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Plan du cours

« Modeéle géométrique inverse

3.2 Modele cinématique

« Modele cinématique direct
« Modele cinématique inverse




Modele géométrique inverse
s

Ne
Robot générique 04 Se
a n articulations '\

effecteur

a=[q,q,. ..,q.)" ?

Modele géométrique direct (MGD)

Modele géométrique inverse (MGI): étant donnée une pose de
I'effecteur par rapport a la base, trouver, si elles existent, |'ensemble
des positions articulaires qui permettent de générer cette pose




Modele géomeétrique inverse

Probleme direct

Si les variables des articulations (vecteur q) sont connues, la pose de |'effectuer
par rapport a la base peut étre calculée d’'une maniere unique en utilisant la
matrice de transformation homogene:

Ty (a) = Aj(q1) Az(a2) - AR (gn)

Probleme inverse
Il s'agit de déterminer les coordonnées articulaires permettant d'obtenir

une situation désirée pour |'effecteur

Probleme beaucoup plus difficile pour les raisons suivantes:

« Les équations a résoudre sont, en général, non linéaires.
Par conséquent, il n‘est pas toujours possible de trouver
une solution de forme fermée (c’est-a-dire, une solution explicite)

« Le probleme peut avoir des solutions multiples

« Le probleme peut avoir un nombre infini de solutions
(par ex. pour des robots cinématiquement redondants)

« Le probléme peut n'avoir aucune solution admissible
a cause de la structure cinématique du manipulateur



Modele géomeétrique inverse

Solutions multiples du probléme inverse

« L'existence de solutions multiples dépend du nhombre de DDL
du robot mais aussi du nombre de parametres de DH qui sont
différents de zéro

« En général, plus le nombre de parametres de DH différents de
zéro est grand, plus le nombre de solutions admissibles est grand

« Pour un manipulateur a 6 DDL sans des butées mécaniques B
sur les articulations, il y a, en général, 16 solutions admissibles.

On a donc besoin de trouver des criteres pour choisir parmi ces

¥

solutions admissibles '{ua
« La presence de butées mécaniques sur les articulations i
des robots réels peut, éventuellement, reduire le nombre

de solutions multiples admissibles



Modele géomeétrique inverse

Solutions de forme fermée
Pour trouver des solutions de forme fermée est nécessaire:

« Intuition algébrique: pour trouver les équations significatives
qui contiennent les inconnues
ou

« Intuition géométrigue: pour trouver des points significatifs sur le robot
qui peuvent étre utilisés pour exprimer la position et/ou l'orientation
en fonction du nombre d’inconnues

Solutions numeériques

Lorsque il n’y a pas de solutions de forme fermée ou elles sont difficiles

a déterminer, on peut calculer une solution particuliere du probleme inverse

par des procédures numériques (méthodes itératives d'optimisation non linéaire,
comme |'algorithme de Gauss-Newton ou de Levenberg-Marquardt)

- Avantage: les méthodes numeriques sont applicables a tous les robots

« Inconvénients: les méthodes numériques ne trouvent pas,

en général, toutes les solutions admissibles. Ils trouvent une \ J
solution locale au sens ou elle dépend des conditions initiales.

Ces méthodes sont pénalisantes du point de vue du temps de calcul 4



Exemple 1: manipulateur planaire a 2 segments (RP)

Probleme:

Etant donné [p., p,]"

9

déterminer q = [0, dz]T

Nous avons le modele géométrique direct suivant:
Py = docos b
py = dosinf

Une démarche analytique simple permet de déterminer le modele géométrique
inverse. En effet, nous avons que:

61 = arctan (@)7 doy = \/p3 + p2
Px



Exemple 2: manipulateur planaire a 3 segments

Probleme: étant données la position et I'orientation de I'effecteur, déterminer
les variables 6, 65, 05 des trois articulations rotoides



Exemple 2: manipulateur planaire a 3 segments

« On a déja vu que la matrice de transformation homogéne entre le repére
3 et le repere 0 du manipulateur est (cf. la 1re partie du Ch. 3.1):

T3(q) = AJA; A5 =

S123 Cc123 O

[ c123 —sS123 0 [a
a1S81 + 2812 + a3S5123

1C1 + a2¢C12 + 0361231

0 0 1
0 0 0

0
1

Ol‘J q = [91, 02, (93]T et ¢; = cos 01, C12 = COS(91 —+ 02), S123 = Sin(91 -+ 92 -+ 93)

- Il est pratique de spécifier la position et orientation de I'effecteur en utilisant
un nombre minimal de parametres

« On peut utiliser les coordonnées p., p, et I'angle ¢ entre I'effecteur et I'axe xq:
Yy 0

a1C1 + a2C12 + a3c123

a1S1 + a2S512 + a3S123

01 + 02 + 05

«—— Elément (1, 4) de T
«— Elément (2, 4) de TY

<«—— Somme des 3 variables
articulaires



Exemple 2: manipulateur planaire a 3 segments

1 - Solution algébrique
Si ¢ est spécifié, la 1re équation du systéme a resoudre est:
¢ = 01+ 02+ 03

En revanche si ¢ n’est pas spécifié, le manipulateur est redondant
et il y a un nombre infini de solutions du probleme inverse

- A partir du modéle direct, on trouve que:

Coordonnées du point W
(I'origine du repere 2)

PWx = Pz — A3Cy = G1C1 + A2C12
PWwy = Dy — A3S¢ = Q151 + Q2512

« On calcule le carré des deux expressions précédentes et on les additionne:

2 2 2 2
Pwa +pWy = aj —+ as -+ 2CL16L202

Donc

2 2 2 2
. Pwaz T Puy — 01 — 03
2 pr—

2&1&2



Exemple 2: manipulateur planaire a 3 segments

» Pour avoir une solution admissible, il faut que:

—1§62§1

So = :I:\/l—c%

ou le signe est “+"” correspond a la posture “coude en bas” et le
signe correspond “-" a la posture “coude en haut” du robot

* Donc, on impose

« Par conséquent:
(92 = Atan2(52, 62)

- Maintenant, il faut déterminer 6,. Si on substitue I'expression de 6, trouvée
dans les equations de pw., pwy on obtient un systéme de deux équations
a deux inconnues, si, ¢1, avec solution:

(a1 + azc2)pwy — a252PWa
Pive T Pivy

S1 —
Par conséquent: #; = Atan2(sq, ¢1)
(a1 + a2c2)pwe + a252pwy
2 2
Py, + pWy




Exemple 2: manipulateur planaire a 3 segments

- Enfin, pour trouver l'angle 63, on utilise I'équation:

03 = ¢ —0; — 0,

Remarque:

Si s5 =0 on a que 0, € {0, 7}: dans cette posture le manipulateur est dans
une singularité cinématique. On peut encore déterminer 6; d’'une maniére
unique sauf si a; = a2 et on requiert que py, = pwy = 0

2 - Solution géométrique
« On utilise a nouveau les trois éguations vues auparavant:
¢ = 01+ 02+ 03

PWz = Pz — A3Cy = QA1C1 + G2C12

PWy = Dy — A3S¢ = Q151 + 2512



Exemple 2: manipulateur planaire a 3 segments

Rappel:

Théoreme d’Al-Kashi (ou loi des cosinus):

as

Soit un triangle dans lequel on utilise les notations exposées sur la figure

ci-dessus, alors:

2 _ 2 2
a; = aj + a5 — 2ajas cosy

Le théoréeme d’Al-Kashi généralise le théoreme de Pythagore aux triangles
non rectangles. En effet, pour v = 7/2 on trouve a3 = a® + a3, c’est-a-dire
le théoreme de Pythagore



Exemple 2: manipulateur planaire a 3 segments

 Si on applique le théoreme d’Al-Kashi
au triangle rouge en figure, on obtient: A a3
“coude Q5
5 5 5 5 en haut” as A, )
Pwe + Py = ai + a3 — 2araz cos(m — 6) W
 En effet, nous avons deux
configurations possibles du triangle a1 /’\92 )
(voir le trait pointillé noir en figure) B i
a M- 4%/  “coude
L T en bas”
* Puisque cos(m — 62) = — cos f,, C/—'" >
on trouve: 0 0
2 2 2 2
. Pwe + Pwy — 01 — @3
2 p—
2a1a s
172 « Sous cette inegalite,
« En raison de l'inégalité triangulaire, on trouve que:
il faut que:
6o = +arccos(cs)
VPhve + Pl < a1+ az




Exemple 2: manipulateur planaire a 3 segments

 La posture “coude en bas”
est obtenue avec 6, € (0, )

Yo “coude

en haut”

« La posture “coude en haut”
est obtenue avec 6, € (—m, 0)

« Pour déterminer 61, il faut considérer
les angles a et 3 en figure

 La valeur de a dépend du signe
de pwz, pwy - 1l faut donc
calculer « comme:

a = Atan2(pwy, pwa)

« Pour trouver 3, on applique encore le théoreme d’Al-Kashi au triangle vert
dans la figure, ce qui nous donne I'équation:

a% = p%,$+p%[/y—|—a%—2a1\/p%%—l—p%/y cos B = cg \/p%,vx—l—p%yy = a1+ a2C2



Exemple 2: manipulateur planaire a 3 segments

« Si on utilise I'expression de C2
trouvée auparavant, on obtient: A

Yo

“coude
en haut”

2 2 2 2
Pwa T Py T 01 — Q3

2a, \/p%vx + Py,

avec S € (0, m) pour garantir,
a nouveau, l'inégalité triangulaire

[ = arccos

 Donc

6, =

a+ B sify <0
a—pf sify >0

« Enfin pour trouve 63, on utilise I'équation:

¢ = 01+ 0a + 03



Solutions de forme fermée: généralités

« La plupart des manipulateurs existant sont cinématiquement simples

 En effet ils sont typiguement composés d’un porteur et d’'un poignet
de type rotule (avec ce poignet, le point W est choisi a l'intersection
des trois axes des articulations rotoides)

« Ce choix est motivé par la difficulté a déterminer des solutions du probleme
inverse dans le cas général

« En particulier, un manipulateur a 6 DDL admet des solutions de forme fermée
du probleme géométrique inverse si I'une des conditions suivantes est remplie:

a) Les axes de trois articulations rotoides consecutives se croisent en
un seul point (trois axes concourants), comme dans le cas du poignet
de type rotule

b) Les axes de trois articulations rotoides consecutives sont paralleles

S0 b



Méthode de Paul

- Dans le cas de robots a géométrie simple (pour lesquels la plupart des
distances a; et d; sont nulles et les angles 0, et o; sont égaux a 0 ou a +7/2),
le MGI peut étre obtenu de fagon systématique avec la méthode de Paul

- Le MGI est obtenu en résolvant I'éguation matricielle suivante:

Uy = AY(q1) As(g2) -+ AL (gn)

ou Uy = T? (connue) décrit la situation du repére n par rapport au repére 0
de la base

« La méthode de Paul permet la détermination de ¢;, puis de ¢ et ainsi
de suite jusqu'a gy,

- Il s'agit de déplacer I'une apres I'autre chacune des variables
articulaires q1,. .., g, dans le membre de gauche de I'équation

 Pour cela, on multiplie a gauche par Ag_l(qj) I'équation ci-dessus,
en prenant successivementj € {1,...,n — 1}



Méthode de Paul

Exemple: appliquons la méthode de Paul a un robot a 6 DDL (n = 6)

1) Multiplier & gauche I'équation précédente par Aj(q1), soit:

Af(@)Ug = Aj(ge) -+ Adlge) (*)

Les éléments situés dans le membre de gauche sont soient indépendants, soient
fonctions de ¢1. Les éléments situés dans le membre de droite sont soient
constants, soient fonctions de ¢», ..., gg

2) Déduire q; de l'equation (x) ci-dessus
3) Multiplier a gauche I'équation (x) par A%(q0), soit :
2 1 2 5
A7(q2)Ap(q1)Uo = A35(q3) - Ag(ge)
4) En déduire go

5) Continuer cette procédure pour en déduire qs, ..., gg



Méthode de Paul

En résumé, on utilise les équations suivantes pour calculer les variables
articulaires ¢q1,...,qg:

Up = AY(q1)A3(q2)A3(g3)A4(q4)A5(g5)AG(ge)
Aj(q1)Up = Aj(g2)A3(g3)Ad(q4)A5(g5)AG(ge)
Ai(32)Ur = A3(g3)Ad(q4)A5(g5)Ag(gs)

A3(q3)Uz = A3(qa)A5(g5)AG(gs)
A3(qa)Us = A5(g5)AG(gs)
A3(q5)Us = Ag(gs)

avec U; = A} = Al | U;_4, j€{1,2,3,4}.

La résolution de ces équations est intuitive, mais fait intervenir (en principe)
guelques types d'équations dont la solution analytique est connue



Méthode de Paul: application au robot Stiaubli TX60

* Si nous appliquons la méthode de Paul au robot Staubli TX60 (un robot

a 6 DDL avec porteur anthropomorphe et poignet de type rotule), on trouve
gu'il existe 8 solutions du probléme inverse dans le cas général (avec 1 butée
mécanique)

- Certaines positions dites singulieres du robot occasionnent un nombre infini
de solutions. C'est par exemple le cas de la configuration initiale “sans offset”

du robot (61 = ... =60 = 0) ou les arguments de la fonction arc tangente

utilisés pour déterminer le parametre 4, sont nuls, ce qui rend ce parametre
indéterminé

 Le choix de la valeur de ce parameétre étant
libre, on assigne typiquement la valeur y,
courante 84 du robot. Ce choix fixe &5,
alors la valeur du parameétre 6g e \

Robot
Staubli TX60



« Les solutions de forme fermée du MGI du manipulateur anthropomorphe et

sphériqgue, et du poignet de type rotule sont présentées dans les pages 94-100
du livre de Siciliano, Sciavicco, Villani, Oriolo

- A titre d’exemple, les quatre postures compatibles avec une pose donnée
du poignet d’'un manipulateur anthropomorphe sont montrées ci-dessous:

1) Bras a gauche 2) Bras a droite
et en haut et en haut

3) Bras a gauche 4) Bras a droite
et en bas et en bas



Remarques

« Nous avons vu que le modele géométrique direct d'un robot peut
se représenter aussi a l'aide de I'application:

x. = f(q)
Cette application est définie de I'espace articulaire (EA) vers l'espace
opérationnel (EO), tous les deux de dimension n < 6, en général

- Cette application n'est pas biunivoque, c’'est-a-dire, a un élément de I'EA
correspond une seule image dans I'EO, mais par contre un élément de I'EO
pourra étre I'image de plusieurs éléments de I'EA

« Dans le cas du robot Staubli TX60 avec 1 butée mécanique, il existe
(au maximum) 8 solutions possibles pour attendre un point de I'EO

- Dans la pratique, cette “non propriété” peut poser des problémes,
par exemple, dans le cas ou des obstacles sont a proximité du robot

- En effet, la réalisation d'une trajectoire rectiligne peut s'avérer
irréalisable physiquement ou le bras du robot peut étre amené
a se reconfigurer, ce qui peut induire des comportements
“intempestifs” du manipulateur



