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Plan du cours

Chapitre 1 : Introduction

1.1  Définitions

     1.2  Classification des robots

     1.3  Constituants d’un robot

     1.4  Caractéristiques d’un robot

     1.5  Générations de robots

     1.6  Programmation des robots

     1.7  Utilisation des robots

Chapitre 2 : Fondements Théoriques

2.1 Pose d’un corps rigide

•  Matrices de rotation et autres représentations de l’orientation

•  Transformations homogènes
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Chapitre 3 : Modélisation d’un Robot

2.2  Cinématique

•  Dérivée d’une matrice de rotation

•  Vitesse angulaire d’un repère

•  Mouvement de corps rigide

•  Torseur cinématique

3.1  Modèle géométrique

•  Convention de Denavit-Hartenberg

•  Modèle géométrique direct

•  Modèle géométrique inverse

    3.2  Modèle cinématique

•  Modèle cinématique direct

•  Modèle cinématique inverse

Plan du cours
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solide 

repère fixe

Pour décrire la pose d’un solide dans l’espace 3D, on a besoin de connaître : 

• [Translation] Position d’un point sur le solide ( ) par rapport au repère fixe

• [Rotation] Composantes des vecteurs unitaires du repère attaché au solide 

  avec origine  , par rapport au repère fixe

Introduction
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• P : point générique dans l’espace 3D 

•          : coordonnées du point P par rapport au repère 0 et 1, respectivement

•      : vecteur qui décrit l’origine du repère 1 par rapport au repère 0

•         : matrice de rotation du repère 1 par rapport au repère 0

Repère 0

Repère 1

Soit:

Introduction
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On peut écrire la position du point P par rapport au repère 0, comme :

Transformation de coordonnées d’un 
vecteur entre le repère 1 et le repère 0

Repère 0

Remarque : Ce type de transformation conserve les distances. 
On dit qu’elle est une transformation rigide

Introduction

Repère 1
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Coordonnées homogènes

• La présence, au même temps, de produits et de sommes dans l'équation
 

est peu pratique pour effectuer des calculs systématiques, dûs par exemple       
à des changements successifs de repère. On lui préfère une représentation 
matricielle, basée sur les coordonnées homogènes

• Alors la représentation 

du point P à l'aide de   

coordonnées homogènes 
est faite par :

• Soit par exemple P un point dans l’espace 3D de coordonnées :

avec

• La représentation en coordonnées homogènes consiste à doter toute 
notation vectorielle d'un facteur d'échelle, en introduisant une coordonnée 
supplémentaire 
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• Pour avoir une représentation compacte de la relation entre les coordonnées    

du même point P dans deux repères, on utilise donc la représentation 
homogène suivante : 

On rajoute une 4e coordonnée de 
valeur égale à 1 au vecteur

Coordonnées homogènes

“tilde”

• En pratique, on choisit un facteur d'échelle unitaire (à savoir,              )
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• Si on utilise cette représentation pour les vecteurs      et     , on peut écrire   
la transformation de coordonnées comme : 

• Comme              et                  , la matrice appartient au groupe spécial 
euclidien de dimension 3 :  

Matrice de transformation 

homogène (4 × 4)

• La pose du repère 1 par rapport au repère 0 est définie par le couple :

Nous avons 6 paramètres au total : 3 définissant la translation et 3 définissant  
la rotation (par ex. les angles de roulis-tangage-lacet)

• Par la suite, on utilisera les lettres     ou     pour indiquer une matrice homogène

Matrices homogènes

avec
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Exemple 1 (Rotation pure autour de l’axe ) 
y1

x1

z0

y0

x0

O0

x1

O1

z0

y0

x0

O0

z1

Exemple 2 (Translation simple) y1

z1

Matrices homogènes

Exemple 3 (Rotation et translation) 

O1

z0

y0

x0

O0

z1

y1

x1

O1
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• La transformation d’un vecteur du repère 1 au repère 0, est exprimée par     
une seule matrice qui contient la matrice de rotation du repère 1 par rapport    
au repère 0 et le vecteur de translation de l’origine du repère 0 à l’origine          
du repère 1 : 

• La transformation inverse entre le repère 0 et le repère 1 est décrite 
par la matrice      qui vérifie l’equation : 

• En utilisant les propriétés des matrices partitionnées*, on trouve que : 

sont deux matrices inversibles

Matrices homogènes

où

Si

*Remarque :
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Attention : les matrices homogènes ne satisfont pas la propriété 
d’orthogonalité. En conséquence, en general : 

En conclusion : 

• Une matrice homogène permet d’exprimer la transformation 
  de coordonnées entre deux repères génériques sous forme compacte   

• Si les repères ont la même origine, la matrice homogène se réduit 
  à la matrice de rotation (4 × 4) définie précédemment (cf. Exemple 1)

• Comme pour les matrices de rotation, on peut composer une séquence  
  de transformations de coordonnées grâce au produit matriciel :

où est la matrice de transformation qui met en relation           
la description d’un point dans le repère avec la 

description du même point dans le repère

Matrices homogènes
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• Soit                une matrice de rotation variable dans le temps

• Si on calcule la derivée par rapport au temps, nous trouvons           
  (rappel la règle du produit ou de Leibniz) : 

Cinématique

• Grâce à la propriété d’orthogonalité de la matrice        , on a que :

• Soit

Elle est une matrice antisymétrique. En effet :

• Si on multiplie à droite chaque côté de l’équation précédente par       
  on trouve que :

Ainsi on a pu écrire la derivée de la matrice de rotation en fonction            
de la matrice de rotation elle-même
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Interprétation physique :

• La derivée par rapport au temps de        est : 

• Soit     un vecteur constant et

• Si le vecteur         est la vitesse angulaire (ou de rotation) du repère         
  par rapport au repère “fixe” au temps , nous savons de la mécanique que :           

• Donc l’opérateur        décrit le produit vectoriel entre le vecteur   
  et le vecteur   

• Les éléments de        symétriques par rapport à la diagonale principale   
  répresentent les composantes du vecteur      

Cinématique
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qui justifie l’expression :

• On peut donc réécrire l’équation trouvée précédemment, comme suit :

c’est-à-dire :

Cinématique
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Exemple :

Considèrons la matrice de rotation élémentaire autour de l’axe .            
Si l’angle              , on trouve que :    

Donc, nous avons que :

qui exprime la vitesse angulaire du repère autour de l’axe 

Cinématique
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• La transformation de coordonnées d’un point P entre les repères 0 et 1 est :

• Si on calcule la dérivée par rapport au temps de cette expression, on trouve que :

Repère 0

Repère 1

Mouvement de corps rigide

Cinématique
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• Si on utilise l’expression de la dérivée d’une matrice et on spécifie la dépendance  
  à l’égard de la vitesse angulaire, on obtient :

Repère 0

Repère 1

• Enfin, si le vecteur          est noté     pour plus de simplicité, on conclue que :

Cinématique

Mouvement de corps rigide
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Cas particulier : Si     est fixe par rapport au repère 1, on trouve que :

car

Repère 0

Repère 1

Cinématique

Mouvement de corps rigide
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• P est un point d’un solide en mouvement  

  par rapport au repère 0 (voir la figure à droite)
• Le repère 1 est attaché au solide
• Le mouvement du repère 1 par rapport 
  au repère 0 est le suivant :

1. Rotation de vitesse     autour de

2. Translation de vitesse suivant

3. À , repère 0     repère 1    

Exemple:

Nous avons que:

À l’instant  
initial

P

Solide
Cinématique

donc
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Soit le repère 0 fixe et le repère 1 attaché à un solide 
indéformable. Le torseur cinématique décrivant                           
le mouvement du solide par rapport au repère 0                        
est défini par :

Définition (torseur cinématique)

Deux cas spéciaux :

1) Si     est constant, c’est-à-dire          , alors le torseur              
est une rotation pure atour d’un axe, et le torseur devient :

2) Si            , c’est-à-dire le solide ne tourne pas, mais il glisse    
dans la direction     uniquement, le torseur devient :

Solide

(glisseur)

Cinématique



24

Vocabulaire anglais :

Torseur = Screw, Torseur cinématique = Twist,  Torseur statique = Wrench

• Le torseur cinématique représente la vitesse d’un solide comme une vitesse 
angulaire autour d’un axe et une vitesse linéaire le long du même axe                

Il permet de représenter de façon pratique le champ des vitesses
d'un solide indéformable en un instant donné

• Le torseur cinématique décrit la cinématique du solide              
indépendamment des causes du mouvement

• La loi de composition des mouvements permet                                                 
de combiner plusieurs torseurs cinématiques

The Theory of Screws (1876)

Robert Stawell Ball

(1840-1913)

• Le torseur cinématique fait partie de la famille des 
torseurs. D’autres torseurs utilisés en mécanique : 

▪ Torseur statique ou d’action (ensemble des          
forces et des couples qui résultent de l’application            
des lois de Newton sur un solide) 

▪ Torseur cinétique 

▪ Torseur dynamique

Cinématique
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