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Plan du cours

Chapitre 1 : Introduction

1.1  Définitions

1.2  Classification des robots

1.3  Constituants d’un robot

1.4  Caractéristiques d’un robot

1.5  Générations de robots

1.6  Programmation des robots

1.7  Utilisation des robots

Chapitre 2 : Fondements Théoriques

2.1 Pose d’un corps rigide

• Matrices de rotation et autres représentations de l’orientation

• Transformations homogènes
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Chapitre 3 : Modélisation d’un Robot

2.2  Cinématique

• Dérivée d’une matrice de rotation

• Vitesse angulaire d’un repère

• Mouvement de corps rigide

• Torseur cinématique

3.1  Modèle géométrique

• Convention de Denavit-Hartenberg

• Modèle géométrique direct

• Modèle géométrique inverse

3.2  Modèle cinématique

• Modèle cinématique direct

• Modèle cinématique inverse

Plan du cours
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scalaires (nombres réels)

Notation

vecteur colonne de dimension   , 

matrice avec    lignes et     colonnes

matrice identité

matrice de zéros

norme euclidienne du vecteur

transposée de la matrice

produit scalaire des vecteurs

déterminant et inverse de

produit vectoriel des vecteurs
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• Un manipulateur peut être représenté comme une chaîne cinématique de 
segments reliés par l'intermédiaire d'articulations rotoïdes ou prismatiques

• Le mouvement résultant de la structure est obtenu par composition des 
mouvements élémentaires de chaque segment par rapport au précédent

• Afin de manipuler un objet dans l'espace, il est nécessaire de décrire             
la position et l'orientation (pose) de l'effecteur

base

effecteur

Objectif : exprimer la pose de l’effecteur en fonction des variables des            
articulations, par rapport à un repère donné (ex. le repère de la base) 

Motivation

?

Robot générique

à articulations

vecteur des variables
articulaires
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2.1 Pose d’un corps rigide

La pose d'un corps rigide (ou solide) dans l'espace 3D peut être
complètement décrite par 6 paramètres indépendants :

• 3 paramètres indépendants définissent la position             

d'un point, noté , du solide dans le repère fixe 

(ex. coordonnées cartésiennes, cylindriques ou sphériques) 

• 3 paramètres indépendants déterminent l'orientation
du solide autour du point  (ex. les angles d’Euler)

solide

repère fixe
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solide

La position du point du solide par rapport au repère fixe 

s’exprime par l’équation:

où sont les vecteurs unitaires (leurs norme est 1)  

des axes du repère et sont les composantes

du vecteur le long de chacun des trois axes

repère fixe
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• Afin de décrire l'orientation du solide, considérons un repère attaché au corps
et exprimons ses vecteurs unitaires par rapport au repère 

• Soit   un tel repère avec origine et soient               les vecteurs 

unitaires des axes

• Ces vecteurs sont exprimés par rapport au repère   par les équations :

• Sous forme compacte, les vecteurs unitaires qui décrivent l'orientation

du solide par rapport à , peuvent être combinés dans la matrice 3 ✕ 3 :

qui est appelée matrice de rotation. On dit que      est le cosinus directeur
reliant à (et de même pour les autres huit éléments de   )



9

Propriétés des matrices de rotation

• Les colonnes d’une matrice de rotation sont orthogonales à deux à deux

est leur norme est égale à 1 :

Par conséquent,     est une matrice orthogonale, c’est-à-dire :

Si on multiplie à droite chaque côté de l’équation précédente par                
on trouve que : 

c’est-à-dire, la transposée d’une matrice de rotation est égale à son inverse.

Groupe spécial orthogonal   
de dimension 3

• En plus de conserver les longueurs, les matrices de rotation doivent également

conserver l'orientation, donc il faut que                   (vrai, si le repère est direct)
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Rotations élémentaires

• Considérons les rotations qu’on peut obtenir à partir de rotations 

élémentaires autour des axes 

• Ces rotations sont positives si elles sont faites autour des axes relatifs,            
dans le sens anti-horaire

Exemple : le repère   est pivoté d’un angle autour de l’axe

et est le repère résultant
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• Les vecteurs unitaires de    peuvent être 

exprimés par rapport au repère comme : 

• La matrice de rotation de   par rapport      

à engendrée, est donc: 

De la même façon, on peut trouver la matrice de rotation autour de 

l’axe d’un angle et la matrice de rotation autour de l’axe d’un angle 

Remarque : Ces matrices seront utiles pour décrire des rotations 
dans l’espace 3D autour d’axes quelconques

Rotations élémentaires
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Slide à imprimer

pour le DSRotations élémentaires : sommaire

Matrice de rotation autour

de l’axe d’un angle

Remarque :
Pour les rotations élémentaires, la propriété suivante est vérifiée :

Matrice de rotation autour

de l’axe d’un angle 

Matrice de rotation autour

de l’axe d’un angle
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Représentation d’un vecteur

Hypothèse simplificatrice : l’origine du repère du solide coïncide avec l'origine 
du repère fixe. Donc                                 . 

On peut représenter le point 3D
comme :

par rapport à

par rapport à

et
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Représentation d’un vecteur

Mais cela signifie que (rappel les équations 
vues précédemment) :

représente la matrice de transformation qui 

permet d’exprimer les coordonnées du point P
dans le repère , en function des coordonnées

du même point dans le repère

Mais et     sont deux représentations du même point , donc

est une matrice orthogonale. Donc la 
transformation inverse est simplement : 
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Exemple :

Deux repères avec la même origine et une rotation relative d’un angle 
autour de l’axe

: coordonnées
du point dans les

repères et

Remarque :
La matrice représente non seulement l'orientation d'un repère par      
rapport à un autre, mais elle décrit également la transformation d'un vecteur    
dans un repère en un autre avec la même origine

On trouve facilement que:

Représentation d’un vecteur
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Composition de matrices de rotation

Problème : comment composer plusieurs rotations ?

Considérons trois repères ,      ,         avec la même origine

coordonnées d’un point P dans les trois repères

P
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Composition de matrices de rotation

Soit la matrice de rotation du repère par rapport au repère

Donc

De même, nous avons :

Mais alors, on déduit que : 
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Composition de matrices de rotation

Considérons un repère initialement aligné avec

La rotation définie par      peut être obtenue en deux étapes :

1. Tourne le repère avec      pour l’aligner avec 

2. Tourne le repère, maintenant aligné avec , en utilisant

pour l’aligner avec 

• De façon générale, une rotation d’ensemble peut être exprimée
comme une sequence de    rotations partielles

• Chaque rotation est définie par rapport à la précédente

• Le repère par rapport à lequel la rotation se produit est appelé repère courant

• La composition de rotations successives est obtenue par multiplication      
à droite des matrices de rotation, en suivant l'ordre donné des rotations :

Composition par rapport au repère courant : 
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Composition de matrices de rotation

Composition par rapport à un repère fixe :

• Les rotations successives peuvent aussi être specifiées toujours
par rapport au repère initial

• On dit que les rotations sont faites par rapport à un repère fixe

• La composition de rotations successives est obtenue par multiplication             
à gauche des matrices de rotation en suivant l’ordre donné des rotations :

Remarque :

• Conformément à la notation que nous avons introduit, 
nous avons que :
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Composition de matrices de rotation

Exemple :

Problème fondamental : le produit matriciel n’est pas commutatif !

En général, deux rotations ne commutent pas et la composition dépend
de l’ordre de chaque rotation, à savoir :
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Composition de matrices de rotation

• Rotations successives d'un objet autour des axes du repère courant

a)

b)
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Composition de matrices de rotation

• Rotations successives d'un objet autour des axes du repère fixe

a)

b)
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Représentations minimales de l’orientation

• Les matrices de rotation fournissent une description redondante            

de l’orientation d’un corps

• En effet, une matrice de rotation comprend 9 éléments :

… mais nous avons 6 relations indépendantes entre ces éléments   

(les contraintes d’orthogonalité et de normalité des colonnes de   ) :

Conclusion : 9 - 6 = 3 paramètres suffisent pour décrire l'orientation d'un corps

Une représentation de l'orientation en fonction de 3 paramètres indépendants est 
dite une représentation minimale
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• Une représentation minimale de l’orientation peut être obtenue               

en utilisant un ensemble de trois angles :  

• Théorème d’Euler (1776): Une matrice de rotation générique peut être 

obtenue en composant une séquence opportune de 3 rotations élémentaires 

Attention : il faut garantir que deux rotations successives                              

ne sont pas faites autour d’axes parallèles

Cela veut dire que 12 ensembles différents d’angles sont             

admissibles parmi les 33 = 27 combinaisons possibles :

ZXZ, XYX, YZY, ZYZ, XZX, YXY (angles « propres »)

XYZ, YZX, ZXY, XZY, ZYX, YXZ (angles de Tait-Bryan)

Chaque ensemble constitue un triplet d’angles d’Euler

Deux triplets d’angles d’Euler assez utilisés sont :

1. Les angles ZYZ

2. Les angles ZYX ou angles roulis-tangage-lacet

(roll-pitch-yaw, en anglais)

Leonhard Euler 
(1707–1783)

Angles de Euler
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Angles roulis-tangage-lacet

• Représentation de l'orientation utilisée en (aéro)nautique pour              

décrire l’attitude d’un avion

• Les angles              représentent des rotations définies dans un repère 
fixe attaché au centre de masse de l’avion

Lacet ou cap 
(yaw)

roulis (roll)

Tangage ou
assiette
(pitch)
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La rotation décrite par les angles de roulis, tangage et lacet (r.t.l.) est obtenue
comme la composition de 3 rotations élémentaires :

• Tourner le repère d’un angle    autour de l’axe (lacet) :           

rotation définie par

• Tourner le repère d’un angle   autour de l’axe (tangage) :          

rotation définie par

• Tourner le repère d’un angle    autour de l’axe (roulis) :         

rotation définie par

L’orientation résultante du repère est obtenue en composant les rotations     
par rapport au repère fixe, et peut être calculée en multipliant à gauche         
les matrices de rotation élémentaires :  

Angles roulis-tangage-lacet

où, pour plus de simplicité,
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Problème inverse : déterminer les angles de roulis, tangage et lacet          
qui correspondent à une matrice de rotation     donnée :

Angles roulis-tangage-lacet

Si on compare cette expression avec         , on trouve que la solution,   
pour                        , est :    

L’autre solution équivalente pour                       , est :    
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Remarque 1 :

• Si              les solutions précédentes sont dégénérées : dans ce cas, on peut
uniquemment déterminer la somme ou la différence de    et    (les angles sont liés)

• Les configurations qui correspondent aux angles                caractérisent les 
singularités de représentation des angles r.t.l. (blocage de Cardan ou gimbal lock)

• est la fonction arc tangente à deux arguments

• calcule l’arc tangente du rapport mais elle utilise le signe

des arguments pour déterminer le bon quadrant de l’angle

Remarque 2 :

… mais angle     ou ?

Angles roulis-tangage-lacet

Exemple :
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Angle et axe

• Une représentation non minimale de l’orientation peut être obtenue en utilisant
4 parametrès qui expriment une rotation d’un angle    autour d’un axe 
générique dans l’espace 3D

• Cette représentation peut être utile, par exemple, pour planifier la trajectoire
de l’effecteur d’un manipulateur

vecteur unitaire (           )      
de l’axe de rotation dans   
le repère

L’angle est considéré comme positif

si la rotation autour de l’axe est

faite dans le sens anti-horaire
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Propriété :

• Ça veut dire que une rotation d’un angle      autour de l’axe ne 
peut pas être distinguée d’un rotation d’un angle    autour de l’axe

• La représentation angle et axe n’est pas unique ! 

où, à nouveau, pour plus de simplicité,

Angle et axe

• Matrice de rotation qui correspond à un angle    et à un axe donnés : 

• Une formule plus compacte, mais équivalente, est la formule de Rodrigues :

avec
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Problème inverse : déterminer l’angle et l’axe qui correspondent à une matrice
de rotation     donnée :

• Si              , on obtient :

Angle

Axe

Remarques :

Angle et axe

• Les deux expressions précédentes décrivent la rotation en fonction de quatre 
paramètres : l’angle et les trois composantes du vecteur unitaire de l’axe.

Cependant, on peut constater que les trois composantes du vecteur

ne sont pas indépendantes mais elles sont contraintes par la condition :
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• Si               , les équations précédentes ne sont pas définies

▪ Pour résoudre le problème inverse, il faut travailler avec l’expression

particulière de la matrice dont on dispose et trouver des formules

de résolution pour les deux cas :          et 

▪ Si          (rotation nulle), le vecteur unitaire est arbitraire

(singularité de représentation) 

Angle et axe
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Quaternion unitaire

• Les inconvénients de la représentation angle et axe peuvent être surmontés par 
une autre représentation à 4 paramètres, le quaternion unitaire, défini par :

avec

avec la contrainte , dont le nom de quaternion unitaire.

Les paramètres et sont les mêmes que pour la représentation angle et axe

: partie scalaire du quaternion

: partie vectorielle du quaternion

William R. Hamilton 

(1805–1865)

Broom Bridge (Dublin)

16 octobre 1843
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Matrice de rotation qui correspond à un quaternion unitaire donné :

• Les quaternions     et        décrivent la même matrice de rotation                  
(les quaternions fournissent un double recouvrement du groupe ).

• En dehors de cette ambiguité, les quatre paramètres d’un quaternion            
décrivent une rotation unique

Quaternion unitaire

Contrairement à la représentation angle et axe, une rotation de      autour de       
donne le même quaternion que celui associé à une rotation de    autour de    

Remarque :

Remarque :
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Quaternion unitaire

Problème inverse : déterminer le quaternion qui correspond à une matrice
de rotation     donnée :

• Nous avons que :

où la fonction signe est définie comme suit :
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• Dans la première équation de la slide précédente, nous avons supposé 
implicitement que Cela correspond à un angle 
Par conséquent, toute rotation peut être décrite

Quaternion unitaire

Remarque :

• Par rapport aux formules d’inversion de la représentation angle et axe,        
il n’y a pas de singularités dans les deux équations de la slide précédente

Inverse d’un quaternion et produit de deux quaternions

• Le quaternion extrait de la matrice                 est noté        et on peut     
le calculer ainsi : 

• Soient                     et                     les quaternions qui correspondent         
aux matrices de rotation     et     , respectivement. Le quaternion qui     
correspond à leur produit          est donné par :

Si               , la formule précédente nous donne         , l’élément neutre
(ou identité) du produit. Comme le produit matriciel, le produit de quaternions 
n’est pas commutatif, à savoir 
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Représentations de l’orientation

Sommaire des propriétés des 4 représentations de l’orientation
d’un corps rigide dans l’espace 3D

Représentation
Matrice de 

rotation
Angles d’Euler

(ZYZ, ZYX, etc.)
Angle et 

axe
Quaternion 

unitaire

Globale Oui Non Non Oui

Unique Oui Non Non Non

Minimale Non Oui Non Non

Remarque : 

Une représentation de l’orientation est dite globale, 
s’il n’y a pas de singularités dans le problème inverse
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