Surveillance Distribuée de Systèmes Multi-agents

UPJV, Département EEA

Master 2 3EA, EC53

UE alternants

Fabio MORBIDI

Laboratoire MIS Équipe Perception Robotique fabio.morbidi@u-picardie.fr

Mardi, Mercredi et Jeudi 13h30-16h00 (CM et TD salle CURI 305) 13h30-17h30 (TP salle CURI 305)

AU 2022-2023

Ch. 3: Estimation distribuée

Méthode des moindres carrés distribuée

Introduction

- La méthode des moindres carrés *linéaires* peut être reformulée de *façon distribuée*
- Les estimateurs basés sur la méthode des moindres carrés ne font aucune hypothèse sur les propriétés statistiques du bruit qui entache la variable sous-jacente θ (au début du Ch. 1, nous avons désigné ce vecteur de paramètres par le symbole β)
 - Pour cette raison, ils sont facilement applicables à un large éventail de problèmes d'estimation distribuée

Méthode des moindres carrés

• Le modèle d'observation consiste en une *fonction linéaire* de la variable $\theta \in \mathbb{R}^q$ qui est entachée par le bruit additif \mathbf{r} :

$$\mathbf{z} = \mathbf{H}\boldsymbol{\theta} + \mathbf{r}$$

avec $\mathbf{z}, \mathbf{r} \in \mathbb{R}^p$ et $\mathbf{H} \in \mathbb{R}^{p \times q}$ (p > q).

- Chaque composante z_i du vecteur **z** s'appelle canal de mesure
- H est la matrice d'observation. On fera l'hypothèse que H soit une matrice de rang ligne égal à q. Cette condition de rang garantit que les canaux de mesure ne sont pas entièrement redondants

Méthode des moindres carrés

 En l'absence d'informations sur les statistiques du bruit de mesure r, l'estimation par la méthode des moindres carrés procède à la minimisation de la fonction de coût suivante:

$$S(\boldsymbol{\theta}) = (\mathbf{z} - \mathbf{H}\boldsymbol{\theta})^T (\mathbf{z} - \mathbf{H}\boldsymbol{\theta})$$

• Comme S est une fonction de θ différentiable et convexe, on peut calculer la valeur minimale en égalant son gradient à zéro, à savoir:

$$\frac{\partial S(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbf{0}$$

• On trouve ainsi que:

Estimation par moindres carrées linéaires de θ

Pseudo-inverse (à gauche) de ${f H}$

Méthode des moindres carrés pondérés

• Si \mathbf{r} est un bruit blanc gaussien à moyenne zéro avec matrice de covariance définie positive Σ , à savoir $\mathbf{r} \sim \mathcal{N}(\mathbf{0}, \Sigma)$, la minimisation de la *fonction de coût pondérée*:

$$S(\boldsymbol{\theta}) = (\mathbf{z} - \mathbf{H}\boldsymbol{\theta})^T \boldsymbol{\Sigma}^{-1} (\mathbf{z} - \mathbf{H}\boldsymbol{\theta})$$

produit l'estimé optimal de θ :

$$\widehat{\boldsymbol{\theta}} = \underbrace{(\mathbf{H}^T \, \boldsymbol{\Sigma}^{-1} \mathbf{H})^{-1} \, \mathbf{H}^T \, \boldsymbol{\Sigma}^{-1} \mathbf{z}}_{\mathbf{H}^{\dagger}} \mathbf{z}_{\mathbf{H}^{\dagger}}$$

Estimation par moindres carrés pondérés de θ

Pseudo-inverse pondérée (à gauche) de ${f H}$

• L'introduction de la matrice Σ^{-1} dans la fonction de coût $S(\theta)$ est motivée par le désir de *biaiser* l'estimé optimal vers ces mesures qui sont les moins incertaines

 Supposons maintenant d'avoir n capteurs en réseau qui réalisent des mesures de θ. Le vecteur d'observation du capteur i est:

$$\mathbf{z}_i = \mathbf{H}_i \boldsymbol{\theta} + \mathbf{r}_i, \ i \in \{1, \dots, n\}$$

avec $\mathbf{z}_i \in \mathbb{R}^{p_i}$ et $\mathbf{H}_i \in \mathbb{R}^{p_i \times q}$.

• Par souci de simplicité, on fera l'hypothèse que les matrices de covariance des bruits de mesure \mathbf{r}_i sont l'identité: $\mathbf{\Sigma}_i = \mathbf{I}_{p_i}, i \in \{1, \dots, n\}$

• Considérons maintenant la matrice d'observation centralisée:

$$\mathbf{H} = [\mathbf{H}_1^T \ \mathbf{H}_2^T \ \cdots \ \mathbf{H}_n^T]^T \in \mathbb{R}^{p \times q},$$

avec $p = p_1 + p_2 + \ldots + p_n$

 En utilisant la matrice H, nous pouvons écrire l'estimateur des moindres carrés centralisé comme suit:

$$\widehat{\boldsymbol{\theta}} = \left(\sum_{i=1}^{n} \mathbf{H}_{i}^{T} \mathbf{H}_{i}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{H}_{i}^{T} \mathbf{z}_{i}\right),$$

pourvu que les bruits additifs \mathbf{r}_i soient *statistiquement indépendants*

• La nature additive de l'équation,

$$\widehat{\boldsymbol{\theta}} = \left(\sum_{i=1}^{n} \mathbf{H}_{i}^{T} \mathbf{H}_{i}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{H}_{i}^{T} \mathbf{z}_{i}\right),$$

suggère que si chaque capteur fournit la mesure brute \mathbf{z}_i à un **centre de fusion** qui a une connaissance préalable de chaque matrice d'observation \mathbf{H}_i , alors le centre de fusion peut calculer efficacement l'estimé aux moindres carrés $\hat{\boldsymbol{\theta}}$

$$\begin{array}{c} \mathbf{z}_1 & & \\ \vdots & \\ \mathbf{z}_n & & \\ \end{array} \begin{array}{c} \text{Centre de fusion} \\ \mathbf{H}_1, \dots, \mathbf{H}_n \end{array} \end{array} \xrightarrow{\widehat{\boldsymbol{\theta}}} \widehat{\boldsymbol{\theta}}$$

- Cependant, pour améliorer la scalabilité et la modularité, et pour avoir un estimateur moins vulnérable aux pannes, il est souhaitable de calculer θ̂ sans besoin d'un centre de fusion
- Le protocole de consensus vient au secours, car il nous permet de concevoir un algorithme distribué pour les moindres carrés, qui utilise le réseau de communication *G* des capteurs pour calculer *θ̂ sans besoin d'un centre de fusion*

- Considérons le scénario le plus simple possible:
 - Estimation d'une variable *scalaire* $\theta \in \mathbb{R}$.
 - Les "matrices" d'observation sont $H_i = 1, \forall i$.
- Sous ces hypothèses, nous avons que l'équation de mesure est:

$$z_i = \theta + r_i, \ i \in \{1, \dots, n\}$$

et

$$\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} z_i$$

 $n_{\rm c}$

Estimation par moindres carrés centralisée de θ

 Cette dernière expression (une moyenne arithmétique) nous permet d'utiliser le *protocole de consensus* (en temps discret) pour calculer la solution du problème des moindres carrés de *façon distribuée*

Soit

$$\mathbf{W} = \operatorname{diag}(w_1, \ldots, w_m),$$

une matrice diagonale de pondération où $w_j > 0$ est le poids de l'arête e_j du graphe \mathcal{G} (indexé de manière cohérente, selon l'ordre des colonnes de la matrice d'incidence $\mathbf{D}(\mathcal{G})$ correspondante)

- Considérons maintenant l'itération suivante réalisée par le capteur i :

$$\widehat{\theta}_i(k+1) = \widehat{\theta}_i(k) + \Delta \sum_{j \in \mathcal{N}(i)} w_{ij}(\widehat{\theta}_j(k) - \widehat{\theta}_i(k)), \, i \in \{1, \dots, n\},$$

avec

- $\widehat{\theta}_i(k)$: estimé local du capteur i de la variable θ à l'instant k
- $\Delta \in (0,\,1)$: incrément pour la mise à jour de l'estimé de θ
- w_{ij} : poids de l'arête reliant le sommet i au sommet j
- $\mathcal{N}(i)$: ensemble des sommets adjacents à i dans le graphe \mathcal{G}

• Soit

$$\mathbf{L}_w(\mathcal{G}) = \mathbf{D}(\mathcal{G}) \mathbf{W} \mathbf{D}^T(\mathcal{G}),$$

la matrice laplacienne pondérée de \mathcal{G} et définissons la matrice des "itérations" (ou de Perron) suivante:

$$\mathbf{M}_w(\mathcal{G}) = \mathbf{I}_n - \Delta \mathbf{L}_w(\mathcal{G}).$$

 Nous pouvons ainsi récrire de façon compacte les itérations vues dans la diapo précédente comme:

$$\widehat{\boldsymbol{\theta}}(k+1) \,=\, \mathbf{M}_w(\mathcal{G})\, \widehat{\boldsymbol{\theta}}(k),$$

avec $\widehat{\boldsymbol{\theta}} \,\triangleq\, [\widehat{\theta}_1, \dots, \widehat{\theta}_n]^T.$

• Donc

$$\widehat{\boldsymbol{\theta}}(k) = \mathbf{M}_w^k(\mathcal{G}) \,\widehat{\boldsymbol{\theta}}(0), \quad k \in \{1, 2, \ldots\},$$

où $\widehat{\boldsymbol{\theta}}(0)$ est l'estimé initial de $\boldsymbol{\theta}$.

- La convergence de cette séquence dépend du comportement des puissances de $\mathbf{M}_w(\mathcal{G})$, qui dépend à son tour du spectre de $\mathbf{M}_w(\mathcal{G})$

Proposition (*Résultat principal*) Soit la séquence,

$$\widehat{\boldsymbol{\theta}}(k) = \mathbf{M}_w^k(\mathcal{G}) \,\widehat{\boldsymbol{\theta}}(0), \quad k \in \{1, 2, \ldots\},$$

initialisée avec $\hat{\theta}(0) = [z_1, z_2, ..., z_n]^T$, où z_i est l'observation du capteur *i*. Alors,

$$\lim_{k \to \infty} \widehat{\boldsymbol{\theta}}(k) = \left(\frac{1}{n} \sum_{i=1}^{n} z_i\right) \mathbf{1},$$

si et seulement si le réseau \mathcal{G} est *connexe* et la valeur propre *la plus forte* de $\mathbf{L}_w(\mathcal{G})$ satisfait la condition:

$$\lambda_n(\mathbf{L}_w(\mathcal{G})) < \frac{2}{\Delta}$$

<u>Preuve</u> : Elle ressort de l'observation que le spectre de $\mathbf{M}_w(\mathcal{G})$ est simplement:

$$1 - \Delta \lambda_i(\mathbf{L}_w(\mathcal{G})), \ i \in \{1, \dots, n\}$$

Exercice:

• Soit le graphe chaîne pondéré suivant ($\mathcal{G} = P_3$):

• Vérifier que la matrice laplacienne pondérée de G et la matrice des itérations correspondante, pour $\Delta = 1$, sont:

$$\mathbf{L}_w(\mathcal{G}) = \begin{bmatrix} 0.5 & -0.5 & 0\\ -0.5 & 1.1 & -0.6\\ 0 & -0.6 & 0.6 \end{bmatrix}, \quad \mathbf{M}_w(\mathcal{G}) = \begin{bmatrix} 0.5 & 0.5 & 0\\ 0.5 & -0.1 & 0.6\\ 0 & 0.6 & 0.4 \end{bmatrix}.$$

• Vérifier que la valeur propre la plus forte de $\mathbf{L}_w(\mathcal{G})$ satisfait la condition:

$$\lambda_3(\mathbf{L}_w(\mathcal{G})) < \frac{2}{\Delta} = 2$$

et que chaque élément de la matrice $\mathbf{M}^k_w(\mathcal{G})$ converge vers 1/3 lorsque $k \to \infty$

Corollaire (*Choix de la matrice de pondération* W) Supposons que le j-ème élément diagonal de la matrice W, qui correspond au poids sur l'arête $e_j = uv$, soit défini comme suit:

$$[\mathbf{W}]_{jj} = \frac{1}{\max\{d(u), d(v)\}},$$

où d(u) dénote le degré du sommet u . Alors, pour tout $\Delta \in (0,\,1),$ l'itération,

$$\widehat{\theta}_i(k+1) = \widehat{\theta}_i(k) + \Delta \sum_{j \in \mathcal{N}(i)} w_{ij}(\widehat{\theta}_j(k) - \widehat{\theta}_i(k)),$$

converge vers la valeur calculée par l'estimateur des moindres carrés centralisé

Remarque:

Dans la littérature, la formule précédente est connue sous le nom de *règle de ponderation de Metropolis–Hastings* TD3, ex. IV.1 Fichier Matlab: MoinCar_Distr.m

Exemple (Règle de Metropolis-Hastings):

• Les poids sur les quatre arêtes e_1, e_2, e_3, e_4 sont:

$$[\mathbf{W}]_{11} = \frac{1}{\max\{1,3\}} = \frac{1}{3}$$
$$[\mathbf{W}]_{22} = \frac{1}{\max\{3,2\}} = \frac{1}{3}$$
$$[\mathbf{W}]_{33} = \frac{1}{\max\{3,2\}} = \frac{1}{3}$$
$$[\mathbf{W}]_{44} = \frac{1}{\max\{2,2\}} = \frac{1}{2}$$

La matrice de pondération cherchée est donc:

 $\mathbf{W} = \operatorname{diag}(1/3, 1/3, 1/3, 1/2)$

Moindres carrés dans un réseau de capteurs : cas vectoriel

- On peut généraliser le résultat précédent pour une variable vectorielle θ ∈ ℝ^q.
- On fera l'hypothèse que la matrice d'observation H_i ∈ ℝ^{p_i×q} du capteur i soit arbitraire, pourvu que H = [H₁^T H₂^T ··· H_n^T]^T soit de rang plein ligne
- Chaque capteur *i* stocke deux quantités, la matrice $\mathbf{P}_i \in \mathbb{R}^{q \times q}$ et le vecteur $\hat{\theta}_i \in \mathbb{R}^q$, et il effectue *localement* les itérations suivantes:

$$\begin{aligned} \mathbf{P}_{i}(k+1) &= \mathbf{P}_{i}(k) + \Delta \sum_{j \in \mathcal{N}(i)} w_{ij}(\mathbf{P}_{j}(k) - \mathbf{P}_{i}(k)), \\ \widehat{\boldsymbol{\theta}}_{i}(k+1) &= \widehat{\boldsymbol{\theta}}_{i}(k) + \Delta \sum_{j \in \mathcal{N}(i)} w_{ij}(\widehat{\boldsymbol{\theta}}_{j}(k) - \widehat{\boldsymbol{\theta}}_{i}(k)), \end{aligned} \qquad i \in \{1, \dots, n\}, \end{aligned}$$

avec l'initialisation,

$$\mathbf{P}_{i}(0) = \mathbf{H}_{i}^{T}\mathbf{H}_{i}, \quad \widehat{\boldsymbol{\theta}}_{i}(0) = \mathbf{H}_{i}^{T}\mathbf{z}_{i}, \quad i \in \{1, \dots, n\},$$

où $\mathbf{z}_i \in \mathbb{R}^{p_i}$ dénote le vecteur d'observation du capteur i

Moindres carrés dans un réseau de capteurs : cas vectoriel

Nous avons que (cf. la discussion dans le cas scalaire):

$$\lim_{k \to \infty} \mathbf{P}_i(k) = \frac{1}{n} \sum_{i=1}^n \mathbf{H}_i^T \mathbf{H}_i,$$
$$\lim_{k \to \infty} \widehat{\boldsymbol{\theta}}_i(k) = \frac{1}{n} \sum_{i=1}^n \widehat{\boldsymbol{\theta}}_i(0) = \frac{1}{n} \sum_{i=1}^n \mathbf{H}_i^T \mathbf{z}_i,$$

si l'incrément Δ et les poids w_{ij} respectent les conditions imposées par la Proposition vue dans le cas scalaire

 Chaque capteur peut ainsi calculer *localement* l'estimé fourni par la méthode des moindres carrés centralisée. En fait, nous avons que:

$$\widehat{\boldsymbol{\theta}} = \lim_{k \to \infty} \mathbf{P}_i^{-1}(k) \,\widehat{\boldsymbol{\theta}}_i(k).$$

Moindres carrés dans un réseau de capteurs : cas vectoriel

TD3, ex. IV.2

Remarque:

• Dans la limite précédente:

$$\widehat{\boldsymbol{\theta}} = \lim_{k \to \infty} \mathbf{P}_i^{-1}(k) \,\widehat{\boldsymbol{\theta}}_i(k), \ i \in \{1, \dots, n\}$$

la matrice $\mathbf{P}_i(k)$ n'est pas nécessairement inversible pour toute valeur de k .

• Par conséquent, le capteur *i* peut calculer son estimé local de θ seulement lorsque $\mathbf{P}_i(k)$ devient *non singulière*

Pour plus de détails, voir:

"*Distributed linear parameter estimation over wireless sensor networks*", A. Das, M. Mesbahi, IEEE Trans. Aerospace and Electronic Systems, vol. 45, n. 4, pp. 1293-1306, 2009