Surveillance Distribuée de Systèmes Multi-agents

UPJV, Département EEA

Master 2 3EA, EC53
UE alternants

Fabio MORBIDI

Laboratoire MIS Équipe Perception Robotique fabio.morbidi@u-picardie.fr

Mardi, Mercredi et Jeudi 13h30-16h00 (CM et TD salle CURI 305) 13h30-17h30 (TP salle CURI 305)

AU 2022-2023

Plan du cours

Chapitre 1: Modélisation de l'incertitude

- 1. Introduction
- 2. Représentation de l'erreur
- 3. Incertitude d'un capteur
- 4. Propagation d'incertitude

Chapitre 2: **Traitement des mesures**

- 1. Réseaux multi-capteurs
- 2. Fusion des mesures

Chapitre 3: Estimation distribuée

- 1. Introduction à la théorie des graphes
- 2. Protocole de consensus
- 3. Dynamic average consensus estimators
- 4. Méthode des moindres carrés distribuée
- 5. Filtre de Kalman distribué

Découverte des laboratoires: Activités de recherche du laboratoire MIS

Ch. 2: Traitement des mesures

• Réseaux multi-capteurs

Partie 1

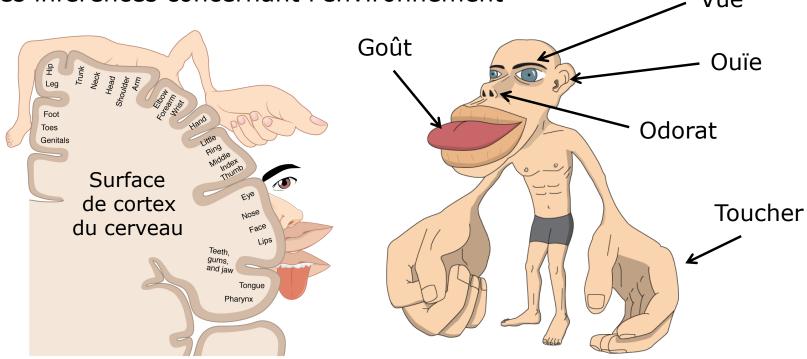
Fusion des mesures

Partie 2

Introduction

Systèmes multi-capteurs biologiques [Êtres humains]

Intégration de l'information sensorielle pour faire des inférences concernant l'environnement

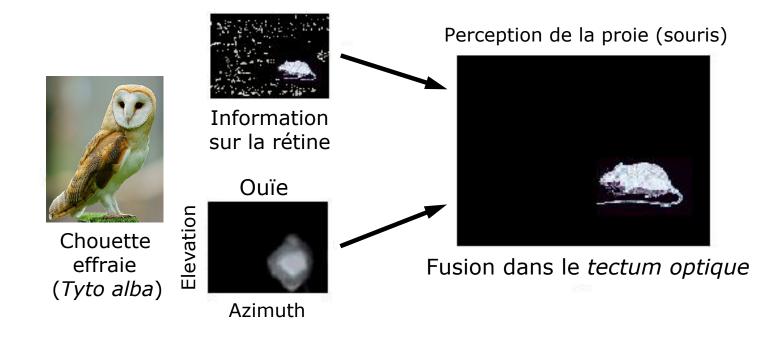


Homoncule sensitif: représentation déformée du corps humain basée sur une « carte » neurologique des zones et des proportions du cerveau dédiées aux fonctions sensorielles pour différentes parties du corps

Introduction

Systèmes multi-capteurs biologiques [Monde animal]

Expériences de R.S. Payne dans les années 1950



"Why Are Barn Owls a Model System for Sound Localization?", L. Hausmann, M. Singheiser, H. Wagner, Journal of Experimental Biology, vol. 213, pp. 2355-2356, 2010

Accelerometer

Gyro

Pendulum Resistive Tilt Sensors

Metal Detector

Pyroelectric Detector

Gas Sensor

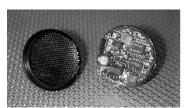
Gieger-Muller Radiation Sensor

Digital Infrared Ranging

CDS Cell Resistive Light Sensor

Resistive Bend Sensors

Hall Effect Magnetic Field Sensors



Diode

Limit Switch

Touch Switch

Miniature Polaroid Sensor

Différents capteurs ...

IR Reflection Sensor

IR Amplifier Sensor

IRDA Transceiver

Compass

Pressure Switch



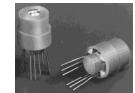
Polaroid Sensor Board Piezo Ultrasonic Transducers

Lite-On IR Remote Receiver

Radio Shack Remote Receiver

IR Modulator Receiver

Solar Cell



Compass

Fusion multi-capteurs

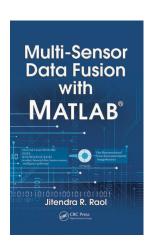
La fusion des informations provenant de différents capteurs permet:

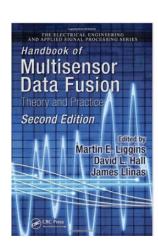
- D'augmenter la connaissance sur l'état du système en tirant profit de la complémentarité des capteurs
- D'améliorer la précision des estimations en exploitant la redondance des données. Cette redondance peut provenir de l'utilisation de plusieurs sources d'information et/ou de la connaissance de l'évolution du système dans le temps
- De gérer l'incertitude lors de la combinaison d'informations qui seront utilisées dans un processus de décision

<u>Références</u>:

"Multi-sensor data fusion with MATLAB", J.R. Raol, CRC press, 2009

"Handbook of Multisensor Data Fusion: Theory and Practice", M.E. Liggins, D. Hall, J. Llinas (éd.), CRC press, 2017



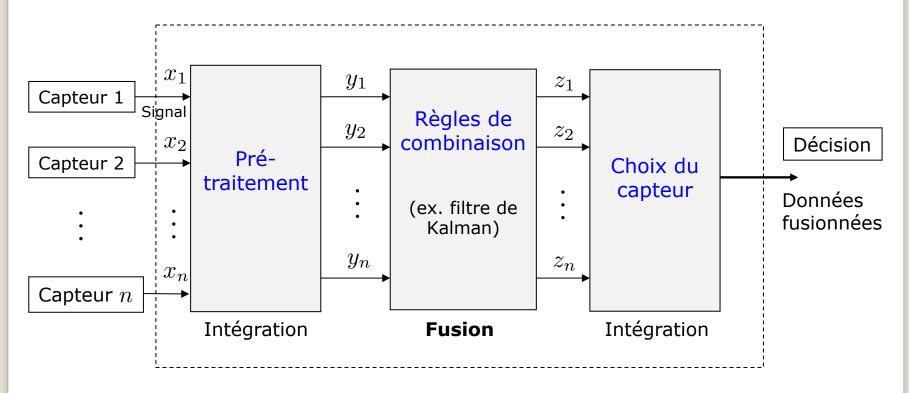


Niveaux de représentation

La fusion se situe à différents niveaux:

- Niveau signal
 - Fusion d'images, nuages de points 3D, courants, etc.
- Niveau primitive
 - Extraction des *features* (par ex. points, blobs, droites, cercles dans une image)
- Niveau décision
 - Suivi de cible ("target tracking")

Fusion multi-capteurs: architecture générale



- Les mesures de n capteurs sont pré-traitées
- Les données sont ensuite fusionnées (par ex. grâce au filtre de Kalman, aux grilles probabilistes ou à la théorie de l'évidence)
- Les résultats sont classés et sélectionnés avant que une décision sur les informations de fusion optimale soit prise

Fusion multi-capteurs: règles de combinaison

Méthodes probabilistes pour la combinaison de données multi-capteurs:

- Règle de Bayes
- Grilles probabilistes
- Filtre de Kalman ou filtre d'information (cf. le Chapitre 3)
- Méthodes de Monte Carlo séquentielles

Limitations:

- 1. Complexité
- 2. Inconsistance
- 3. Précision des modèles
- 4. Incertitude sur l'incertitude

Alternatives aux méthodes probabilistes:

- Arithmétique d'intervalles ("interval calculus")
- Logique floue ("fuzzy logic") [Zadeh, 1965]
- Théorie de l'évidence ("evidential reasoning"): Théorie de Dempster-Shafer [Shafer, 1976]

Fusion multi-capteurs: taxonomie

Classification des architectures pour la fusion multi-capteurs selon **quatre axes** indépendants:

- 1. Centralisée vs. décentralisée (ou distribuée)
- 2. Interaction locale vs. interaction globale des composantes
- 3. Modulaire vs. monolithique
- 4. Hétérarchique vs. hiérarchique

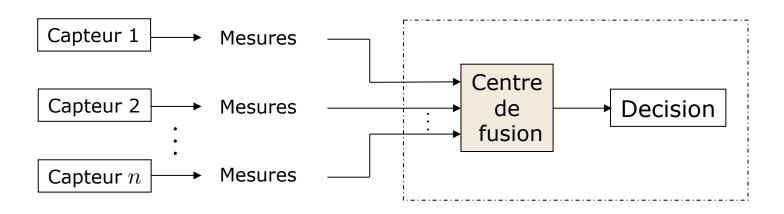
Les combinaisons les plus répandues sont:

- Centralisée, interaction locale et hiérarchique
- Décentralisée, interaction globale et hétérarchique
- Décentralisée, interaction locale et hiérarchique
- Décentralisée, interaction locale et hétérarchique

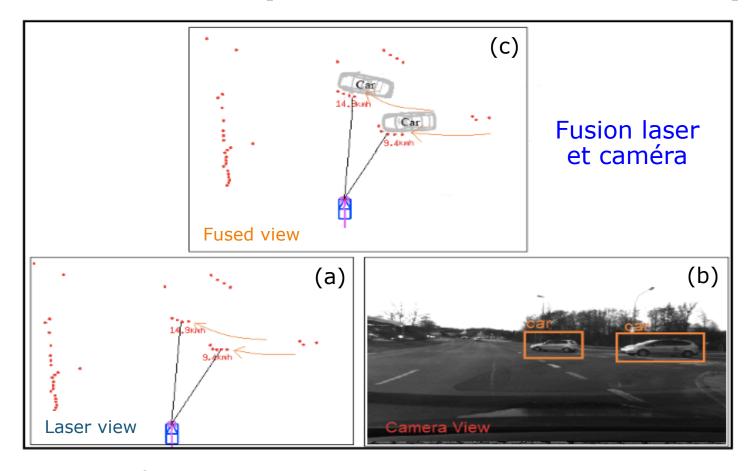
Architectures des systèmes multi-capteurs

Architectures centralisées

- Les sorties d'un capteur peuvent guider les traitements d'un autre capteur
- Architecture adaptée pour les capteurs complémentaires (par exemple, système caméra visible et caméra infrarouge ou système caméra et laser)
- Les mesures doivent être référencées dans le même repère (spatial ou temporel)



Fusion multi-capteurs centralisée: exemple

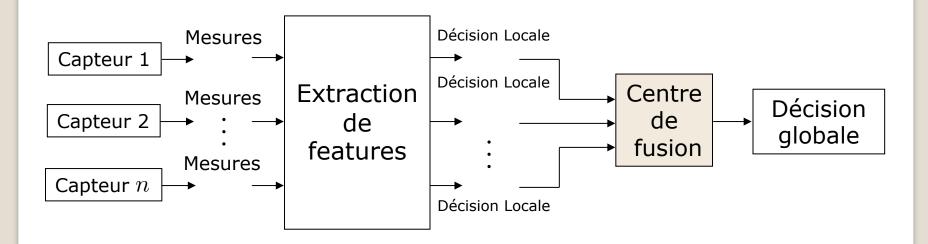


(a) Le laser détecte des objets en mouvement et leur position et leur vitesse est calculée; (b) Au même temps, les objets sont classés par système de vision comme véhicules; (c) Après la phase de fusion, nous savons que nous sommes en train de faire le suivi de deux véhicules

Architectures des systèmes multi-capteurs

Architectures décentralisées

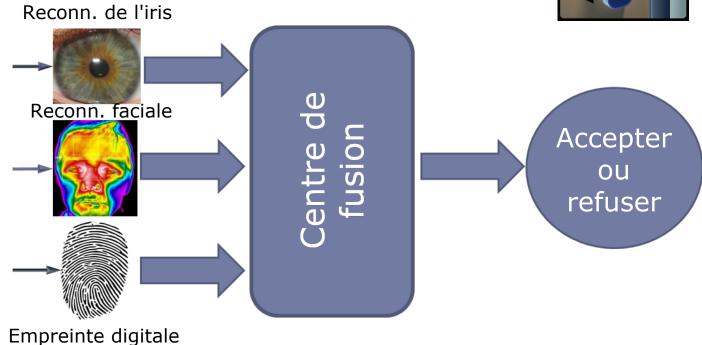
- Chaque capteur a ses propres modules de *pré-traitement* et *décision* sans échange avec les autres capteurs
- Un centre de fusion établit les décisions finales (« globales »)



Fusion multi-capteurs décentralisée: exemple

Exemple:

Système automatisé d'identification biométrique



Fusion multi-capteurs en robotique mobile

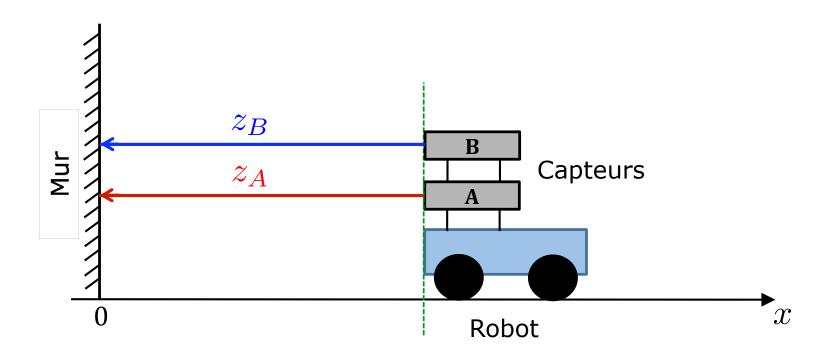
La fusion multi-capteurs permet l'estimation d'un vecteur d'état qui est:

- 1. La **position d'un robot** dans des applications de *localisation*
- 2. La **position des amers** de l'environnement dans le cas de la *cartographie*
- 3. La **position d'autres objets mobiles** dans le cas du suivi de cibles ("target tracking")

Les points 1 & 2 sont l'objectif des techniques SLAM ("Simultaneous Localization And Map building")

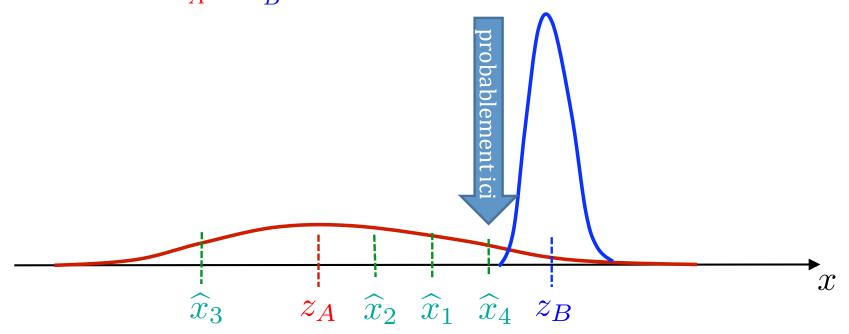
Fusion de capteurs en robotique mobile (localisation): exemple

Soit un robot équipé de deux capteurs de distance (A et B) ayant des bruits de mesure avec variances σ_A^2 et σ_B^2



Fusion de capteurs en robotique mobile (localisation): exemple

- On considère les deux mesures z_A et z_B
- Quel est le meilleur estimé \hat{x} de la position du robot par rapport au mur, en tenant compte des incertitudes de mesure σ_A^2 et σ_B^2 ?



Objectif: Combiner avec une moyenne pondérée les deux mesures (évidences) obtenues par les capteurs A et B

- On voudrait donner plus d'importance à la mesure ayant une variance plus petite
- Idée intuitive: utiliser une moyenne pondérée basée sur l'inverse des variances

Nos hypothèses:

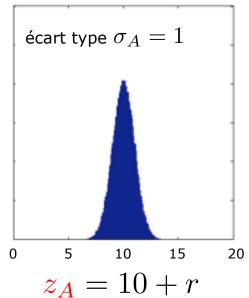
- La vraie distance du mur est $x=10\,\mathrm{m}$
- Les deux capteurs sont identiques: $\sigma_A^2 = \sigma_B^2$
- Modèle du capteur: $z_i = x + r, \ r \sim \mathcal{N}(0, \sigma_i^2), \ i \in \{A, B\}$
 - Simple équation de mesure (bruit additif)
 - Bruit blanc sans biais $(\mu_i = 0)$
 - Mesures z_A et z_B non corrélées
 - Portée du capteur: illimitée

Rappel:

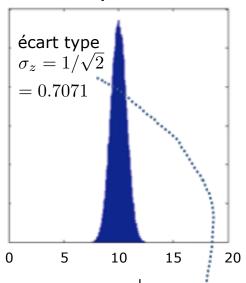
Si X et Y sont deux v.a. et $a, b \in \mathbb{R}$:

$$Var[aX + bY] = a^2 Var[X] + b^2 Var[Y] + 2ab Cov[X, Y]$$

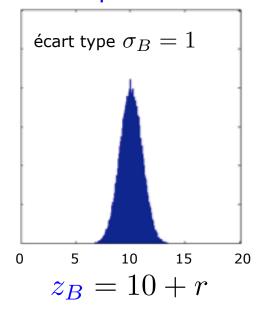
Capteur A



Moyenne



Capteur B



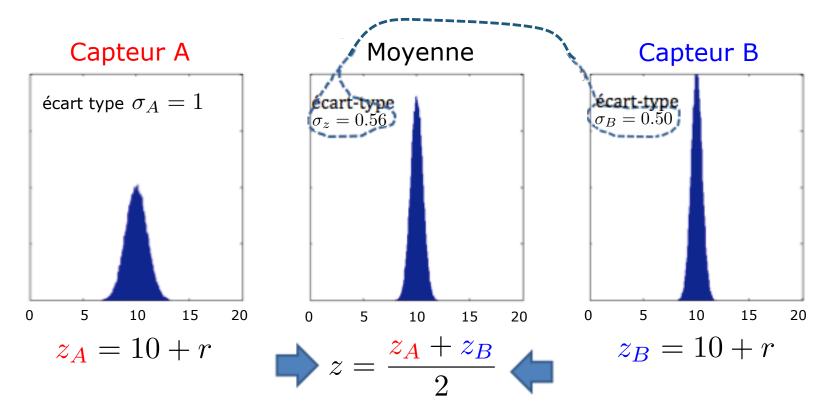
$$z = \frac{z_A + z_B}{2}$$

$$\operatorname{Var}[z] = \sigma_z^2 = \operatorname{Var}\left[\frac{z_A + z_B}{2}\right]$$
 (les deux mesures sont *non corrélées*)

$$= \frac{1}{4} \operatorname{Var}[\mathbf{z}_{A}] + \frac{1}{4} \operatorname{Var}[\mathbf{z}_{B}] = \frac{1}{4} (\sigma_{A}^{2} + \sigma_{B}^{2}) = \frac{1}{2} \dots$$

Capteurs **différents**: $\sigma_A^2 > \sigma_B^2$

L'écart type de z augmente cette fois ! $\sigma_z = 0.56 > 0.50 = \sigma_B$



En général, on peut considérer une combinaison convexe des deux mesures, à savoir:

$$z = (1 - w) z_A + w z_B, w \in [0, 1]$$

Objectif: Déterminer le poids $w \in [0, 1]$ optimal

Si on calcule la variance de z, on obtient:

$$\begin{aligned} \operatorname{Var}[z] &= \operatorname{Var}\left[(1-w)\, \mathbf{z}_A + w\, \mathbf{z}_B\right] \\ &= (1-w)^2 \operatorname{Var}[\mathbf{z}_A] + w^2 \operatorname{Var}[\mathbf{z}_B] + 2w(1-w) \underbrace{\operatorname{Cov}[\mathbf{z}_A, \mathbf{z}_B]}_{= 0} \\ &= (1-w)^2 \, \sigma_A^2 + w^2 \sigma_B^2 \end{aligned}$$

$$= 0$$
Les deux mesures sont non corrélées

Il s'agit d'une fonction quadratique de la variable w

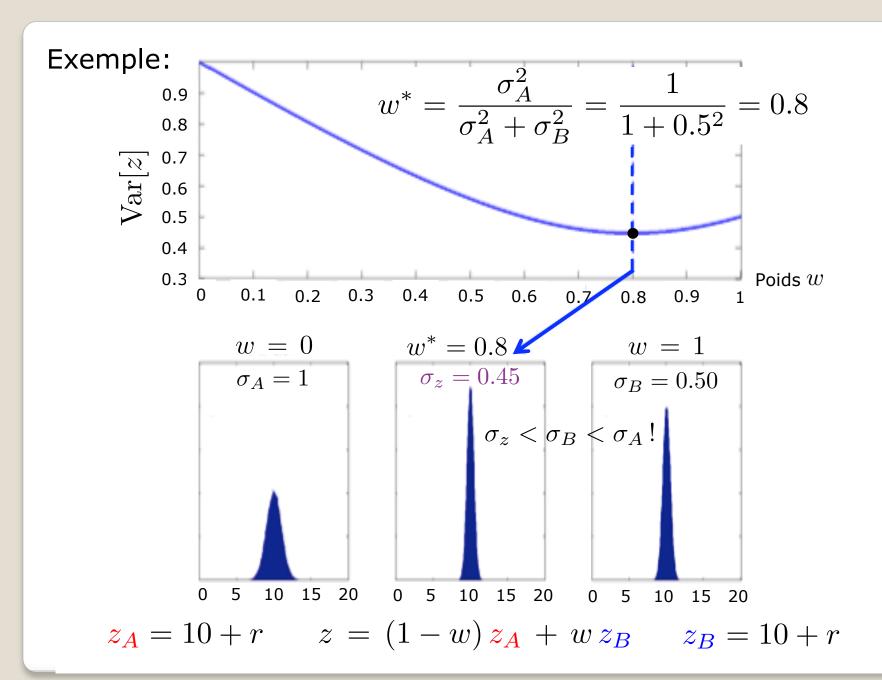
Pour minimiser $\mathrm{Var}[z]$, on cherche un w tel que $\frac{d}{dw}\mathrm{Var}[z]=0$

Nous avons que:

$$\frac{d}{dw} \operatorname{Var}[z] = \frac{d}{dw} \left[(1 - w)^2 \sigma_A^2 + w^2 \sigma_B^2 \right]$$
$$= -2(1 - w) \sigma_A^2 + 2w \sigma_B^2$$
$$= 0$$

En conclusion, si on résout l'équation précédente par rapport à w, on trouve que le poids optimal qui permet de minimiser la variance de z est:

$$w = \frac{\sigma_A^2}{\sigma_A^2 + \sigma_B^2}$$



Dans le cas plus général de n mesures z_1,\ldots,z_n , soit:

$$z = \sum_{i=1}^{n} w_i z_i$$

où les poids w_i satisfont les conditions suivantes (combinaison convexe):

$$w_1, w_2, \dots, w_n \ge 0, \sum_{i=1}^n w_i = 1$$

Si les mesures z_i sont *non corrélées* avec variance σ_i^2 , nous avons:

$$\operatorname{Var}[z] = \sum_{i=1}^{n} w_i^2 \sigma_i^2$$

Pour déterminer les poids optimaux, il faut minimiser $\mathrm{Var}[z]$

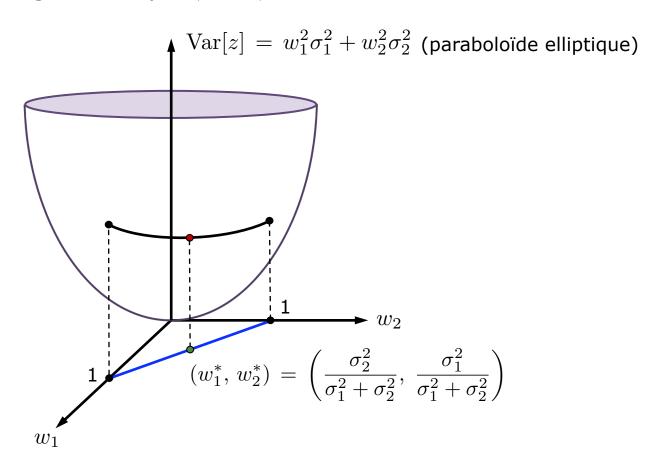
Ça revient à resoudre le *problème d'optimisation quadratique* suivant:

$$\left\{\begin{array}{ll} \min\limits_{w_1,\,w_2,\,\ldots,\,w_n} & \sum\limits_{i=1}^n \,w_i^2\sigma_i^2\\ w_1,\,w_2,\,\ldots,\,w_n\geq 0\\ \sum\limits_{i=1}^n \,w_i=1 \end{array}\right\} \stackrel{(n-1)\text{-simplexe}}{\text{standard }\Delta^{n-1}}$$

En utilisant la méthode des multiplicateurs de Lagrange pour résoudre ce problème d'optimisation sous contraintes, on obtient enfin les poids optimaux:

$$w_k = \frac{1}{\sigma_k^2} \left(\sum_{i=1}^n \frac{1}{\sigma_i^2} \right)^{-1}, \ k \in \{1, 2, \dots, n\}$$

Interprétation géométrique (n = 2):



Exemple (3 mesures z_1, z_2, z_3 avec variances $\sigma_1^2, \sigma_2^2, \sigma_3^2$):

Combinaison des mesures:

$$z = w_1 z_1 + w_2 z_2 + w_3 z_3$$

avec

$$w_1, w_2, w_3 \ge 0, \quad w_1 + w_2 + w_3 = 1$$

Les trois poids optimaux sont:

$$w_{1} = \frac{1}{\sigma_{1}^{2}} \left(\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}} + \frac{1}{\sigma_{3}^{2}} \right)^{-1} = \frac{\sigma_{2}^{2} \sigma_{3}^{2}}{\sigma_{2}^{2} \sigma_{3}^{2} + \sigma_{1}^{2} \sigma_{3}^{2} + \sigma_{1}^{2} \sigma_{2}^{2}}$$

$$w_{2} = \frac{1}{\sigma_{2}^{2}} \left(\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}} + \frac{1}{\sigma_{3}^{2}} \right)^{-1} = \frac{\sigma_{1}^{2} \sigma_{3}^{2}}{\sigma_{2}^{2} \sigma_{3}^{2} + \sigma_{1}^{2} \sigma_{3}^{2} + \sigma_{1}^{2} \sigma_{2}^{2}}$$

$$w_{3} = \frac{1}{\sigma_{3}^{2}} \left(\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}} + \frac{1}{\sigma_{3}^{2}} \right)^{-1} = \frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{2}^{2} \sigma_{3}^{2} + \sigma_{1}^{2} \sigma_{3}^{2} + \sigma_{1}^{2} \sigma_{2}^{2}}$$