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Plan du cours

3.2 Modele cinématique

« Modele cinématique direct
« Modele cinématique inverse




Modele cinématique

effecteur

Le modeéle cinématique nous donne la relation entre les vitesses des
articulations q et la vitesse linéaire Pe et angulaire w,. de l'effecteur
d’un robot (par rapport au repere de la base)

L'application ¢ — (pe, w.) est décrite par une matrice,
le jacobien géométrique, qui dépend de la configuration
q € R" du manipulateur



Jacobien d’'un manipulateur

* Le jacobien est I'un des outils les plus importants
pour la caractérisation d’'un manipulateur

* En effet, le jacobien est utile pour:

Déterminer les singularités d'un robot
Etudier la redondance d’un robot

Développer des algorithmes pour le calcul du MGI

Décrire la relation entre les forces appliquées sur |'effecteur
et les forces résultantes sur les articulations d’un robot

Dériver les équations dynamiques du mouvement d’un robot

Concevoir des lois de commande dans I'espace opérationnel

Rappel: '%gi
1
Soit F(x) : R" — R™, Le jacobien . 3_F . :
de F = [F,...,F,,]" est une matrice T Ox :
m x n définie par: %Zm
- 1

0 Fy 7
oz,




Jacobien d’'un manipulateur

Considérons un manipulateur avec n articulations. Nous pouvons écrire
le modéle géométrique direct comme:

Rc(q) pe(q)

T.(q) =
(q) 0., :

\ T . . .
ouq = [CI1> . 7Qn] est le vecteur des variables articulaires.

La position et I'orientation de |'effecteur varie avec q.

Objectif: exprimer la vitesse linéaire p. et la vitesse angulaire w,
de l'effectuer du robot en fonction des vitesses des articulations g

Remarque: Les trois composantes v;, vy, v, de p. et les trois
composantes w;, wy, w, de w,., représentent les composantes
de la vitesse linéaire et angulaire de I'effectuer du robot par
rapport au repere de la base, respectivement



Jacobien d’'un manipulateur

Les relations cherchées sont toutes les deux linéaires par rapport
aux vitesses des articulations q:

ou

Jp(q) € R**™ . matrice qui relie la contribution des vitesses
des articulations q a la vitesse linéaire de |'effecteur p.

Jo(q) € R**™ : matrice qui relie la contribution des vitesses
des articulations q a la vitesse angulaire de |'effecteur w,



Jacobien d’'un manipulateur

Sous une forme compacte:

def Pe o : Equation de la cinématique
Ve = s - J(q)q d’un manipulateur
@
La matrice
Jp(q)
J(q) = € RO*"
Jo(q)

est le jacobien géomeétrique d’'un manipulateur
(une fonction du vecteur des variables articulaires q)

Objectif: étant donné un manipulateur, calculer explicitement son jacobien
géométrique. Dans ce but, nous utiliserons les propriétés des matrices de
rotation et la cinématique du corps rigide vues dans le Chapitre 2.2



Vitesse des segments d’un robot

Caractérisation d’un
segment générique i
d’un manipulateur
(comme d’habitude

nous utilisons la
convention de DH)

-

I Repere i

Repere 0 /
Soient:
Pi—1, Pi : positions des origines des repéeres i — 1 et i exprimées dans le repére 0

—]_ g om . - Y . N .
r;L-_l ; + position de I'origine du repere i par rapport au repere i - 1
exprimée dans le repere i - 1

Assumptions: Les repéres 0 et n sont les repéres de la base et de |'effecteur du robot.
On omettra l'indice “0” pour les quantités exprimées dans le repére 0



Vitesse des segments d’un robot

On trouve que:
R;_ : rotation

1—1 ..
P; = Pi—1 + R, 1 rz’—l,z’ du repére i - 1 par
rapport au repére 0

Si on calcule la dérivée par rapport au temps de cette équation
et on utilise les formules vues dans le Chapitre 2.2, nous avons que:

: : i1 i—1
p; = Pi—1 + Ri—1 T 1.4 + wi—1 X R4 T 1.

= Pi—1 t+ Vi—1,i T Wi—1 XTj_1;

\

ou
V;—1,; : vitesse de l'origine du repéere i par rapport a I'origine du repere i - 1

Conclusion: nous avons ainsi trouvé I'expression de la vitesse linéaire
du segment i en fonction de la vitesse linéaire et angulaire du segment i - 1:

Pi = DPi—1 T Vi—1i + Wi—1 XTj_1;




Vitesse des segments d’un robot

Pour |la vitesse angulaire du segment i, on part de la formule de composition
de deux rotations:

R; =R, R

Si on calcule la dérivée par rapport au temps de cette équation et on utilise
les formules vues dans le Chapitre 2.2, nous trouvons que:

R; = S(w;)Ri = S(wi-1)Ri + Riy S(w;—1 )R

ou
S(w;) : matrice antisymétrique associée au vecteur w;

wz-j’i : vitesse angulaire du repere i par rapport au repere i - 1
exprimée dans le repere i - 1

On peut récrire le 2¢ terme a droite dans I’équation précédente comme
(rappel I'identité: RS(w)R’ = S(Rw)):

R;1S(w; 1 )R = RiaS(wi 1) R R R = S(Ri1w; 1) Ry




Vitesse des segments d’un robot

Nous avons ainsi trouvé la relation:
—1
S(wz) Rz = S(wi_l) Rz —+ S(Ri_l wﬁ_l,i) Rz

a partir de laquelle, si on se concentre sur les arguments de la matrice S(-),
on déduit que:

i—1
wi = w1 + Rijw; 1, = w1 + wiq

Conclusion: nous avons ainsi trouvé I'expression de la vitesse angulaire
du segment i en fonction de la vitesse angulaire du segment i - 1 et de
la vitesse angulaire du repere i par rapport au repéere i - 1

Attention: on obtient une expression différente pour
Pi = Pi—1 T Vi1, T Wi—1 XTi_1,
W; = Wi—1 T Wi—1,4

en fonction du type d’articulation i : prismatique ou rotoide



Vitesse des segments d’un robot

Reperei 5
Iﬂ/

A Zi—1

d; | T

7

l/ [ Repérei - 1

Articulation prismatique:

'orientation du repere i par rapport au repere i - 1 ne change pas en déplacant
le segment i, donc:

wi—1,; = 0
En outre, la vitesse linéaire est:
Vi—1,4 = d; Z;—1

ou Z;_1 est le vecteur unitaire de I'axe de I'articulation i



Vitesse des segments d’un robot

Art. i -
Segment |

Reperei 5
Iﬂ/

A Li—1
dil| He—>
v Repérei - 1

En conclusion, nous avons les deux équations suivantes
pour une articulation prismatique:




Vitesse des segments d’un robot

Art. i -
Segment |

Repére i A

<«

Segment |

Repérei - 1

Articulation rotoide:
Pour la vitesse angulaire, on a que:
wi—1i = 0;2;_1
tandis que pour la vitesse linéaire:
Vi1, = Wi—14 X I'j—14

en raison de la rotation du repere i par rapport au repere i - 1 induite
par le mouvement du segment i



Vitesse des segments d’un robot

Repére i A

<«

Segment |

Repérei - 1

Nous avons donc les deux équations suivantes pour une articulation rotoide:

Pi = Pi—1 + W; XTi_1

wi = wi—1 + 0;2;—1

Remarque: Pour trouver la 1re équation, nous avons utilisé les deux identités

Wi—1i XTi1; + Wim1 XTi—1; = (Wim14 +Wi—1) XTi_1; = W; X T,



Calcul du jacobien

Pour calculer le jacobien géométrique, il convient de procéder séparément
pour les vitesses linéaires et angulaires

- Pour la contribution & la vitesse linéaire, on peut écrire la dérivée de pe(q)
par rapport au temps, comme suit:

pe — 8pe ] Z]P Qz

=1

Jp, 4i : contribution de la vitesse de I'articulation i & la vitesse lindaire
de l'effecteur lorsque toutes les autres articulations sont immobiles

Articulation prismatique:

Si I'articulation i est prismatique (¢; = d;) :

Ip, ¢i = diz;
et donc:
Jp, — Zi—1



Calcul du jacobien =z

w,
> /> effecteur

ey

Articulation rotoide:

Si l'articulation i est rotoide (¢; = 6;), en observant que la contribution

a la vitesse linéaire doit étre calculée par rapport a I'origine du repere “e”
de lI'effecteur, nous avons que:

Ip, Qi = Wi—14 X Ti—1e = 0izi—1 X (Pe — Pi—1)
et donc:
Jp, = Zi—1 X (Pe — Pi-1)



Calcul du jacobien

« Pour la contribution a la vitesse angulaire, on a:

mn mn
We = Wp = E Wi—1,4 = E Jo, 4

On peut encore caractériser les termes Jo,¢i séparément

Articulation prismatique:
Si l'articulation 1 est prismatique:

Jo,% = 0
et donc:

Jo, = 0
Articulation rotoide:
Si I'articulation i est rotoide:
Jo,4i = 021
et donc:
Jo, = Zi—1



Calcul du jacobien

En résume:

. . A . , 3x1
Le jacobien J peut étre partitionné en vecteurs colonnes Jp,, Jo, € R ;
de la maniére suivante:

J _ JP _ ]Pl ]Pg T ]Pn ER6xn
Jo Jo, Jo, ° Jo,
ou, pour ¢ € {1,...,n}:
( _Z' .
z(; si I'articulation ¢ est prismatiqgue
Jp; B
= ¢
Jo Z;i—1 X (Pe — Pi—1)

si I'articulation 7 est rotoide

L Zi—1

Cette expression permet de calculer le jacobien d’'un manipulateur d’une
facon simple et systématique a partir du modéele géométrique direct

En effet z;,—1, Pe, Pi—1 sont des fonctions des variables articulaires



Calcul du jacobien

- Z;_1 est donné par la 3¢ colonne de la matrice de rotation RY_,

« Pe est donné par les trois premiers éléments de la 4¢ colonne
de la matrice de transformation T

« Pi—1 est donné par les trois premiers éléments de la 4¢ colonne
de la matrice de transformation T

Remarque: les égquations précédentes permettent de calculer le jacobien
géométrique par rapport au repéere de la base (le repére “0")

« Si on veut écrire le jacobien dans un repere différent, appelons-le “¢,”,
il suffit de connaitre la matrice de rotation relative R"

« La relation entre les vitesses dans les deux reperes est donc:

Py RY O Pe RY O .
w 0 R We 0 R

e

~
u - 14 14 -

J" : Jacobien géométrique
dans le repere “u "



Exemples

Calcul du jacobien d’'un manipulateur



1 - Manipulateur planaire a 3 segments




Manipulateur planaire a 3 segments

Trois articulations rotoides. Le jacobien est donc:

Zo X — Z1 X — Zo X —
I = | (P3 —Po) 21 X (P3—P1) 22X (P3— P2) C RO%3

Z 7 Z9

Les vecteurs de position des segments du robot sont:

(0 a7 cos By | [ a1 cos @y + as cos(fy + 63) |
Po = 0 , P1 = aq sin 91 , P2 — al sin (91 -+ an Siﬂ(@l + (92)
0 0 I 0 ]
_CL1 COS 91 + a9 COS(@l + 92) —+ as 008(91 + 92 —+ (93) |
p3 = | aysinfy + agsin(fy + 62) + azsin(6y + 602 + 03)
0

D’autre part, les vecteurs unitaires des axes des articulations sont (les axes
sont tous paralleles a I'axe zg):

zo = 21 = zy = [0, 0, 1]*



Rappel:

Si v = [v1, v, v3]T et w = [wy, wae, w3]’, le produit vectoriel de v et w
est défini par:
VW3 — V3W2

VXW = V3W1 — V1Ws3

| V1W2 — VW1 |

On peut aussi exprimer le produit vectoriel comme le produit d'une matrice
antisymétrique et d’un vecteur:

0 —7V3 V2

vxw = S(v)w ou S(v)=| v3 0 —wu

i —V2 V1 O _
Interpretation géométrique:
4 VXW Le module du produit vectoriel est:
[v xw| = |lv|l[w]|sin~|
Rédle de | /@\W Il est égal a l'aire du parallélogramme
eg e re v Y défini par les vecteurs v et w

main droite




Manipulateur planaire a 3 segments

Conclusion:

—Qa1S81 —A2512 —A35123 —A2S512 — A3S5123 —A35123
ai1C1 + a2C12 + a3Ci123 asC12 + A3C123 a3C123

0 0 0
J =

0 0 0

0 0 0

i 1 1 1 i

Remarque:

« Seulement les trois lignes du jacobien différentes de zéro sont importantes.
Elles sont relatives aux composantes de la vitesse linéaire le long des axes x

et yp, et a la composante de la vitesse angulaire autour de I'axe 2.
La derniére ligne du jacobien nous donne simplement la relation w, = 01 + 05 + 93

« En effet, les 3 DDL du robot permettent de spécifier au maximum 3 variables
de l'effecteur: v, w;, wy sont toujours zéro pour ce manipulateur



2 - Manipulateur anthropomorphe




Manipulateur anthropomorphe

Trois articulations rotoides. Le jacobien a encore la forme suivante:

zo X (P3 —Po) 21 X (P3s —P1) 22 X (P3 — P2)
Z Z1 Zy

J(q) =

Cette fois-ci les vecteurs de position des segments du robot sont:

0 ao cos 61 cos Oy cos 01 (az cos O3 + az cos(02 + 03))
po=pP1 = |0, po = | azsinfycosbs |, ps = | sinby(azcosbs + azcos(fy + 03))
0 a9 sin O as sin Ay + agz sin(fy + 03)

et les vecteurs unitaires des axes des articulations rotoides sont:

0 Sil’l91
Zyg — 0 ) 71 — Z9o — — COS 91
1 0




Manipulateur anthropomorphe

Conclusion:

[ —s1(agca + agcaz) —ci(azsa + azsa3) —azcisas |
ci(azca + ascaz)  —si(ase + azsa3) —assisqs
7 - 0 azCy + a3c23 azCa3
N 0 S1 S1
0 —C1 —C1
i 1 0 0 |
Remarques:

- Seulement 3 des 6 lignes du jacobien sont /inéairement indépendantes

* La matrice
—s1(agce + azces) —ci(agse + azsss) —ascySas
Jp = c1(agca + azcos) —s1(ag82 + agsaz) —azsiSes
0 a2C2 + aszCas as3Ca3

décrit la rélation entre les vitesses angulaires des trois articulations 6, 65, 65
et la vitesse linéaire p. de |'effecteur

« Ce manipulateur ne permet pas une vitesse angulaire arbitraire. En effet,
les deux composantes w,, w, ne sont pas indépendantes: w, sin 6y = —w, cos 6,



3 - Manipulateur Stanford




Manipulateur Stanford -n-ﬂ

0 —/2
Ce robot a 6 DDL est la combinaison 2 0 n/2 dz* 492
d'un manipulateur sphérique (porteur) 0
et d’'un poignet de type rotule 3 0 ds !
4 0 —n/2 0 0,
Cing articulations rotoides et une 5 0 n/2 0 0,
, : ) : o -
articulation prismatique (la 3¢): 6 0 0 d. 0,
_ T
q = [01, 02, ds, b4, 05, O] Tableau des parameétres de DH

Le jacobien est donc:

Zy X (PG — Po) z; X (PG - P1) Zo 73 X (P6 - P3) zy X (PG — p4) z5 X (P6 - P5)
Zo Z1 0 Zs3 Z4 Zs

J =

Les vecteurs de position des segments du robot sont:

0 ds cos 01 sin 05 — ds sin 64
Po =— P1 = 0 , Ps3 =— P4 — P55 = d3 sin (91 sin (92 —+ d2 COS 81
0 d3 cos 05



Manipulateur Stanford

et - -
d36182 — d281 + d6 <Cl (020485 + 8265) — 813485>

P — d38182 + dQCl -+ d6 <81(6264S5 + 8205) + 6134S5>

dgCQ + d6(—826485 + 6205)

Les vecteurs unitaires des axes des six articulations sont:

0 —sinf; | [ cos @ sin 6 |
zo = |0, z = cosy |, zo = z3 = | sinf;sinby
| 1] 0] | cos 05 ]
et
[ —C10284 — 514 | [ c1(Cacys5 + S2C5) — 818485
z4 = | —si1caSa+cica |, 25 = | s1(cacaSs + s2cs) + €154585
i S254 | i —82C4S5 + C2C5 |




Singularités cinématiques
« Le jacobien définit une application linéaire

ve = J(q)q

entre le vecteur vitesse des articulations q et le vecteur vitesse de |'effecteur
_ T T T
Ve = [pe ’ we]

Les configurations q ou le jacobien J(q) n‘est pas de plein rang
sont appelées singularités cinématiques du robot

Trouver les singularités d’un manipulateur est important, car:

1. Les singularités sont des configurations ou la mobilité du robot est
réduite, c'est-a-dire il n‘est pas possible d'imposer un mouvement
arbitraire a I'effecteur. Au voisinage des positions singulieres,
le robot perd des degrés de liberté

2. Sile robot est sur une singularité, on peut avoir une infinité de solutions
au probleme géométrigue inverse

3. Au voisinage d'une singularité, des petites vitesses dans |'espace opérationnel
peuvent engendrer des grandes vitesses dans |'espace articulaire



Singularités cinématiques

Remarque:

Les configurations d’un robot qui sont singulieres pour le MGI,
les sont aussi pour le jacobien

Il existe deux types de singularités:

1) Les singularités aux limites du volume de travail (“type 1”) qui
apparaissent lorsque le bras est complétement étendu (ou rétracté)

« Elles peuvent étre évitées: elles ne constituent pas
un véritable probleme, en pratique

2) Les singularités a l'intérieur du volume de travail (“type 2”) qui
apparaissent lors de l'alignement de deux ou plus axes du robot, ou
pour des configurations particulieres de |'effecteur

« Elles sont critiques car on peut les rencontrer
partout dans le volume de travail



Singularités cinématiques

Exemple: Manipulateur planaire a 2 segments Yo )

On consider seulement les composantes
de la vitesse lineaire p,, p, de l'effectuer
dans le plan Y

Le jacobien est donc la matrice 2 x 2:

—Qa151 —Aa2512 —A2512
J = 04

a1C1 + a2C12 a2C12 >

Y

L0

Etant une matrice carrée, pour étudier le rang de J, on peut calculer
son déterminant

Rappel: Pour une matrice [CCL Z] e R2*2 .

ao([* ) =aa-



Singularités cinématiques

Exemple: Manipulateur planaire a 2 segments

« On trouve que:

det(J) = ai1a2 sin (92

* Siay, as # 0, le determinant est zéro lorsque:
0, =0, 6, = 7w (bras completement étendu ou rétracté)
et la valeur de 61 ne joue aucun role dans I’'étude des configurations singuliéres

 Les deux singularités sont de type 1 (aux limites du volume de travail)



Singularités cinématiques
Exemple: Manipulateur planaire a 2 segments

yoA

« Si on analyse le mouvement différentiel pour 65 = 0,
on observe que les deux colonnes du jacobien:

—(a1 + a9) sin 6’1] [—ag sin 91]

(a1 + az) cos 4 ao cos 6

deviennent paralleles et que le rang du jacobien devient 1

+ Cela veut dire que les composantes de la vitesse de l'effecteur p,, p,
ne sont pas indépendantes



Plan du cours

« Modele cinématique inverse




Modele cinématique inverse

Probleme cinématique inverse: déterminer les vitesses  des articulations
d’un robot afin d’atteindre une vitesse de lI'effecteur v, donnée

1. Cas régulier: Si le jacobien est carré et de plein rang, on a que:
q=J"'v,

Remarque: si q(0) est connu, la position des articulations peut étre obtenue
par integration des vitesses articulaires dans le temps:

alt) = q(0) + / o(r) dr

On peut intégrer cette équation différentielle en temps discret en utilisant,
par exemple la méthode d’intégration d’Euler. Si le pas d’intégration At

et les positions et vitesses au temps ¢x sont connues, les positions des
articulations au temps tx+1 = trx + At peuvent étre calculées via:

q(tes1) = atr) + I (a(tr)) veltr) At

Ceci permet ainsi de trouver une solution au probleme géométrique inverse



Modele cinématique inverse

2. Cas redondant: si le robot est cinématiquement redondant, r < n ou n est
le nombre de DDL du robot et 7 le nombre de variables de I'espace opérationnel
nécessaires a spécifier une tache donnée, alors le jacobien a plus de colonnes

que de lignes et v. = J(q)q a un nombre infini de solutions. n

n — 1 représente le degré de redondance du robot

r J

Plusieurs méthodes de résolution sont alors envisageables:

a) Ajouter n — r relations supplémentaires pour que J devienne carrée
(par ex. blocage d’articulation, contrainte d’optimisation)

b) Trouver une solution particuliere en ne considérant que 7 articulations

(au lieu de n), puis calculer les valeurs de toutes les articulations en prenant
en compte un critére d’optimisation

c) Utiliser la méthode de résolution basée sur la notion de pseudo-inverse



Modele cinématique inverse

c) Résolution basée sur la notion de pseudo-inverse. On reformule
le probléme comme un probleme d’optimisation linéaire sous constraintes

 Les solutions du probleme d’inversion sont:
q=Jv,+ (L, —JT)q
ot JT est la pseudo-inverse de Moore-Penrose (a droite) de J, a savoir:
Jt =J0(J3J35)1

+ Le 1er terme, J'v, € Im(J7), est la solution qui minimise [|[v. — J ]|
(I'erreur au sens des moindres carrés) et qui minimise aussi (localement)
la norme du vecteur des vitesses articulaires, a savoir ||q]]

- Le 2¢e terme, (I,, — JTJ) o, s'appelle solution homogéne. Le vecteur de
vitesses articulaires g n’est pas unique: il peut étre utilisé pour satisfaire
des contraintes supplémentaires (avec une priorité secondaire par rapport
a la contrainte cinématique primaire)

I, — J'J projette g dans le ker(J) pour ne pas violer v. = J(q) q

En fait, le noyau ou kernel de J, ker(J), est le sous-espace des vitesses
articulaires qui n‘engendrent aucune vitesse sur |'effecteur, pour une
posture donnée q du robot



Modele cinématique inverse

Probleme: comment spécifier qg pour une utilisation convenable
des DDL redondants du robot ?

* Choix typique: vecteur gradient d’'une fonction scalaire de q :

ko > 0 : paramétre (gain)

ou

w(q) : fonction objectif (ou de colt) secondaire

Exemples de fonctions w(q) possibles:

1. Mesure de manipulabilité:

w(q) = 1/det(J(q) I7 (q))

Nous avons que w(q) = 0 dans une singularité. Ainsi, si on maximize cette
mesure, la redondance du robot est utilisée pour s’écarter des singularités




FAST picker TP80 de Staubli

Modele cinématique inverse

2. Distance des butées mécaniques:

1 n _ 2
w(q) = —— ( LA ¢ >
2n = \q" —q"

1=

ou qZM, q;" sont les valeurs maximales et minimales de I'articulation 7 et g,
est sa valeur moyenne. Ici, en maximisant w(q), on exploite la redondance

du robot pour s’assurer que la distance qui sépare chaque articulation de sa
position moyenne soit minimale

3. Distance d’un obstacle:

La redondance peut étre utilisée pour éviter les collisions
entre le manipulateur et un obstacle:

w(q) = min Ip(q) — o

OU obstacle

P : position d’un point sur I'obstacle (le centre pour des obstacles sphériques)
O : position d’un point générique sur la structure du robot



Modele cinématique inverse

3. Cas singulier:

 Les solutions précédentes (cas régulier et cas redondant) peuvent étre
calculées seulement si le jacobien est de plein rang

« Ces solutions perdent toute signification lorsque le manipulateur se trouve
dans une configuration singuliére. Dans ce cas, le systeme:

Ve:Jq

contient des équations linéairement dépendantes

« Pour résoudre le probléme d’inversion du modele cinématique au voisinage
d'une singularité, on peut recourir a une inversion par moindres carrés amortis:

J=J"J33" + k1!

ou k£ > 0 est un facteur d’amortissement qui rend l'inversion mieux conditionnée
du point de vue numérique et I est la matrice identité. On peut constater que
si k = 0 alors J* = JT, c’est-a-dire, on retrouve la pseudo-inverse du jacobien J



Statique -

Objectif de la statique: étant donné un manipulateur <
dans une configuration d’équilibre statique, déterminer Ye
la rélation entre les forces généralisées appliquées sur

I'effecteur et les forces généralisées appliquées sur les b To

articulations (forces pour les articulations prismatiques
et couples pour les articulations rotoides)

Soit:
14 14 - 14 14 7-1
7 € R™: vecteur des forces généralisées exercées par
les actionneurs sur les articulations du robot L)

T = [7_17 72, 7_3]T

Y. € R" : vecteur des forces généralisées agissant sur |'effecteur,
ou r est la dimension de |I'espace opérationnel d’intérét

« L'application du Principe des Travaux Virtuels permet d’écrire I'égquation:

T =J"(a)7.

La transposée du jacobien géomeétrique d’'un manipulateur met donc
en relation les forces sur |'effecteur avec les forces sur les n articulations



Jacobien analytique

« Si la pose de l'effecteur du robot est spécifiée avec un nombre minimal de
parametres dans |'espace opérationnel, nous pouvons obtenir analytiqguement
'léquation de la cinématique en dérivant le MGD x. = [p_, ¢! |7 = f(q) par
rapport au temps:

pe o JP(q) _ .
b, | = | 3u(q |4 T4

Pe : origine du repere de l'effecteur par rapport a la base

Xe =

ou

@, : représentation minimale de |'orientation de I'effecteur (3 variables,
par ex. les angles de Euler) dans |I'espace opérationnel

0f(q)

J = —
A(q) 5q

- Le jacobien analytique J 4 est différent du jacobien géométrique J car

la vitesse angulaire de |'effecteur par rapport a la base, w., ne coincide
pas avec ¢., en général

: jacobien analytique

Pour un apercu des algorithmes basés sur le jacobien analytique
qui permettent de calculer le modele cinématique inverse (MCI), voir le
Ch. 3.7, pages 132-147, du livre de Siciliano, Sciavicco, Villani et Oriolo




