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Plan du cours

Chapitre 2 : Fondements Théoriques

2.1 Pose d’un corps rigide

« Matrices de rotation et autres représentations de |'orientation
« Transformations homogeénes



Plan du cours

2.2 Cinématique
« Dérivée d’'une matrice de rotation

« Vitesse angulaire d’un repéere
« Mouvement de corps rigide
« Torseur cinématique

Chapitre 3 : Modélisation d’'un Robot

3.1 Modele géométrique
« Convention de Denavit-Hartenberg

« Modéle géométrique direct
« Modele géométrique inverse

3.2 Modele cinématique
« Modele cinématique direct
« Modeéle cinématique inverse




Notation

a, v, M € R

x € R"

A e R™™
Al e RM*"
det(A), A~

I, €¢ R**"

0,xm € R®*™
(x,y) =x"y
x|l = v(x, x)

X Xy

scalaires (nombres réels)

vecteur colonne de dimensionn, X =

matrice avec n lignes et m colonnes L

transposée de la matrice A € R™"*™
déterminant et inverse de A € R™*"

matrice identité n X n
matrice de zéros n X m

produit scalaire des vecteurs x, y € R"
norme euclidienne du vecteur x € R"

produit vectoriel des vecteurs x, y € R’




Motivation . )

effecteur
Robot générique
a n articulations

q = [917 (927 d37 (947 . -]T - Rn
vecteur des variables
— articulaires

« Un manipulateur peut étre représenté comme une chaine cinématique de
segments reliés par l'intermédiaire d'articulations rotoides ou prismatiques

« Le mouvement résultant de la structure est obtenu par composition des
mouvements élémentaires de chaque segment par rapport au précédent

 Afin de manipuler un objet dans I'espace, il est nécessaire de décrire
la position et I'orientation (pose) de |'effecteur

Objectif : exprimer la pose de |'effecteur en fonction des variables des
articulations, par rapport a un repere donné (ex. le repére de la base)




2.1 Pose d'un corps rigide

La pose d'un corps rigide (ou solide) dans |'espace 3D peut étre
completement décrite par 6 parametres indépendants :

- 3 parametres indépendants définissent la position

d'un point, noté O’, du solide dans le repére fixe O-zyz
(ex. coordonnées cartésiennes, cylindriques ou sphériques)

- 3 parametres indépendants déterminent I'orientation
du solide autour du point O’ (ex. les angles d’Euler)

o
Z n

<y O

repére fixe



solide

repere fixe
O-xyz

I

La position du point O’ du solide par rapport au repere fixe O-zyz
s'exprime par |'équation:

/N / /
O = 0,X+0,y+0,%

ou X, y, z sont les vecteurs unitaires (leurs norme est 1)

des axes du repére O-zyz et 0}, 0,, 0, sont les composantes

du vecteur o’ € R® le long de chacun des trois axes



- Afin de décrire 'orientation du solide, considérons un repere attaché au corps
et exprimons ses vecteurs unitaires par rapport au repéere O-zyz

« Soit O’-2'y/2" un tel repére avec origine O’ et soient X', y’, z’ les vecteurs
unitaires des axes

+ Ces vecteurs sont exprimés par rapport au repére O-zyz par les équations :
X' =1, X + 3,y + 1,2
— / / /
Y = Y X+ Y,y t Y. 2
/

— / / /
Z =z, X+ 2,y t 2,Z

» Sous forme compacte, les vecteurs unitaires x’, y’, z’ qui décrivent I'orientation
du solide par rapport a O-zyz, peuvent étre combinés dans la matrice 3 X 3 :

- . / /T A ' 1T 7
Ty Yo oy XX y'x z
. / /A b / / / _ 1T 1T 1T
R = [X y z] = | %y, Y, % | = | XY Y'Y z
2z, oy, 2L x"Tz y'z 7'z |

qui est appelée matrice de rotation. On dit que x; est le cosinus directeur
reliant X' a X (et de méme pour les autres huit éléments de R)



Propriétés des matrices de rotation

* Les colonnes d’'une matrice de rotation sont orthogonales a deux a deux

X/Ty/ _ O, y/TZ/ — 07 Z/TX, — 0

est leur norme est égalea 1 :

X/TX/ — 17 y/Ty/ _ 17 Z/TZ/ -1

Par conséquent, R est une matrice orthogonale, c’est-a-dire :
R'R =1;

Si on multiplie a droite chaque coté de I'équation précédente par R™*
on trouve que :

RT _ R—l

c'est-a-dire, la transposée d’une matrice de rotation est égale a son inverse.

* En plus de conserver les longueurs, les matrices de rotation doivent également
conserver |'orientation, donc il faut que det(R) = 1 (vrai, si le repére est direct)

SO3) £ {(ReR*>® : RTR =13, det(R) = 1} Groupe spécial orthogonal

de dimension 3



Rotations élémentaires

- Considérons les rotations qu’on peut obtenir a partir de rotations
élémentaires autour des axes z, y, 2

« Ces rotations sont positives si elles sont faites autour des axes relatifs,
dans le sens anti-horaire

Exemple : le repere O-xyz est pivoté d'un angle a autour de I'axe 2
et O-2'y' 2 est le repére résultant A

z | 2

xl’



Rotations élémentaires

- Les vecteurs unitaires de O-z'y' 2’ peuvent étre
exprimeés par rapport au repere O-xyz comme :

COS (v — sin « 0
x =|sina |, y=| cosa |, z'=
0 0 1

- La matrice de rotation de O-z'y'2’ par rapport
a O-ryz engendrée, est donc:

[cosa —sina 0
R.(a) = |sina cosa 0
0 0 1

De la méme fagon, on peut trouver la matrice de rotation autour de
I'axe T d’un angle [ et la matrice de rotation autour de I'axe ¥ d’un angle Y

Remarque : Ces matrices seront utiles pour décrire des rotations
dans |'espace 3D autour d’axes gquelconques



Rotations élémentaires : sommaire

1 0 0
R,(y) = | 0 cosy —siny
0 siny cosvy

Matrice de rotation autour
de I'axe x d’un angle 7Y

Ccosf8 0 sinf ]

R,(B) = 0 1 0 Matrice de rotation autour
—sin8 0 cosf de I'axe y d’un angle 3

[ cosa —sina 0]
R.(a) = |sina  cosa 0 Matrice de rotation autour
0 0 | de lI'axe z d'un angle ¢

Remarque :
Pour les rotations élémentaires, la propriété suivante est vérifiée :

Slide a imprimer
pour le DS

R.(—7) = Ry (7), Ry(-8) = R;(8), R:(-a) = R;(a)




Représentation d'un vecteur

: l'origine du repére du solide coincide avec I'origine

Hypothéese simplificatrice !
1 . /
du repére fixe. Donc o' = 0341 = [0, 0, 0]
On peut représenter le point 3D z
P comme : o
L P
Px ‘\“*-\“ P pr y'
. Y
P = | Dy parrapporta O-ryz N\ | e ]
| Dz | \..-—T AN ;’]
g NS
g
et U e
o N 8
p.’L‘ HN“*...‘_ ’// i "/'
I — / S O-2'1 2 PN e
P = | Py | parrapporta O-z'y'z A S Sl
/ P g
| D, ] z g

x]



Représentation d'un vecteur

Mais p et P’ sont deux représentations du méme point P, donc

/

P=p,x +p,y +p.2 = [X’ y' Z’}p

Mais cela signifie que (rappel les équations

vues précédemment) : A
z
zF
p=Rp L. v
~._ P %

R représente la matrice de transformation qui N T N
permet d’exprimer les coordonnées du point P z | o
dans le repere O-xyz, en function des coordonnées \| ... 4 B

I, 0 Ye—=— e o~

du méme point dans le repere O-z'y 2 —

R est une matrice orthogonale. Donc la A =
transformation inverse est simplement : = B
! T z
P =R'p .



Représentation d'un vecteur

Exemple :

Deux reperes avec la méme origine et une rotation relative d'un angle «
autour de l'axe 2

A

/ ,
P, P : coordonnées
du point P dans les
repéres O-zyz et O-2'y'2/

Yy

On trouve facilement que:
pe = Py cosa — p, sina

_ / : /
Py = Dy SN + p;, COS

/

pz:pz

Remarque :

La matrice R.(«) représente non seulement I'orientation d'un repére par
rapport a un autre, mais elle décrit également la transformation d'un vecteur
dans un repere en un autre avec la méme origine



Composition de matrices de rotation

[ Probleme : comment composer plusieurs rotations ? }

Considérons trois reperes O-x yg 29, O-z1y;1 21, O-25 Y5 2, @Vec la méme origine O

p’, p', p? € R’ : coordonnées d’un point P dans les trois repéres

O-x2 Y2 22
O-21y121

P

O

O-z0 Yo 20



Composition de matrices de rotation

Soit Ri la matrice de rotation du repere 7 par rapport au repere )

Donc
p = R;p”
De méme, nous avons :
p’ = Rip'
p’ = Ryp°

Mais alors, on déduit que :




Composition de matrices de rotation

Considérons un repére initialement aligné avec O-z¢ yo 20

La rotation définie par Rg peut étre obtenue en deux étapes :

1. Tourne le repere avec R? pour l'aligner avec O-z1y1 21

2. Tourne le repere, maintenant aligné avec O-x1y121, en utilisant R%
pour l'aligner avec O-z2 y2 2o

Composition par rapport au repere courant :

« De fagon générale, une rotation d’ensemble peut étre exprimée
comme une sequence de 1 rotations partielles

« Chaque rotation est définie par rapport a la précedente
 Le repere par rapport a lequel la rotation se produit est appelé repere courant

» La composition de rotations successives est obtenue par multiplication
a droite des matrices de rotation, en suivant I'ordre donné des rotations :

R0 — RIR} .- R} 7R

—



Composition de matrices de rotation

Composition par rapport a un repere fixe :

- Les rotations successives peuvent aussi étre specifiées toujours
par rapport au repere initial

- On dit que les rotations sont faites par rapport a un repeére fixe

« La composition de rotations successives est obtenue par multiplication
a gauche des matrices de rotation en suivant I'ordre donné des rotations :

R, = R, R7 - RyRY

-

Remarque :

Conformément a la notation que nous avons introduit,
nous avons que :

R} = (R))™' = (R))"



Composition de matrices de rotation

Probleme fondamental : le produit matriciel n‘est pas commutatif

En général, deux rotations ne commutent pas et la composition dépend
de 'ordre de chaque rotation, a savoir :

R)R} # R} R}

Exemple :
(1 0 0 ] [ V3/2 0 1/2 ]
R,(r/4) = | 0 v2/2 —V2/2| Ryx/6)=| 0 1 0
0 V2/2 2/2 ~1/2 0 +/3/2

V3/2 V2/4 V2/4
R,(1/6)Ro(n/4) = | 0 V2/2 —2/2
-1/2 V6/4 /6/4
T
V3/2 0 1/2
R, (r/4)Ry(n/6) = | v2/4 v2/2 —V6/4
—V2/4 V2/2  V6/4



Composition de matrices de rotation

- Rotations successives d'un objet autour des axes du repére courant




Composition de matrices de rotation

- Rotations successives d'un objet autour des axes du repere fixe

A
a) fi-
/ J
A
b) J
»




Représentations minimales de I'orientation

* Les matrices de rotation fournissent une description redondante
de l'orientation d’'un corps

- En effet, une matrice de rotation R comprend 9 éléments :

11 Ti2 T13
R = |[ro1 729 723

r31 T332 T33

... mais nous avons 6 relations indépendantes entre ces éléments
(les contraintes d’orthogonalité et de normalité des colonnes de R) :

2 2 2
r11712 + 721722 + 731732 = 0 Mty oy =1
_ 2 2 2
r11713 + 121723 + 731733 = 0 g + 13 + 133 = 1
T12713 + T22723 + 732733 = 0 7“%3 + 7"%3 + 7“%3 =1
Conclusion : 9 - 6 = 3 parametres suffisent pour décrire I'orientation d'un corps

Une représentation de I'orientation en fonction de 3 parametres indépendants est
dite une représentation minimale



Angles de Euler

- Une représentation minimale de |'orientation peut étre obtenue
en utilisant un ensemble de trois angles : ¢ = [y, 0, ]’

- Théoreme d’Euler (1776): Une matrice de rotation générigue peut étre
obtenue en composant une séquence opportune de 3 rotations élémentaires

Attention : il faut garantir que deux rotations successives
ne sont pas faites autour d’axes paralléeles

Cela veut dire que 12 ensembles différents d’angles sont
admissibles parmi les 33 = 27 combinaisons possibles :

ZXZ, XYX, YZY, ZYZ, XZX, YXY (angles « propres »)
XYZ, YZX, ZXY, XZY, ZYX, YXZ (angles de Tait-Bryan)

Chaque ensemble constitue un triplet d’angles d’Euler Leonhard Euler
(1707-1783)

Deux triplets d’angles d’Euler assez utilisés sont :

1. Les angles Z2YZ

2. Les angles ZYX ou angles roulis-tangage-lacet
(roll-pitch-yaw, en anglais)



Angles roulis-tangage-lacet

- Représentation de I'orientation utilisée en (aéro)nautique pour
décrire |'attitude d’un avion

- Les angles (i, 6, 1) représentent des rotations définies dans un repére
fixe attaché au centre de masse de |'avion

Tangage ou o <
assiette

(pitch) roulis (roll)



Angles roulis-tangage-lacet

La rotation décrite par les angles de roulis, tangage et lacet (r.t.l.) est obtenue

comme la composition de 3 rotations élémentaires

e Tourner le repére d’un angle ¥ autour de I'axe x (lacet) :

rotation définie par R (1))

e Tourner le repére d’un angle 6 autour de I'axe y (tangage) :

rotation définie par R, (0)

e Tourner le repére d’un angle ¥ autour de I'axe z (roulis) :

rotation définie par R.(¢)

'orientation résultante du repere est obtenue en composant les rotations
par rapport au repeéere fixe, et peut étre calculée en multipliant a gauche

les matrices de rotation élémentaires :

i CpCo  CpSOSy — SpCy
R(¢) = R:(9) Ry(0) Ro (1) = | sp0  5p505y + Cpcy
— S0 Co Sy

ol, pour plus de simplicité, c, = cos ¢, sg = sinf

CpSOCy) T SpSqh

CoCy




Angles roulis-tangage-lacet

Probléme inverse : déterminer les angles de roulis, tangage et lacet
qui correspondent a une matrice de rotation R donnée :

11
R = T21

31

12
22

32

r13
23

33

Si on compare cette expression avec R(qb), on trouve que la solution,

pour 0 € (—7/2, m/2), est :

Y = Atan2(r21, 7“11)

0 = Atan2(—rs1, /13, + 1r33)

770 = AtaIlQ(ng, 7“33)

L'autre solution équivalente pour 6 € (7/2, 31/2), est :

Y = AtaIIZ(—Tgl, —7“11)

Y 7”%2 + 7“%3)

’QD = Atan2(—r32, —ng)

0 = Atan2(—r31,



Angles roulis-tangage-lacet

Remarque 1:

« Si cos @ = 0 les solutions précédentes sont dégénérées : dans ce cas, on peut
uniqguemment déterminer la somme ou la différence de ¢ et ¢ (les angles sont liés)

- Les configurations qui correspondent aux angles # = + 7w /2 caractérisent les
singularités de représentation des angles r.t.l. (blocage de Cardan ou gimbal lock)

Remarque 2 :
- Atan2(y, x) est la fonction arc tangente a deux arguments

« Atan2(y, =) calcule I'arc tangente du rapport y/x mais elle utilise le signe
des arguments pour déterminer le bon quadrant de I'angle

Exemple : / ( arctan(y/a:), x>0
. arctan(y/x) +m, y >0,z <0
| arctan(y/z) —m, y <0,z <0
z AN Atan2(y, ) = < (y/z)
x’ +7/2, y>0,1=
y _7T/2, y < O’ €T —=
| non définie, y=0,z=

arctan(y/x) = arctan(y’/z’) ... mais angle 64 ou 0p ?



Angle et axe

« Une représentation non minimale de 'orientation peut étre obtenue en utilisant
4 parametreés qui expriment une rotation d’un angle 6 autour d’un axe
générigue dans l'espace 3D

- Cette représentation peut étre utile, par exemple, pour planifier la trajectoire
de l'effecteur d’un manipulateur

T
r = [Tasv Ty, Tz]
vecteur unitaire (||r|| = 1)
de |'axe de rotation dans
le repere O-xyz

L'angle 6 est considéré comme positif
si la rotation autour de I'axe r est
faite dans le sens anti-horaire




Angle et axe

- Matrice de rotation qui correspond a un angle 6 et a un axe I donnés :

r2(1 —cg) + co rery(1—co) — 789 Tur.(1—co)+1yse |
RO, r) = | ruory(1 —cg) + 1,80 7“5(1 —cy) +cp ryr2(1 — o) — ru50
| rara(1—co) —ryse Tyro(1—co) +rase r2(1 —cg) + cg

oU, & nouveau, pour plus de simplicité, cg = cosb, sg = sinf

« Une formule plus compacte, mais équivalente, est la formule de Rodrigues :

0 —Ty Ty
R(A,r) = I3 + Tsinf 4 7°(1 —cosf) avecT = | r, 0 —rg
—Ty Ty 0

y 4

Propriété :
R(-6, -1) = R(4, r)

- Ca veut dire que une rotation d’un angle —0 autour de I'axe —T ne
peut pas étre distinguée d’un rotation d’un angle 6 autour de lI'axe r

 La représentation angle et axe n‘est pas unique ! —r



Angle et axe

Probleme inverse : déterminer I'angle et I'axe qui correspondent a une matrice
de rotation R donnée :

11 Ti2 Ti13

R = | ro1 792 To3

sy T32 7133

« Si sinf# # 0, on obtient :

— 1
0 = arccos (Tll o2 ¥ 733 ) Angle

2
rsa — T'23
1
r = —— | 13 — 731
2sin 6 Axe
| 721 — T"12 |

Remarques :

 Les deux expressions précédentes décrivent la rotation en fonction de quatre
parametres : I'angle et les trois composantes du vecteur unitaire de I'axe.
Cependant, on peut constater que les trois composantes 7z, Ty, 7>, du vecteur r
ne sont pas indépendantes mais elles sont contraintes par la condition :

2 2 2 _
ry +r, ;=1



Angle et axe

* Si sinf = 0, les équations précédentes ne sont pas définies

. Pour résoudre le probleme inverse, il faut travailler avec I'expression
particuliere de la matrice R dont on dispose et trouver des formules
de résolution pour les deuxcas : =7 et 0 =0

= Si @ =0 (rotation nulle), le vecteur unitaire r est arbitraire
(singularité de représentation)




Quaternion unitaire

 Les inconvénients de la représentation angle et axe peuvent étre surmontés par
une autre représentation a 4 parameétres, le quaternion unitaire, défini par :

Q= {777 6}

avec
n = cos(6/2) : partie scalaire du quaternion
€ = les, €y, €)1 = sin(0/2) r : partie vectorielle du quaternion

avec la contrainte 772 + ei + ez + eg = 1, dont le nom de quaternion unitaire.
Les parameétres T et 6 sont les mémes que pour la représentation angle et axe

i? = j2 = k* = igk = —1 16 octobre 1843 William R. Hamilton
q ="nN+et+ey)t+ek (1805-1865)



Quaternion unitaire

Remarque :

Contrairement a la représentation angle et axe, une rotation de —6 autour de —I
donne le méme quaternion que celui associé a une rotation de 6 autour der

Matrice de rotation qui correspond a un quaternion unitaire @ = {7, €} donné :

R(na 6) —

Remarque :

2(n* +€3) — 1
2(€:1:€y + 776:13)

| 2(eg€, — Ney)

2<6$6y — ne;)
2* +e)—1
Q(Gyez + 776:1:)

Q(Exez + 77€y)
2(ey€x — MEy)

2(n° +€2) —1 |

- Les quaternions Q et —Q décrivent la méme matrice de rotation
(les quaternions fournissent un double recouvrement du groupe SO(3)).

« En dehors de cette ambiguité, les quatre parameétres d’un quaternion
décrivent une rotation unique




Quaternion unitaire

Probleme inverse : déterminer le quaternion qui correspond a une matrice
de rotation R donnée :

11 Ti2 Ti13
R = | ro1 792 To3

sy T32 T33

 Nous avons que :

1
n = 5\/""11 + 729 + 133 + 1

) [ sgn(rss — re3)\/T11 — oo — 733 + 1 |
€ = 2 sgn(rig —r31)v/Te2 — 33 —ri1 + 1

| sgn(rgr —7r12)V/T33 — 7111 — 722 + 1 |

ou la fonction signe est définie comme suit :

1 six>0

A
) =9 G <o



Quaternion unitaire

Remarque :

- Dans la premiére équation de la slide précédente, nous avons supposé
implicitement que 1 = cos(6/2) > 0. Cela correspond a un angle 6 € |—7, 7.
Par conséquent, toute rotation peut étre décrite

- Par rapport aux formules d’inversion de la représentation angle et axe,
il n'y a pas de singularités dans les deux équations de la slide précédente

Inverse d'un quaternion et produit de deux quaternions
- Le quaternion extrait de la matrice R™' = R” est noté Q! et on peut
le calculer ainsi : 1

Q — {777 —6}

- Soient Q1 = {m, €1} et Q2 = {72, €2} les quaternions qui correspondent
aux matrices de rotation R; et Ry, respectivement. Le quaternion qui
correspond a leur produit R1R2 est donné par :

Q1 x Qo = {771772 — 6?62, M€ + 12€1 + €1 X 62}

Si Q» = Q7' la formule précédente nous donne {1, 0}, I'é/ément neutre
(ou identité) du produit. Comme le produit matriciel, le produit de quaternions
n’est pas commutatif, a savoir Q1 * Qa # Qs * Oy



Représentations de lI'orientation

Sommaire des propriétés des 4 représentations de |'orientation

d’un corps rigide dans l'espace 3D

, : Matrice de | Angles d’Euler Angle et Quaternion
Representation rotation (ZYZ, ZYX, etc.) axe unitaire
Globale Oui Non Non Oui
Unique Oui Non Non Non
Minimale Non Oui Non Non

Remarque :

Une représentation de l'orientation est dite globale,
s’il n'y a pas de singularités dans le probleme inverse
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