
Localisation et navigation de robots

TD1 : Odométrie

2025-2026

Fabio MORBIDI

A

TD1 : Odométrie

Objectif : Estimation de la trajectoire d’un robot mobile

• Calculer la pose d’un robot unicycle
(à conduite différentielle) à partir de l’odométrie

• Tracer la position instantanée et simuler
la trajectoire du robot

• Identification de l’erreur (incertitude) par le calcul
de la matrice de covariance

• Extraction et affichage des ellipses d’incertitude
sur la trajectoire

2

TD1 : Odométrie

Matériel: Répertoire packTD1.zip

Fichier « simu.m » utilise :
• Fichier « initRobot » pour les paramètres du robot

• Fichier « initBruits » pour simuler:

• Le bruit d’une commande mal appliquée

• Le bruit de perception des capteurs

• Fichier « genereTrajs »

• Pour générer la trajectoire du robot:
• S’il applique parfaitement la commande

• Si on prends en compte les bruits

• Donne les valeurs des angles de chaque roue: et

3

TD1 : Odométrie

Matériel: Répertoire packTD1.zip

Répertoire « outils » contient des fonctions:

• « Drawarrow » : Dessiner une flèche

• « Drawroundedrect » : Dessiner un rectangle

• « Drawellipse » : Dessiner une ellipse

• « Drawrobot » : Dessiner un robot

4

Exercice 1

Fonction « MAJEtatOdometrie »

• Entrées :

• Les distances parcourues par la roue gauche et droite entre
deux instants de temps et la pose courante du robot

• La largeur de l'essieu

• Sortie :

• Mise à jour de la pose :

 Utiliser cette fonction dans le fichier « simu.m » pour tracer
le robot à chaque instant

5

Exercice 1

Fonction « MAJEtatOdometrie »

6

Exercice 1

Fonction « MAJEtatOdometrie »

7

Exercice 1

8

Fonction « MAJEtatOdometrie »

Exercice 1

9

Dans le ficher « simu.m »

ciao
s

Exercice 1

10

Ss

Exercice 2

Propagation de l’erreur:

Fonction « propageErreurs » pour le calcul de la matrice
de covariance

• Entrées :

• La matrice de covariance associée à l’état précédent

• L’incrément courant

• L’état à l’instant précédent

• Les paramètres

• Sortie :

• La matrice de covariance

11

Exercice 2

12

Exercice 2

Propagation de l’erreur:

Fonction « propageErreurs » pour le calcul de la matrice de
covariance

13

Exercice 2

14

Dans le ficher « simu.m »

Propagation de l’erreur:

Fonction « propageErreurs » pour le calcul de la matrice de
covariance

Exercice 3

Propagation de l’erreur:

Fonction « extraitEllipse » pour calculer l’ellipse
d’incertitude associée à

Affichez ces ellipses (cf. dossier outils) à un pas régulier
sur la trajectoire du robot (mais n’affichez pas toutes
les ellipses, sinon ce sera illisible !)

15

Exercice 3

Propagation de l’erreur:

Fonction « extraitEllipse » pour calculer l’ellipse d’incertitude
associée à

Remarque:

• Les racines carrées des valeurs propres les plus fortes de la
matrice de covariance donnent les longueurs des demi-axes
de l’ellipse

• Le vecteur propre associé à la valeur propre la plus forte
nous donne des informations sur l’orientation de l’ellipse

16

Exercice 3

Propagation de l’erreur:

Fonction « extraitEllipse » pour calculer l’ellipse
d’incertitude associée à

17

Exercice 3

18

Dans le ficher « simu.m »

Propagation de l’erreur:

Fonction « extraitEllipse » pour calculer l’ellipse
d’incertitude associée à

	Slide 1: Localisation et navigation de robots
	Slide 2: TD1 : Odométrie
	Slide 3: TD1 : Odométrie
	Slide 4: TD1 : Odométrie
	Slide 5: Exercice 1
	Slide 6: Exercice 1
	Slide 7: Exercice 1
	Slide 8: Exercice 1
	Slide 9: Exercice 1
	Slide 10: Exercice 1
	Slide 11: Exercice 2
	Slide 12: Exercice 2
	Slide 13: Exercice 2
	Slide 14: Exercice 2
	Slide 15: Exercice 3
	Slide 16: Exercice 3
	Slide 17: Exercice 3
	Slide 18: Exercice 3

