Devoir Surveillé: noms DU-LE

20 mai 2020

Consignes pour le contrôle:

- Durée: 3 heures à partir de 10h00. Le barème est donné à titre indicatif
- Seulement le matériel disponible sur la page web du cours pourra être consulté
- Envoyez votre copie (nom du fichier: votre_nom_de_famille.pdf) avant 13h00 à l'adresse e-mail: fabio.morbidi@u-picardie.fr

Exercice 1 : [3 pts]

- 1. Étant donné le robot TX200 de Stäubli (voir la fiche technique en annexe), déterminer:
 - Le nombre d'axes
 - La charge maximale transportable
 - La répétabilité de positionnement
 - Le poids
 - Le rayon d'action
 - La vitesse angulaire maximale des deux premiers axes
 - Les butées mécaniques du poignet
 - Modes de fixation
 - Le volume de travail
- 2. Donner la définition générale de volume de travail et de répétabilité d'un robot industriel.

Exercice 2:[6 pts]

Étant donné le robot cylindrique montré dans la Figure 1 ci-dessous:

- 1. Déterminer le tableau des paramètres de Denavit-Hartenberg.
- 2. Calculer le modèle géométrique direct.
- 3. Les coordonnées du point P dans le repère de l'effecteur du robot sont $\mathbf{p}^3 = [0, 0, 5]^T$ (mètres). Déterminer les coordonnées de P dans le référentiel de la première articulation du robot.

Exercice 3:[2 pts]

Soit le manipulateur polyarticulé tel que montré dans la Figure 2.

- 1. Déterminer le nombre de DDL et le vecteur q des variables articulaires du robot.
- 2. Quel type de porteur utilise ce manipulateur ?

Fabio Morbidi Page 1/4

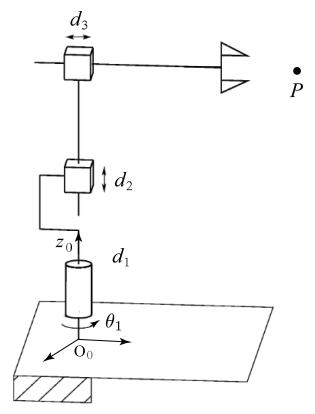


Figure 1: Manipulateur cylindrique.

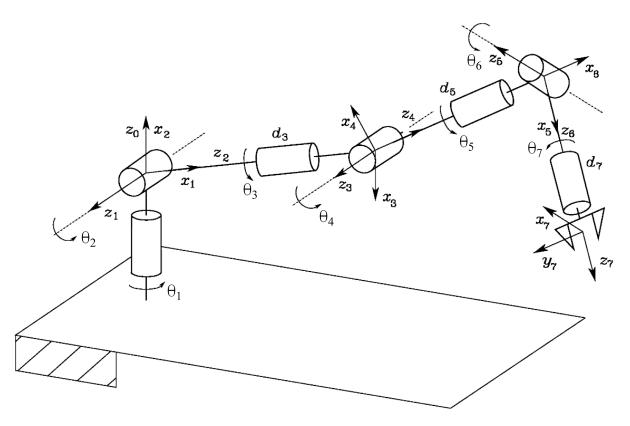


Figure 2: Manipulateur polyarticulé.

Fabio Morbidi Page 2/4

Exercice 4: [6 pts]

Les paramètres de Denavit-Hartenberg du manipulateur PRR montré dans la Figure 3, sont indiqués dans le tableau ci-après.

Segment	a_i	α_i	d_i	$ heta_i$
1	0	0	d_1	0
2	l_2	0	0	θ_2
3	l_3	0	0	θ_3

Déterminer le jacobien géométrique J du manipulateur.

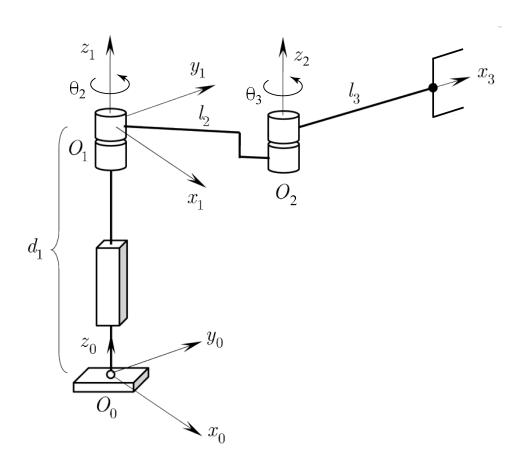


Figure 3: Manipulateur PRR.

Fabio Morbidi Page 3/4

Questions à réponse ouverte: [3 pts]

- 1. Spécifier dans quels cas la convention de Denavit-Hartenberg ne donne pas une définition unique de repère d'un segment d'un robot.
- 2. Définir le problème géométrique inverse. Pourquoi est-il plus compliqué que le problème géométrique direct ? Motivez votre réponse à l'aide d'exemples.
- 3. Le jacobien géométrique du manipulateur planaire RRP vu dans les exercices de TD est,

$$\mathbf{J}(\mathbf{q}) = \begin{bmatrix} -d_3 \cos \gamma - a_2 \sin \gamma - a_1 \sin \theta_1 & -d_3 \cos \gamma - a_2 \sin \gamma & -\sin \gamma \\ -d_3 \sin \gamma + a_2 \cos \gamma + a_1 \cos \theta_1 & -d_3 \sin \gamma + a_2 \cos \gamma & \cos \gamma \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix},$$

où $\gamma = \theta_1 - \theta_2$ et $\mathbf{q} = [\theta_1, \theta_2, d_3]^T$. Étudier les singularités cinématiques du manipulateur et spécifier s'il s'agit de singularités de type 1 ou 2.

Fabio Morbidi Page 4/4

Gamme TX200

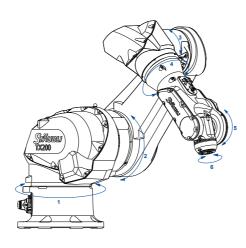
Robots industriels 6 axes

Caractéristiques

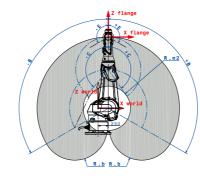
TX200	TX200L
130 kg (150 kg sous conditions)	80 kg (100 kg sous conditions)
100 kg	60 kg
2194 mm	2594 mm
6	6
± 0,06 mm	± 0,1 mm
CS8C HP	CS8C HP
980 kg	1000 kg
	130 kg (150 kg sous conditions) 100 kg 2194 mm 6 ± 0,06 mm CS8C HP

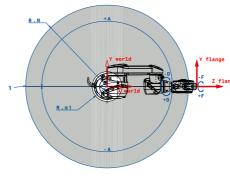
VITESSE MAXIMALE		
Axe 1	160°/s	160°/s
Axe 2	160°/s	160°/s
Axe 3	165°/s	165°/s
Axe 4	260°/s	260°/s
Axe 5	360°/s	360°/s
Axe 6	450°/s	450°/s
Vitesse maximale au centre de gravité de la charge	12 m/s	14 m/s
Inertie maximale axe 5	45 kg.m ²	40 kg.m ²
Inertie maximale axe 6	20 kg.m ²	15 kg.m ²
Freins	Tous les axes	

ENVELOPPE DE TRAVAIL		
Rayon maxi entre axes 1 et 5 (R.M)	2000 mm	2400 mm
Rayon mini entre axes 1 et 5 (R.m1)	365 mm	528 mm
Rayon mini entre axes 2 et 5 (R.m2)	545 mm	690 mm
Rayon min entre axes 3 et 5 (R.b)	800 mm	1200 mm

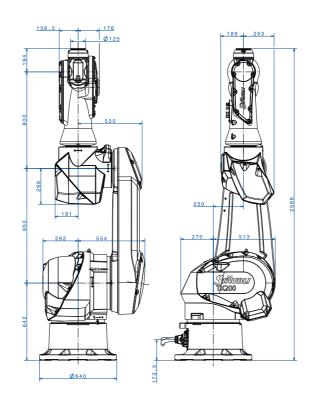

PLAGE DE MOUVEMENT		
Axe 1 (A)	± 180°	± 180°
Axe 2 (B)	+ 120°/-115°	+ 120°/-115°
Axe 3 (C)	+145°/-140°	+145°/-140°
Axe 4 (D)	± 270°	± 270°
Axe 5 (E)	± 120°	± 120°
Axe 6 (F)	± 270° ⁽¹⁾	± 270° (1)

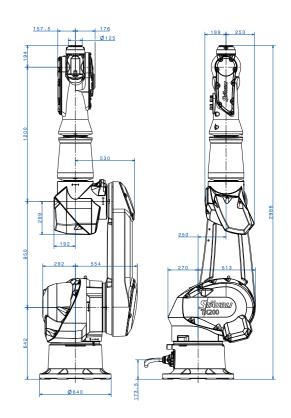
ENVIRONNEMENT D'INSTALLATION		
Température de fonctionnement suivant NF EN 60 204-1	+5°C à +40°C	
Humidité suivant NF EN 60 204-1	30% à 95% max. sans condensation	
Modes de fixation	Sol / Plafond	
Version câble sous le pied	•	
Version pressurisée	•	


CONNEXIONS AVANT-BRAS			
Pneumatique		2 électro-distributeurs en option 5/2 monos- tables (air comprimé) 3 canalisations relient le pied en ligne directe	
Electrique	Standard	1 connecteur cylindrique femelle 19 contacts (7 paires torsadées dont 2 blindées, 3 contacts de puissance)	
	Option Ethernet	1 connecteur cylindrique femelle 19 contacts (5 paires torsadées et 3 contacts puissance + 1 connecteur cyl femelle 4 points M12 cod D)	
Classe de propreté suivant ISO 14644-1		5	
Classe de protection selon EN 60529		IP65 / IP67	

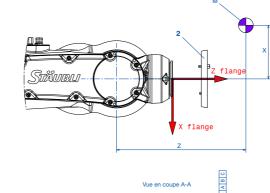

VERSIONS SPÉCIFIQUES MARCHÉS	
Version ElectroStatic Discharge (ESD)	•
Version environnement humide (HE)	•
Version stérile (Stericlean)	•
Version plasturgie – Coffret Euromap 12/67 et interface SPI	•
Huile alimentaire (Classe NSF H1)	•

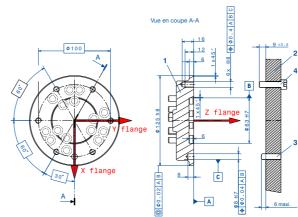
Plage de mouvement


Enveloppe de travail

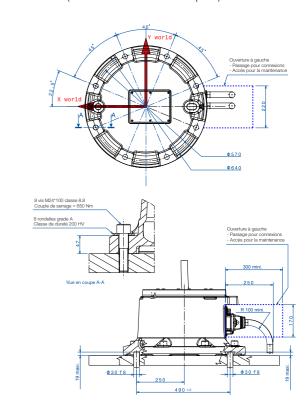


(1) Configurable par logiciel jusqu'à \pm 18000°


Dimensions TX200



Dimensions TX200L



Poignet

Fixation (hors version câble sous-pied)

Robotics | TX200 **7**