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Plan du cours

Chapitre 2 : Fondements Théoriques

2.1 Pose d’un corps rigide

« Matrices de rotation et autres représentations de l'orientation
« Transformations homogeénes



Plan du cours

2.2 Cinématique
« Dérivée d’'une matrice de rotation
 Vitesse angulaire d’'un repere
« Mouvement de corps rigide
« Torseur cinématique

Chapitre 3 : Modélisation d'un Robot

3.1 Modéele géométrique
« Convention de Denavit-Hartenberg
« Modele géométrigque direct
« Modeéle géométrique inverse

3.2 Modele cinématique

« Modele cinématique direct
« Modele cinématique inverse




Notation
a, v, M € R
x € R"
A e R™™
Al e RMX"
det(A), A~?
I, € R"*"

OnXm c RnXm

scalaires (nombres réels) -

vecteur colonne de dimensionn, X =

matrice avec n lignes et m colonnes L

transposée de la matrice A € R"*™

déterminant et inverse de A € R™"*™
matrice identité n X n
matrice de zéros n X m

produit scalaire des vecteurs X, y € R"
norme euclidienne du vecteur x € R"

produit vectoriel des vecteurs X, y € R3




Motivation A

effecteur
Robot générigue
a n articulations

q= [91, 92, dg, 6)4, .. .]T & R™
vecteur des variables
—_— articulaires

« Un manipulateur peut étre représenté comme une chaine cinématique de
segments reliés par l'intermédiaire d'articulations rotoides ou prismatiques

« Le mouvement résultant de la structure est obtenu par composition des
mouvements élémentaires de chaque segment par rapport au précédent

 Afin de manipuler un objet dans I'espace, il est nécessaire de décrire
la position et |'orientation (pose) de l'effecteur

Objectif: exprimer la pose de |'effecteur en fonction des variables des
articulations, par rapport a un repere donné (ex. le repéere de la base)




2.1 Pose d’'un corps rigide

La pose d'un corps rigide (ou solide) dans |'espace 3D peut étre
completement décrite par 6 parametres indépendants:

« 3 parametres indépendants définissent la position

d'un point, noté O’, du solide dans le repére fixe O-zyz
(ex. coordonnées cartésiennes, cylindriques ou sphériques)

« 3 parametres indépendants déterminent I'orientation
du solide autour du point O’ (ex. les angles d’Euler)

we
<

(7 /
0

repére fixe




repere fixe
O-xyz

T

La position du point O’ du solide par rapport au repere fixe O-zyz
s'exprime par |'équation:
o' = o,x+o,y+o.z

ou x, y, z sont les vecteurs unitaires (leurs norme est 1)
des axes du repére O-zyz et oy, o,, o, sont les composantes
du vecteur o’ € R® le long de chacun des trois axes



- Afin de décrire I'orientation du solide, considérons un repéere attaché au corps
et exprimons ses vecteurs unitaires par rapport au repere O-zyz

« Soit O'-2'y/2’ un tel repére avec origine O’ et soient x’, y’, z’ les vecteurs
unitaires des axes

« Ces vecteurs sont exprimés par rapport au repere O-xyz par les équations:

x' =z, x +x,y + 2,2
Y =y X +y,y + v,z
7z = 2, X + 2,y + 2,2

« Sous forme compacte, les vecteurs unitaires x’, y’, z’ qui décrivent I'orientation
du solide par rapport a O-xyz, peuvent étre combinés dans la matrice 3 X 3:

/ / /] - /T 1'T ', 7
Ty, Yy 2y Xx'x y'x z
- / ! / / / _ " 1T '
R—[Xyz]— Ty, Yy Z, | = | XY Y'Y z
Lz, oy, 2 x"'z y'z 7'z |

qui est appelée matrice de rotation. On dit que :1:; est le cosinus directeur
reliant X a X (et de méme pour les autres 8 éléments de R)



Propriétés des matrices de rotation

* Les colonnes d’'une matrice de rotation

X/Ty/ — 07 y/TZ/
est leur norme est égale a 1:
X/TX/ _ 1’ y/Ty/

sont orthogonales a deux a deux,

— 7Ty =1

1

Par conséquent, R est une matrice orthogonale, c’est-a-dire:

R'R =

I3

Si on multiplie & droite chaque coté de I'équation précédente par R !

on trouve que:

RT _ R—l

c'est-a-dire, la transposée d’une matrice de rotation est égale a son inverse.

* En plus de conserver les longueurs, les matrices de rotation doivent également
conserver |'orientation, donc il faut que det(R) = 1 (vrai, si le repére est direct)

80(3) = {R cR3> . RTR = I, det(R) _ 1} Groupe spécial orthogonal

de dimension 3



Rotations éleémentaires

- Considérons les rotations qu’on peut obtenir a partir de rotations
élémentaires autour des axes x, y, 2

« Ces rotations sont positives si elles sont faites autour des axes relatifs,
dans le sens anti-horaire

Exemple: le repére O-zyz est pivoté d’'un angle & autour de l'axe 2
et O-2'y' %’ est le repére résultant




Rotations éleémentaires

A
- Les vecteurs unitaires de O-2'y’z’ peuvent étre z |z
exprimeés par rapport au repére O-zyz comme:
[ cosa | [ —sina | [ 0 ]
x =|sina |, y=| cosaa |, Z/=1]0 A
/
0 0] 1| Z77Z y’
o)
- La matrice de rotation de O-2'y'z’ par rapport x Ao y>
a O-ryz engendrée, est donc: !
[cosa —sina 0] Qo
— 3 xT
R.(a) = |sina cosa 0 "
0 0 1

De la méme fagon, on peut trouver la matrice de rotation autour de
I'axe x d'un angle 3 et la matrice de rotation autour de I'axe y d’un angle 7y

Remarque: Ces matrices seront utiles pour décrire des rotations
dans l'espace 3D autour d’axes gquelconques



Rotations éleémentaires: sommaire

1 0 0 ]

R,(y) = | 0 cosy —siny
0 siny cosvy

Matrice de rotation autour
de l'axe x d’'un angle 7

cosp 0 sinf ]
R,(8) = 0 I 0 Matrice de rotation autour
—sin8 0 cosf de I'axe y d’un angle 5

[ cosa —sina 0]
R.(a) = |sina cosa 0 Matrice de rotation autour
de I'axe z d'un angle «
| 0 0 L]
Remarque:

Pour les rotations élémentaires, la propriété suivante est vérifiée:

Diapo a imprimer
pour le DS

Rx(_7> — Rz;(f}/)? Ry(_ﬁ) — RZ(B)? Rz(_a) — RZ(O‘>




Représentation d’un vecteur

Hypothese simplificatrice: 'origine du repere du solide coincide avec l'origine
du repére fixe. Donc o’ = 03,; = [0, 0, 0]

On peut représenter le point 3D z
P comme: .
- P
S . r
Pz N p ' Yy
. y
P = | py | parrapporta O-zyz P } 7
| pZ _ N\ T : \\\ "I
A AN
L
ke
e«  \| . o
B p/ 7 0 :::‘ — /y
x \\‘\\ ,/” i ’/’,
! / \ ] 1/ ’,a/ \\*\\\ i ’/
p = | py | parrapporta O-z'yz A S ~sad?
/ p o r
| P2 _ € T;
X

x'



Représentation d’un vecteur

Mais p et p’ sont deux représentations du méme point P, donc
/ / / / / / / / / /
P =P X ‘|‘pyy TP,z = [X Yy Z}P
Mais cela signifie que (rappel les équations
vues précédemment):
2

z'

_ /
P=Rp ~_ p Y

-
-
-
-
-
-

==
-

R représente la matrice de transformation qui » 2N
permet d’exprimer les coordonnées du point P LN

dans le repere O-zyz, en function des coordonnées
du méme point dans le repere O-2'y'2’ -

________________________

R est une matrice orthogonale. Donc la 4
transformation inverse est simplement: x



Représentation d’un vecteur

Exemple:

Deux repéeres avec la méme origine et une rotation relative d'un angle «
autour de l'axe z

A

P, p/: coordonnées
du point P dans les

repeéres O-zyz et O-z'y'2’

Yy

On trouve facilement que:
Pz = Py cosa — p, sina

_ / . /
Py = Py SIna + p, COS

Pz :p;

Remarque:

La matrice R.(«) représente non seulement I'orientation d'un repere par
rapport a un autre, mais elle décrit également la transformation d'un vecteur
dans un repere en un autre avec la méme origine



Composition de matrices de rotation

[ Probleme: comment composer plusieurs rotations ? }

Considérons trois repéres O-z yj 20, O-xy, 21, O-12 s 2, @VeC la méme origine O

p’, pl, p? € R3: coordonnées d’un point P dans les trois repéres




Composition de matrices de rotation

Soit R‘g la matrice de rotation du repére 7 par rapport au repere j

Donc
p' = Ryp’
De méme, nous avons:
p’ = Rip
p’ = Ryp’

Mais alors on peut conclure que:

R} - RYR]




Composition de matrices de rotation

Considérons un repeére initialement aligné avec O-z¢ yo 2o

La rotation définie par Rg peut étre obtenue en deux étapes:

1. Tourne le repére avec R(l) pour l'aligner avec O-x1y121

2. Tourne le repere, maintenant aligné avec O-z,y; z;, en utilisant R%
pour l‘aligner avec O-x5 ys 29

Remarque [repere courant]:

- De facon générale, une rotation d’ensemble peut étre exprimée comme
une sequence de n rotations partielles

« Chaque rotation est définie par rapport a la précedente
 Le repére par rapport a lequel la rotation se produit est appelé repére courant

* La composition de rotations successives est obtenue par multiplication
a droite des matrices de rotation, en suivant I'ordre donné des rotations:

R = RIR} - R)R;

—



Composition de matrices de rotation

Remarque [repere fixe]:

- Les rotations successives peuvent aussi étre specifiées toujours
par rapport au repere initial

- On dit que les rotations sont faites par rapport a un repere fixe

« La composition de rotations successives est obtenue par multiplication
a gauche des matrices de rotation en suivant I'ordre donné des rotations:

R, = Ry RIT - RyRy

-

Remarque:
Conformément a notre notation, nous avons que:

R} = (R))™' = (R))”



Composition de matrices de rotation

Probleme fondamental: le produit matriciel n’est pas commutatif

En général, deux rotations ne commutent pas et la composition dépend
de l'ordre de chaque rotation, a savoir:

Exemple:

RiR; # R;R]

1 0 0 (V3/2 0 1/2

R,(r/4) = | 0 V2/2 —V2/2| Ryx/e)=| 0 1 0

0 V2/2 2/2 ~1/2 0 +/3/2
V3/2 V2/4  V2/4

y(m/6)Ra(m/4) = | 0 V2/2 —V2/2

~1/2 +6/4 /6/4
e
V3/2 0 1/2

»(7/4) Ry(m/6) = V2/4 V2/2 —V6/4

V2/4 VRj2 V)



Composition de matrices de rotation

- Rotations successives d'un objet autour des axes du repére courant




Composition de matrices de rotation

- Rotations successives d'un objet autour des axes du repere fixe




Représentations de I'orientation

« Les matrices de rotation fournissent une description redondante
de l'orientation d’un corps

- En effet, une matrice de rotation R comprend 9 éléments:

11 Ti2 Ti13
R = |[ro1 rog 723

31 T32 T33

- Toutefois nous avons 6 relations indépendantes entre ces éléments
(les contraintes d’orthogonalité et de normalité des colonnes de R):

9 9 2
711712 + 721722 + 731732 = 0 rip+rytry =1
_ 2 2 2
711713 + 721723 + 131733 = 0 ris + 755 + 733 = 1
r12713 + T22T23 + 132733 = 0 ris + 7153+ 135 = 1

Conclusion: 3 parametres sont suffisants pour décrire I'orientation d'un corps

Une représentation de I'orientation en fonction de 3 paramétres indépendants
est dite représentation minimale



Représentations de I'orientation

- Une représentation minimale de |'orientation peut étre obtenue
en utilisant un ensemble de trois angles: ¢ = [, 0, 1|

- Une matrice de rotation générique peut étre obtenue en composant

une séquence opportune de 3 rotations élémentaires (Théor. d’Euler, 1776)
Attention: il faut garantir que deux rotations successives ne sont pas
faites autour d’axes paralléles

Cela veut dire que 12 ensembles différents d’angles sont
admissibles parmi les 33 = 27 combinaisons possibles:

7ZXZ, XYX, YZY, ZYZ, XZX, YXY (angles « propres ») ”J;g
XYZ, YZX, ZXY, XZY, ZYX, YXZ (angles de Tait-Bryan) ‘

ég(
_

Chaque ensemble constitue un triplet d’‘angles d’Euler

Leonhard Euler

Deux triplets d’angles d’Euler trés utilisés sont: (1707-1783)

1. Les angles ZYZ

2. Les angles ZYX ou angles roulis-tangage-lacet
(roll-pitch-yaw, en anglais)



Angles roulis-tangage-lacet

- Représentation de I'orientation utilisée en (aéro)nautique pour
décrire I'attitude d’un avion

- Les angles (¢, 0, 1) représentent des rotations définies dans un repeére
fixe attaché au centre de masse de I'avion

Wb g T‘ Lacet ou cap

Y

R

IS
4 Tangage ou ol
assiette roulis (roll)

(pitch)



Angles roulis-tangage-lacet

La rotation décrite par les angles de roulis, tangage et lacet est obtenue

comme la composition de 3 rotations élémentaires:

e Tourner le repere d'un angle 1 autour de I'axe = (lacet):
rotation définie par R, (v)

e Tourner le repére d’un angle 6 autour de I'axe y (tangage):

rotation définie par R, (0)

e Tourner le repére d’'un angle ¥ autour de I'axe z (roulis):
rotation définie par R, (y)

'orientation résultante du repére est obtenue en composant les rotations
par rapport au repere fixe, et peut étre calculée en multipliant a gauche

les matrices de rotation élémentaires:

i CpCo  CpSPSyy — SpCy
R(¢) = R:(@) Ry(0) Ra(vh) = | spco sp805¢ + €ty
_-—89 Co Sy

ou, pour plus de simplicité, c,, = cos p, sg = sin0

CpSOCy T SpSy

CoCy




Angles roulis-tangage-lacet

Probléeme inverse: déterminer les angles de roulis, tangage et lacet qui
correspondent a une matrice de rotation R donnée:

11
R = 21

31

12
22

32

13
23

33

Si on compare cette expression avec R(¢), on trouve que la solution,

pour § € (—7/2, m/2), est:

@ = Atan2(ro1, r11)

0 = Atan2(—rsq, \/7“§2 —i—rgg)

¢ = Atan2(7“32, 7“33)

L'autre solution équivalente pour 6 € (7/2, 37/2), est:

QY = Atan2(—r21, —7“11)

Y 7“%2 + 7“33)

w = AtanZ(—ng, —T‘33)

0 = Atan2(—r31,



Angles roulis-tangage-lacet

Remarque 1:

 Si cos 8 = 0 les solutions précédentes sont dégénérées: dans ce cas,
on peut uniguemment déterminer la somme ou la différence de ¢ et ¥

« Les configurations qui correspondent aux angles ¢ = + /2 caractérisent
les singularités de représentation des angles d’Euler

Remarque 2:

- Atan2(y, =) est la fonction arc tangente a deux arguments

- Atan2(y, x) calcule I'arc tangente du rapport y/x mais elle utilise
le signe des arguments pour déterminer le bon quadrant de I'angle

(arctan(y/x), x>0

arctan(y/z) +m, y>0,x<0

arctan(y/z) —m, y<0,x <0

Atan2(y, ) = <

+7/2, y>0,x=
—7/2, y<0,x=
| non définie, y=0,z=0

arctan(y/x) = arctan(y’/x’) ... mais angle 6 4 ou g?



Angle et axe

- Une représentation non minimale de l'orientation peut étre obtenue en utilisant

4 parametreés qui expriment une rotation d’un angle 6 autour d’un axe
générique dans l'espace 3D

- Cette représentation peut étre utile, par exemple, pour planifier la trajectoire
de l'effecteur d’'un manipulateur

T
r = [rma Ty, TZ]
vecteur unitaire (||r|| = 1)
de I'axe de rotation dans
le repere O-xyz

L'angle 6 est considéré comme positif
si la rotation autour de lI'axe r est
faite dans le sens anti-horaire




Angle et axe

« Matrice de rotation qui correspond a un angle 6 et a un axe r donnés:

r2(1 —cy) + cg rury(l —co) — 1280 Txr.(1—co) +1ySe |
R(f,r) = | rary(1 —co) + 17250 7“2(1 —cg) + o ryrz(1 —cp) — T250
| 7272 (1 —co) —1Tyse Tyr.(1—co) +Ty50 r2(1 — cp) + cg

olu, a nouveau, pour plus de simplicité, cg = cosf, sy = sinf

« Une formule plus compacte (formule de Rodrigues) est:

0 —r. 1y
R(f,r) = I3 + Tsinf + 7°(1 —cosf) avec v = | 7. 0 -1,
—Ty Ty 0
Propriété:
R(—6, —r) = R(6, r) 6

« Ca veut dire que une rotation d’un angle —60 autour de I'axe —r ne
peut pas étre distinguée d’un rotation d’'un angle 6 autour de I'axe r

- La représentation angle et axe n’est pas unique ! _r



Angle et axe

Probleme inverse: déterminer I'angle et I'axe qui correspondent a une matrice
de rotation R donnée:

1 Ti12 Ti13

R = |7ro1 122 793

r31 T32 T33

- Si sin# # 0, on obtient:

r11 + 722 + 733 — 1
6 = arccos 5 Angle
_7“32 - 7”23-
1
r = ——— | '3 — 731
2sin 6 Axe
| 721 — 712 |

Remarques:

 Les deux expressions précédentes décrivent la rotation en fonction de

quatre parametres: I'angle et les trois composantes du vecteur unitaire de I'axe
- Cependant, on peut constater que les trois composantes r,, r,, 7, du vecteur r
ne sont pas indépendantes mais elles sont contraintes par la condition:

2 2 2 _
ry +ry, +r; =1



Angle et axe

* Si sinf = 0, les équations précédentes ne sont pas définies

Pour résoudre le probléme inverse, il faut travailler avec I'expression
particuliere de la matrice R dont on dispose et trouver des formules

de résolution pour les deux cas: 0 =T et 6 =0

Si 0 = 0 (rotation nulle), le vecteur unitaire r est arbitraire
(singularité de représentation)




Quaternion unitaire

 Les inconvénients de la représentation angle et axe peuvent étre surmontés par
une autre représentation a 4 parameétres, le quaternion unitaire, défini par:

Ol‘J Q — {777 6}
n = 608(0/2) : partie scalaire du quaternion

€ = les, €, €] = sin(0/2)r : partie vectorielle du quaternion

avec la contrainte 7* + ei + ez + eg = 1 dont le nom de quaternion unitaire.

Les parameétres r et 6 sont les mémes que pour la représentation angle et axe

Broom Brldge (Dublln)

aternion mul uphcaa
R Rz k=4
| &cuitit on a stoneé of thisbridge ||

2= =k*=ijk=—1 (16 octobre 1843) William R. Hamilton
= N+ i+ ey + €k (1806-1865)



Quaternion unitaire

Remarque:

Contrairement a la représentation angle et axe, une rotation de —¢ autour de —r
donne le méme quaternion que celui associé a une rotation de § autour de r

- Matrice de rotation qui correspond a un quaternion unitaire Q = {77, e} donné:

2007 +ez) =1 2(exey —mes)  2(exer +ney)
R(n, €) = | 2(exey+me) 27 +€,) =1 2(eye. — nes)
| 2(exex —mey)  2(eyer +meEs) 2(n* +¢€2) — 1 i

« Les quaternions Q et — O décrivent la méme matrice de rotation
(les quaternions fournissent un double recouvrement du groupe SO(3)).

En dehors de cette ambiguité, les quatre parameétres d'un quaternion
décrivent une rotation unique



Quaternion unitaire

Probleme inverse: déterminer le quaternion qui correspond a une matrice
de rotation R donnée:

11 Ti12 T13

R = |[ro1 7129 7923

31 T32 T33

* Nous avons que:

1
n = 5\/7‘11 +rog + 133 +1

) [ sgn(rss — ro3)y/r11 — T2 — 733+ 1 |
€ — 5 Sgn(ﬁS—7“31)\/7“22—7“33—7“11+1

L Sgn(r21 - "“12)\/7“33 — 711 — T2 + 1 i

ou la fonction signe est définie comme suit:

1 six>0

A
sgn(e) = —1 siz <0



Quaternion unitaire

Remarque:

- Dans la premiere équation de la diapo précédente nous avons supposé
implicitement que n = cos(6/2) > 0. Cela correspond a un angle 6 € [—7, 7).
Par conséquent, toute rotation peut étre décrite

« Par rapport aux formules d’inversion de la représentation angle et axe,
il n'y a pas de singularités dans les deux équations de la diapo précédente

Inverse d'un quaternion et produit de quaternions
- Le quaternion extrait de la matrice R™! = R’ est noté Q! et on peut
le calculer ainsi: _1

Q — {777 _6}

- Soient Q1 = {m1, €1} et Q2 = {m2, €2} les quaternions qui correspondent
aux matrices de rotation R; et Ry, respectivement. Le quaternion qui
correspond a leur produit R1R> est donné par:

Q1 % Qo = {Mmn2 — €] €2, N1€x + o€ + €1 X €3}

Si Q, = Q;Y, la formule précédente nous donne {1, 0}, I’é/ément neutre
(ou identité) du produit. Comme le produit matriciel, le produit de quaternions
n‘est pas commutatif, a savoir Q; * Qs # Qs * O



Représentations de I'orientation

Sommaire des propriétés des 4 représentations de 'orientation
d’un corps rigide dans |'espace 3D

e Matric_e de | Angles d’Euler Angle et Quat_erpion
rotation (ZYZ, 2.YX, etc.) axe unitaire
Globale Oui Non Non Oui
Unique Oui Non Non Non
Minimale Non Oui Non Non
Remarque:

Une représentation de |'orientation est dite globale,
s‘il n'y a pas de singularités dans le probléeme inverse




