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Localisation d’un robot mobile basée sur carte

Correction (mesure)
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Représentation de la carte

Décomposition exacte en cellules

Décomposition approchée en cellules

e Cellules de taille fixe
e  (Cellules de taille variable

Cartes topologiques

Représentation continue basée sur les droites
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Représentation de la carte

1. Décomposition exacte en cellules [Latombe, 1991]




Représentation de la carte

2. Décomposition approchée en cellules
e Cellules de taille fixe
* Simple et tres utilisée (« occupancy grid », en anglais)
* Les passages étroits disparaissent (la représentation n’est pas compléete)

* Grande mémoire nécessaire si la taille des cellules est petite
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Environnement continu Approximation discrete de I'environnement



Représentation de la carte

2. Décomposition approchée en cellules

e Cellules de taille variable (décomposition adaptative)

e Réduction du nombre de cellules et de I'espace de mémoire nécessaire
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Représentation de la carte

2. Décomposition approchée en cellules

I 1
-

Remarque :
En informatique, un quadtree ou arbre quaternaire est une structure de données de type
arbre dans laquelle chaque nceud a quatre fils



Représentation de la carte

3. Cartes topologiques i

* Les cartes topologiques représentent I'environnement
comme un graphe non orienté G = (V, E):

* Les noeuds V correspondent ©)
a l'espace géométrique

* Les arétes I correspondent
aux connexions physiques
entre les nceuds

* Les cartes topologiques sont
dépourvues d’échelle et de distance,
mais les relations topologiques

(par ex. gauche, droite, nord, sud)
sont conservees ©

Aréte (connexion)
Neceud (lieu)



Représentation de la carte

 Exemple de carte topologique
e Carte du métro de Paris
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Représentation de la carte

4. Représentation continue basée sur les droites

a) Représentation avec un ensemble de droites (finies ou infinies)

b) Extraction de droites a partir de mesures laser, sonar ou d’images
* Transformée de Hough
* RANSAC (RAndom Sample Consensus) [Fischler & Bolles, 1987]
* Split-and-merge [Pavlidis & Horowitz, 1974]

et
|

Environnement Représentation avec droites infinies
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Représentation de la carte

4. Représentation continue basée sur les droites

e Algorithme incrémentiel [Forsyth & Ponce, 2003]
e Régression linéaire [Arras & Siegwart, 1997]
e Algor. Espérance-Maximisation [Forsyth & Ponce, 2003] (inconvénient: minima locaux)

4l Split-and-merge appliqué a un balayage laser 2D
(avec la permission de B. Jensen)
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Représentation de la carte

4. Représentation continue basée sur les droites

Déterministe | Fréquence [Hz] | Faux positifs [%] | Précision
Transfor. de Hough Oui 10 30 ++++
RANSAC Non 30 30 ++++
Split-and-merge Oui 1500 10 +++
Alg. incrémentiel Oui 600 6 +++
Régression linéaire Oui 400 10 +++
Alg. Espér. - Maxim. Non 1 50 ++++

Comparaison des six algorithmes pour l'extraction de droites*
a partir de données laser 2D

*"A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics",
V. Nguyen, A. Martinelli, N. Tomatis, R. Siegwart, in Proc. IEEE/RSJ Int. Conf. Intel. Robots and Systems,
pp. 1929-1934, 2005



Représentation de la carte : sommaire

Position courante
du robot

T S
s P N

I
!

a) Plan complet avec murs, mobilier, portes, etc.

b) Décomposition approchée : environ 3000 cellules
de taille fixe 50 cm x 50 cm. Chaque cellule est pleine
(présence d'un obstacle) ou vide (espace libre)

c) Carte topologique avec 18 nosuds et 17 arétes

d) Représentation continue basée sur droites :
100 droites avec 2 parametres
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Probleme de localisation probabiliste

Approche probabiliste au probleme de localisation (incrémentielle)

Calcul de la croyance sur I'état du robot (fonction de densité de probabilité ou pdf)
a chaque instant de temps

Ingrédients nécessaires :

1.

2.

Densité de probabilité initiale : croyance(x)

Modele d'erreur statistique des capteurs proprioceptifs
(par ex. encodeurs des roues du robot)

Modele d'erreur statistique des capteurs extéroceptifs
(par ex. lasers, sonars, caméras)

Carte de I'environnement M
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Fusion des mesures proprioceptives et extéroceptives

encoder measurements posterior

state
/ Odo metry #’ State Prediction - Update
predicted
state

innovation from
matched landmarks

landmarks in global

dAirint - Measurement Data
coordinates Prediction Association
predicted -
measurements in
“ sensor coordinates FEd e
Feature/Landmark
Extraction

raw sensory data

/ Sensors /

Landmark = balise (ou amer) passive
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Localisation d’un robot par EKF

Nos hypotheses :

* Robot de type unicycle a conduite différentielle

» Capteurs: encodeurs sur les roues (proprioceptifs), télémetre laser (extéroceptif)
* Le repére du télémetre laser {L} coincide avec le repére du robot {R}

* Primitives m’ de M : droites (exprimées dans le repere monde {W})

16



Localisation d’un robot par EKF

@ Prédiction

@ Correction

a) Observation des primitives par mesure capteurs
b) Prédiction de mesure des primitives

c) Appariement des mesures

d) Estimation



Localisation d’un robot par EKF

@ Prédiction




@ Prédiction

Prédiction de la nouvelle pose a partir de:

* l'ancienne pose : x;—1 = [T4_1, Ye—1, Oe—1]"

* Le déplacement des roues (gauche, droite) : u; = [Asy, ASg]T

On peut utiliser le modele pour I'exactitude odomeétrique
développé dans le TD1:

Tt—1

)/Zt = f(Xt_l, ut) = Yt—1

_|_

i:\)t — FX Pt—l F;lg ‘I‘ Fu Qt F;Z;

d—ASg

[ Asg+A A

d—ASg

A A . A
% Sln(et_l _|_ S

Asd—ASg

5 L

ou P;_; covariance de I'état précédent du robot x;_1

2L

2L

.
)

Modele
non linéaire !

Q; covariance du bruit du modeéle de mouvement: Q; = diag(kq|Asq|, kg|Asy])

19



@ Prédiction

Prédiction
. de la pose

20



Rappel le TD1 - Exercices 1 et 2

Fonctions « MAJEtatOdometrie» et «propageErreurs» pour la mise a jour
de la pose du robot et le calcul de la matrice de covariance X

function [x p, y_p, theta p] = MAJEtatOdometrie(x, y, theta, delta sg, delta_sd, L)

delta s = (delta sg + delta sd)/2;
delta_theta = (delta_sd - delta_sg)/L;

X p = X + delta s*cos(theta + delta theta/2); %% Mise a jour sur x
y p = y + delta_s*sin(theta + delta theta/2); %% Mise a jour sur y
theta p = theta + delta theta; $% Mise a jour sur l'orientation

function SIGMApp = propageErreurs|S5IGMAp, delta sg, delta sd, theta, L, kg, kd)

delta 8 = (delta_sd + delta sg)/2;
delta_theta = (delta sd - delta_ sg)/L;

SIGMAdelta = [kdvabs|(delta_sd) Q:

a kg*abs(delta sg)];
nabla £ p = [1 0 =delta s*sin(theta + delta theta/2);
0 1 delta s*cos(theta + delta theta/2);
0 0 1 1;

0.5*cos(theta
0.5*cos(theta
0.5*sin(theta
d.5*zin(theta
1/L;

=1/L:

nabla f Ddgll
nabla f DdglZz
nabla f Ddgl
nabla f Ddg2Z2
nabla f Ddg3l
nabla f Ddg3Z

delta_theta/2)
delta theta/2)
delta_theta/2)
delta theta/2)

(delta_s/(2*L))*sin(theta + delta_theta/2);
(delta_s/(2*L))*sin(theta + delta_theta/2);
(delta_s/(2*L))*cos(theta + delta_theta/2);
(delta s/(2*L))*cos(theta + delta theta/2);

+ + + +
I+ 41

mmmnmn

nabla f Ddg = [nabla f Ddgll, nabla f Ddgl2;
nabla f DdgZl, nabla f Ddgid;
nabla f Ddg3l, nabla £ Ddg32);

SIGMApp = nabla f p*S5IGMAp*nabla f p' + nabla f Ddg*SIGMAdelta*nabla £ Ddg';



@ Prédiction

Exercice 1

function [x, y, theta, P] = prediction(xi, yi, thetai, Pi, delta sg, delta sd, L, kg, kd)

delta s = (delta sg + delta sd)/2;
delta theta = (delta sd - delta sqg)/L;

theta = thetai + delta theta;
if theta < 0
theta = theta + 2*pi;

end
X = xi + delta s*cos(thetai + delta theta/2);
¥ = yi + delta s*sin(thetai + delta theta/2);
Q = [kd*abs(delta sd) 0;
0 kg*abs(delta sg)];

Fx = [ 1 0 -delta s*sin(thetai + delta theta/2);

0 1 delta s*cos(thetai + delta theta/2);

0 0 1 | H
Fu = [ 0.5*cos(thetai + delta theta/2) - (delta s/2*L)*sin(thetai + delta theta/2), ...

0.5*cos(thetai + delta theta/2) + (delta s/(2*L))*sin(thetai + delta theta/2);

0.5*sin(thetai + delta theta/2) + (delta s/2*L)*cos(thetai + delta theta/2), ...
0.5*sin(thetai + delta theta/2) - (delta s/(2*L))*cos(thetai + delta theta/2)

1/L, -1/L 1:

P = Fx*Pi*Fx' + Fu*Q*Fu':

22



Localisation d’un robot par EKF

®

@ Correction
a) Observation des primitives par mesure capteurs
b)
c)
d)



a) Observation des primitives par mesure capteurs

* Primitives de type droite
 Une droite est paramétrée en coordonnées polaires :

,1e€{1,2,...,n}

{R}

* nobservations: z = [(z'),...,(z")']l e R*"

* Mesures dans le repere local {2} du robot

24



@ Correction

a) Observation des primitives par mesure capteurs

* n droites observées, 2n parametres

* l'incertitude sur les droites est representée par la matrice
de covariance :

}, e {1,2,...,n}

* Cette matrice de covariance peut étre calculée a partir
des incertitudes des mesures contribuant a chaque droite

* Dans notre implémentation Matlab, on choisira simplement :

Z, {2.%/180 0

= ,1e€11,2,....n
t O 10} { )

25



y [m)
1 1 ) 1 1
LR N - - T T
. T : T ; . : T . :

@ Correction

a) Observation des primitives par mesure capteurs

x [m]

Données brutes
générées par le
télémetre laser 2D

y[m]

1 1 1 1 ]
5] = wr P = =] = P wr = o
T T T T T T T T T T

x[m]

Les droites sont extraites
(par ex. avec RANSAC)

Espace du modele

T A
Droite?
1
T
Y % % ﬂ
>
—T o 0 ™ (X

Représentation des
parametres des droites et
des incertitudes associées,
dans I'espace du modele

26



Localisation d’un robot par EKF

®

@ Correction
a)
b) Prédiction de mesure des primitives
c)
d)



b) Prédiction de mesure des primitives

e Utilise:
* La pose prédite du robot Xx; (calculée dans |'étape 1)

« Le modéle de la primitive m’ (une droite) :
%4 .
. 0%
r.]

 ['observation prédite pour chague primitive

 Donne:

z, = h/(X;, m’)

dans le repere local {R} du robot

28



@ Correction

b) Prédiction de mesure des primitives
R

- 84 : : WOJJ — Ht
7zl =| | =X, m)) = t
t = | | b T lwg A WGy = i (W
T ry — xpcos(Vay) — ypsin(Vay)
A i\
, 7 ’
- A o .
A e . i
o o R [
- e e
% e h‘“%
A
s “‘-*
“ {R} R/\j ’
’ A7
-~ : . ::I-
e W ] _ A i \W *
- i ” ) J ’
1‘;‘ TE-"' Tt - !_:: M“\ at ..;"
* : - A b
o . [ s
~ W, _j v AL *~ droite
A at i % | _ﬂ‘J
> = A
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b) Prédiction de mesure des primitives

Par la suite on va utiliser la matrice jacobienne de h’ (x;, m’)
par rapport a X; :

o OhIG, mI) 0 0 -1
%, |

pour écrire les equations du filtre de Kalman
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@ Correction

b) Prédiction de mesure des primitives

* Les prédictions de mesure peuvent
étre représentées dans |'espace du
modele d’une facon similaire aux
observations

* Le résultat de la prédiction de mesure
sont des droites représentées dans le
repere du robot {R}
* Elles sont incertaines, parce que
la prédiction de pose du robot X;
est incertaine

Espace du modele

F 1
T %4
droite j
o~
T 2o ¢
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@ Correction

b) Prédiction de mesure des primitives

Rr .

~j CV"Z . . WCM‘Z — Ht

z, = | .| =hl(x,m) = | | .
T Wil — 2 cos(Wad) — 7y sin(Wad)

Exercice 2.2 (voir “initEnviro.m”, “genereTrajs.m” pour la gestion des droites)

z; = predictionDeMesure("Vay, Vry, X;)

function zPredit = predictionDeMesure(a_d, r_d, xi, yi, thetai)

for j = 1:length(a_d)
zPredit(1, j) = a_d(j) - thetai;
if (zPredit(1, j) < @)
zPredit(1, j) = zPredit(1l, j) + 2x%pi;
end
zPredit(2, j) = r_d(j) - xikcos(a_d(j)) - yixsin(a_d(j));
end

32



Localisation d’un robot par EKF

®

@ Correction
a)
b)
c) Appariement des mesures
d)



c) Appariement des mesures

R . 2 Rr .

. a’ ' N %
d=| | (T v =
( 7

* Trouver la meilleur correspondance entre :

* Les mesures courantes (« indice % »)

* Les prédictions de mesure (« indice 7 »)

 Pour chaque appariement (¢, j) on calcule :
 Linnovation

e La matrice de covariance de I'innovation

34



c) Appariement des mesures

* Pour chaque appariement (i, j):
 Calculer l'innovation :

-~ . . | ol Wol —
v =z, —h! (X, m?) = : — | v |
T Wil — 2y cos(Wal) — 7 sin(War)

e Calculer la covariance de l'innovation :
i _ i D T (

 Pour valider I'appariement, on utilise la distance
de Mahalanobis (au carré) avec un seuil g > 0 :

(v (B,) v < ¢

35



@ Correction

H A Mesure (trait épais), prédiction (trait fin)

c) Appariement des mesures
Espace ﬂAberrante
du modeéle « outlier »

Pas d’appariement.
Le mur n'a pas été
observé par le
robot !

Appariement 7, j

W g
On cherche les meilleurs appariements.

Les primitives non appariées sont rejetées —T &7 o 0

36



c) Appariement des mesures

* Trouver |la correspondance entre les mesures z;
et les observations prédites z;

e Calculer l'innovation composite v

* Calculer la covariance de I'innovation composite Xin,

e Empiler les H? en H,

[Vu H,, ZINt] — appariement(/z\t, z, P, Ry, g) Exercice 2.3

37



@ Correction

c) Appariement des mesures Exercice 2.3

function [v, H, SIGMAin] = appariement(zPredit, z, Pi, R, g)

for j=l:size(z,2)
dM_max = 1lel®;
dM = dM_max;
i=1;
while(i <= size(zPredit,2)) && (dM > g*2)
% Matrice jacobienne de h"j
Hj = [ ) ) -1;
-cos(zPredit(1,j)) -sin(zPredit(1,j)) a];

% Innovation pour l'appariement candidat
vij = z(:,1) - zPredit(:,j);

% Calcul de la distance de Mahalanobis (au carré)
SIGMAinij = Hj*PixHj' + R{1+2%(i-1):142%(i-1)+1,142%(i-1):142%(i-1)+1);
dM = vij' * inv(SIGMAinij) * vij;

% Contribution a 1'innovation et au jacobien composites
if(dM < dM_max)
dM_max = dM;
V(1+2%(j-1) 1 1+2%(j-1)+1) = vij;
H(1+2%(j-1):1+2%(j-1)+1, :) = Hj;
end

i=1i+1;
end
end
SIGMAin = H%PixH' + R; % Calcul de la covariance de 1'innovation composite
v=uv';



Localisation d’un robot par EKF

®

@ Correction
a)
b)
c)

d) Estimation



d) Estimation

En se basant sur:
e La pose prédite X; et la covariance P,

* Les mesures appariées

(I) Mise a jour de la pose : x¢ = X; + K; vy

* Gain de 'EKF: R
K, = P, Hj (Zi,) ™

(II) Mise a jour de la covariance: P, = P, — K, v, K

[x¢, Pi] = estimation(X;, Py, v¢, Hy, Z1N,) Exercice 2.4




@ Correction

Exercice 2.4

function [x, ¥y, theta, P] = estimation(xi, yi, thetai, Pi, v, H, S5IGMAin)

% Calcul du gain de Kalman
K =Pi * H' * inv(SIGMAin);

% Estimation de 1'état
X = [xi, yi, thetai]' + K * v;

% Esctimation de 1l'incertitude de 1'état
= Pi1 - K * SIGMAin * K':

!

%8 Mise en forme
X = X(1);

y = X(2);
theta = X(3);

if{theta < 0)
theta = theta + 2*pi;
end

41



@ Correction

DVT R R

Exercice 2.1: [x;, P,] = correction(X;, Py, Ve, Vry, By, Bry, g)

function [x, ¥, theta, P] = correction(xi, yi, thetai, Pi, ad, rd, ad o, rd o, g)

¥ alpha droites -> a d

¥ r droites -> r d

% alpha droites obs -> a d o

¥ r droites obs —=> r d o

% Observation

Zz=[adeo; rdo];

R = zeros(Z*length(a d o),2*length{a d o));

¥ Bruit sur la perception extéroceptive. Variances sur la diagonale de la
¥ matrice R"] t: sigma aa = 2.5*pi/180, sigma rr = 10

for i=l:length(a d o)
R{1+2*(i-1):1+2*(i-1)+1, 1+2*(i-1):l+2*(i-1)+1) = [2.5*pi/180 0; 0 10];
end

¥ Prédiction de mesure
ZPredit = predictionDeMesure(a d, r d, xi, vi, thetai);

¥ Appariement
[v, H, S5IGMAin] = appariement(zPredit, z, Pi, R, g);

¥ Estimation
[x, ¥, theta, P] = estimation(xi, yi, thetai, Pi, v, H, SIGMAin);

42



@ Correction

Prédiction
(odométrie)

Xt Pt

Innovation
par mesures

En fusionnant la prédiction de la pose du robot (trait fin) avec I'innovation obtenue par les
mesures (trait épais), nous obtenons l'estimation finale de la pose du robot (trait tres épais)

43



Equations de I'EKF pour la localisation d’un robot : résumé

Prédiction

Xt = f(Xt—la U—t)

P, = Fy P, F; + F,Q/F}
Correction

x; = X + K vy

~ ~ _ —1
P, =P, - K, I, K] = (P;'+ H/ R, 'Hy)

ot Ky = P,H! (Zx,) " est le gain de Kalman

Avantage
* Efficacité computationnelle (mécanisme récursif)

Inconvénient
 Sil'incertitude sur la pose du robot devient trop importante (par ex. suite a la
collision avec un obstacle), I'EKF peut échouer et I'erreur d’estimation peut diverger
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