg = diff phig*r;
delta sd = diff phid*r;

%% Exercice 1 %%
[®0dom(i+l), vOdom(i+l), thetaldom(i+l)] = .
MAJEtatOdometrie(xOdom(i), yOdom(i), thetaﬂdﬂm{L}, delta sg, delta sd, L);

%% Exercice 2 %%
SIGMAp = propageErreurs(5IGMAp, delta sq, delta sd, thetaOdom(i), L, kg, kd);

14

Exercice 3

Propagation de l'erreur:

Fonction « extraitEllipse » pour calculer lellipse
d’incertitude associée a X

Affichez ces ellipses (cf. dossier outils) a un pas régulier
sur la trajectoire du robot (mais n’affichez pas toutes

les ellipses, sinon ce sera illisible !)

15

Exercice 3

Propagation de l'erreur:

Fonction « extraitEllipse » pour calculer l'ellipse d’incertitude
associée a X

Remarque:

* Les racines carrées des valeurs propres les plus fortes de la
matrice de covariance donnent les longueurs des demi-axes
de l'ellipse

* Le vecteur propre associé a la valeur propre la plus forte
nous donne des informations sur l'orientation de l'ellipse

16

Exercice 3

Propagation de l'erreur:

Fonction « extraitEllipse » pour calculer
d’incertitude associée a X

function [dal, da2, theta_e] = extraitEllipse(SIGMAp)
[V, D] = eigs(SIGMAp);
% Longeur des demi-axes (au carré) de 1l'ellipse d'incertitude

dal
daZ2

D(3,3);
D(2,2);

% Orientation de 1l'ellipse d'incertitude (radians)
theta_e = atan2(Vv(2,3), V(1,3));
if theta e < 0@

theta_e = theta_e + pi;
end

I'ellipse

17

Exercice 3

Propagation de l'erreur:

Fonction « extraitEllipse » pour calculer [lellipse
d’incertitude associée a X

Dans le ficher « simu.m »

diff phig = phig(i+l)-phig(i);
diff phid = -(phid(i+l)-phid(i)};

delta sg = diff phig*r;
delta sd = diff phid*r;

%% Exercice 1 %%
[x0dom{i+l), vodomi{i+l), thetaDdom(i+l)] = .
MAJEtatOdometrie (xOdom(i)y, vOdom(i), th&taﬂdﬂm{l}; delta sg, delta _sd, L);

%% Exercice 2 %%
SIGMAp = propageErreurs(5IGMAp, delta sgq, delta sd, thetaOdom(i), L, kg, kd);

%% Exercice 3 %%
[dal(i+l), da2(i+l), theta_e(i+l)] = extraitEllipse(SIGMApD);

if mod(i,5) ==
draw&ilips&{[xﬂdﬂm{i+l}, yOdom(i+l), theta e(i+l)], 3*sgrt(dal(i+l)), 3*sgrt(daz2(i+l)), "k');
plot[x0dom{i+l), vOdom(i+l), 'k.', MarkerSize',14)

end

18

	Slide 1: Localisation et navigation de robots
	Slide 2: TD1 : Odométrie
	Slide 3: TD1 : Odométrie
	Slide 4: TD1 : Odométrie
	Slide 5: Exercice 1
	Slide 6: Exercice 1
	Slide 7: Exercice 1
	Slide 8: Exercice 1
	Slide 9: Exercice 1
	Slide 10: Exercice 1
	Slide 11: Exercice 2
	Slide 12: Exercice 2
	Slide 13: Exercice 2
	Slide 14: Exercice 2
	Slide 15: Exercice 3
	Slide 16: Exercice 3
	Slide 17: Exercice 3
	Slide 18: Exercice 3

