

Master 2 3EA - Parcours RoVA

Master 2 Info - Parcours SDD

Systèmes Robotiques Hétérogènes et Coopératifs

UPJV, Département EEA

Fabio MORBIDI

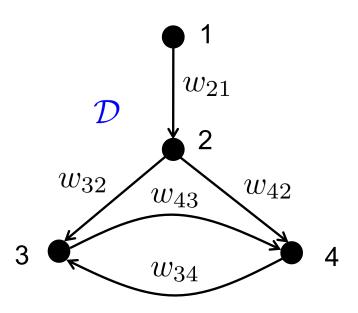
Laboratoire MIS Équipe Perception Robotique E-mail : fabio.morbidi@u-picardie.fr

CM, TD: Lundi et Mercredi 9h00-12h00, salle CURI 305

TP: Mercredi 13h30-16h30, salle CURI 305

• Considérons le graphe orienté pondéré \mathcal{D} dans la figure ci-dessous, qui correspond aux dynamiques du premier ordre $(w_{ij} > 0, \forall i \neq j)$:

$$\dot{x}_1(t) = 0,
\dot{x}_2(t) = w_{21}(x_1(t) - x_2(t)),
\dot{x}_3(t) = w_{32}(x_2(t) - x_3(t)) + w_{34}(x_4(t) - x_3(t)),
\dot{x}_4(t) = w_{42}(x_2(t) - x_4(t)) + w_{43}(x_3(t) - x_4(t)).$$



 Nous pouvons réécrire de façon compacte le système précédent comme suit:

$$\dot{\mathbf{x}}(t) = -\begin{bmatrix} 0 & 0 & 0 & 0 \\ -w_{21} & w_{21} & 0 & 0 \\ 0 & -w_{32} & w_{32} + w_{34} & -w_{34} \\ 0 & -w_{42} & -w_{43} & w_{42} + w_{43} \end{bmatrix} \mathbf{x}(t),$$

$$\mathbf{v}_{32}$$

$$\mathbf{v}_{32}$$

$$\mathbf{v}_{33}$$

$$\mathbf{v}_{32}$$

$$\mathbf{v}_{33}$$

$$\mathbf{v}_{34}$$

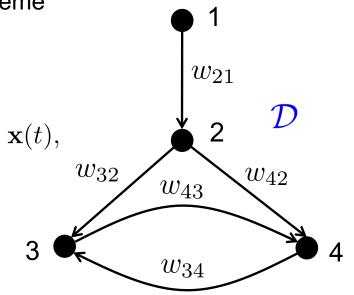
$$\mathbf{v}_{32}$$

$$\mathbf{v}_{33}$$

$$\mathbf{v}_{34}$$

$$\mathbf{v}_{35}$$

$$\mathbf{v}_{35}$$



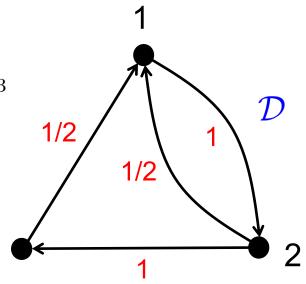
 Si on utilise la définition de matrice laplacienne pour des graphes orientés pondérés (avec degré entrant), on peut réécrire les dynamiques du réseau de la façon suivante:

$$\dot{\mathbf{x}}(t) = -\mathbf{L}(\mathcal{D})\,\mathbf{x}(t),$$

où ${\mathcal D}$ réprésente la connexion orientée entre les sommets

Un autre exemple:

- Trois robots coordonnent leurs vitesses s₁, s₂, s₃ selon la chaîne de commande montrée dans la figure
- On peut exprimer les dynamiques du système résultant comme suit:



$$\dot{s}_1(t) = \frac{1}{2}((s_3(t) - s_1(t)) + (s_2(t) - s_1(t))),$$

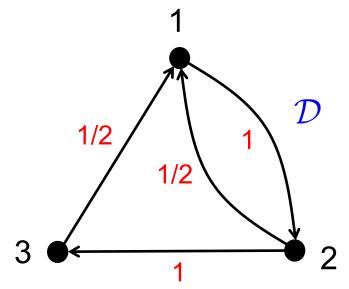
$$\dot{s}_2(t) = s_1(t) - s_2(t),$$

$$\dot{s}_3(t) = s_2(t) - s_3(t).$$

 Nous pouvons réécrire l'équation précédente de façon compacte comme:

$$\dot{\mathbf{s}}(t) = \begin{bmatrix} -1 & 1/2 & 1/2 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \mathbf{s}(t),$$

où
$$\mathbf{s}(t) = [s_1(t), s_2(t), s_3(t)]^T$$
.



 La matrice dans le système ci-dessus correspond à moins la matrice laplacienne (avec degré entrant) du réseau, ainsi:

$$\dot{\mathbf{s}}(t) = -\mathbf{L}(\mathcal{D})\,\mathbf{s}(t),$$

où ${\mathcal D}$ est le graph orienté pondéré qui décrit la chaîne de commande

- Y a-t-il des conditions *nécessaires* et *suffisantes* sur le graphe orienté \mathcal{D} qui garantissent la convergence du système $\dot{\mathbf{x}}(t) = -\mathbf{L}(\mathcal{D}) \mathbf{x}(t)$ vers l'ensemble de consensus \mathcal{A} ?
- Comme pour les graphes non orientés, le rang de la matrice laplacienne et sa relation avec la structure du graphe, joue un rôle important

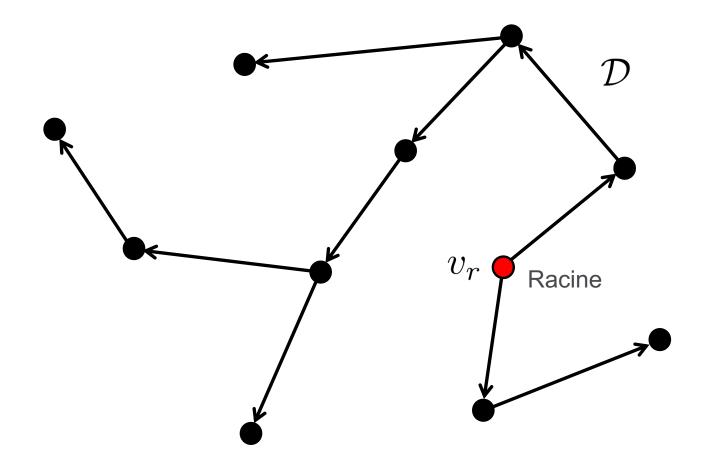
La notion suivante correspond à celle d'arbre couvrant vue pour un graphe non orienté:

Définition (Arbre orienté enraciné ou graphe enraciné à ramification sortante)

Un graphe orienté \mathcal{D} est un *arbre orienté enraciné*, si:

- a) Il ne contient pas de cycles (circuits) orientés
- b) Il existe une sommet v_r (racine) qui a la proprieté suivante: pour tous les autres sommets $v \in \mathcal{D}$, il existe un chemin orienté de v_r à v

Exemple d'arbre orienté enraciné



Proposition

Un graphe orienté \mathcal{D} avec n sommets contient un arbre orienté enraciné comme sous-graphe si et seulement si:

$$rank(\mathbf{L}(\mathcal{D})) = n - 1$$

Rappel:

Le vecteur $\mathbf{u} \in \mathbb{R}^n$ est un *vecteur propre à gauche* associé à la valeur propre λ de la matrice $\mathbf{M} \in \mathbb{R}^{n \times n}$ si:

$$\mathbf{M}^T \mathbf{u} = \lambda \mathbf{u}$$

Exemple:

$$\mathbf{M} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 4 & -1 \\ 0 & 0 & 3 \end{bmatrix}$$

Valeurs propres de ${f M}$: $\{1, 3, 4\}$

Vecteurs propres
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} \sqrt{3}/3 \\ \sqrt{3}/3 \\ \sqrt{3}/3 \end{bmatrix}$, $\begin{bmatrix} 0.5547 \\ 0.8321 \\ 0 \end{bmatrix}$ à droite de \mathbf{M}

Vecteurs propres à gauche de ${f M}$

ecteurs propres (normalisés)
$$\begin{bmatrix} 0.8018 \\ -0.5345 \\ -0.2673 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ \sqrt{2}/2 \\ -\sqrt{2}/2 \end{bmatrix}$$

Théorème (Consensus pour graphes orientés)

Pour un graphe orienté \mathcal{D} contenant un *arbre orienté enraciné*, la trajectoire d'état générée par $\dot{\mathbf{x}}(t) = -\mathbf{L}(\mathcal{D}) \mathbf{x}(t)$, avec condition initiale \mathbf{x}_0 , satisfait:

$$\lim_{t \to \infty} \mathbf{x}(t) = (\mathbf{p}_1 \mathbf{q}_1^T) \mathbf{x}_0,$$

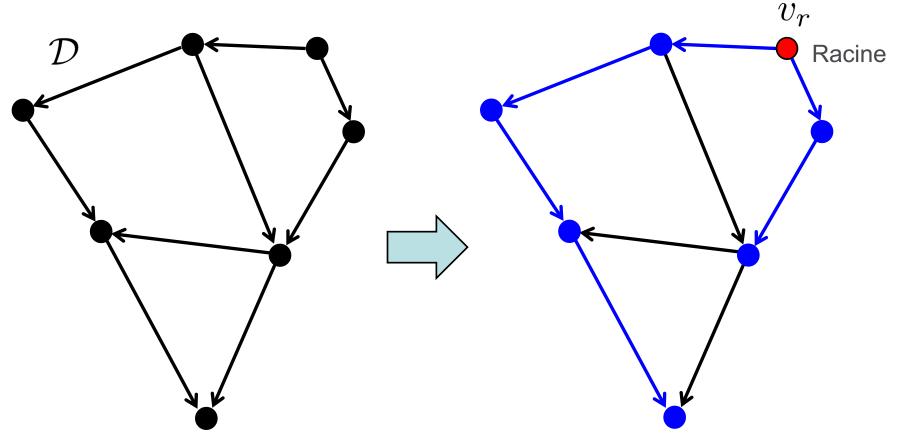
où \mathbf{p}_1 et \mathbf{q}_1 sont respectivement, les *vecteurs propres à droit* et à *gauche* associés à la valeur propre zéro de $\mathbf{L}(\mathcal{D})$, normalisés tels que $\mathbf{p}_1^T\mathbf{q}_1=1$.

Par conséquent, nous avons que

$$\mathbf{x}(t) \longrightarrow \mathcal{A}$$

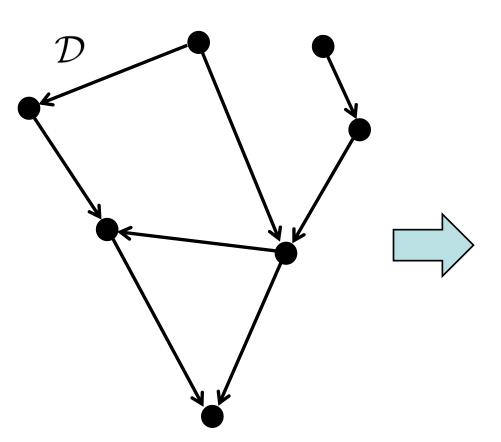
pour toute condition initiale \mathbf{x}_0 si et seulement si \mathcal{D} contient un *arbre orienté* enraciné

Exemple:



 \mathcal{D} contient un arbre orienté enraciné (bleu). Il n'est pas unique

Exemple:



 \mathcal{D} ne contient pas un arbre orienté enraciné

Pas de consensus!

Consensus avec digraphes: remarque

Proposition (Constante de mouvement)

Soit \mathbf{q}_1 le *vecteur propre à gauche* associé à la valeur propre zéro de la matrice laplacienne (avec degré entrant) d'un digraphe \mathcal{D} .

Alors la quantité suivante:

$$\frac{1}{n}\mathbf{q}_1^T\mathbf{x}(t)$$

reste inchangée par rapport à la dynamique de consensus,

$$\dot{\mathbf{x}}(t) = -\mathbf{L}(\mathcal{D})\,\mathbf{x}(t).$$

Remarque:

Le théorème précedent nous donne une condition *nécessaire* et *suffisante* pour que le système $\dot{\mathbf{x}}(t) = -\mathbf{L}(\mathcal{D})\,\mathbf{x}(t)$, parvient au consensus pour toute condition initiale \mathbf{x}_0 : le digraphe \mathcal{D} doit contenir un *arbre orienté enraciné*

Question:

Sous quelles conditions, on parvient au consensus en moyenne, c'est-à-dire:

$$\lim_{t \to \infty} \mathbf{x}(t) = \frac{1}{n} \mathbf{1} \mathbf{1}^T \mathbf{x}_0$$

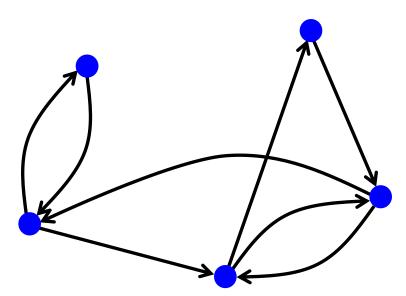
comme pour les graphes non orientés ?

Il faut que ${\mathcal D}$ présente un certain ${\it degr\'e}$ ${\it de sym\'e}{\it trie}$ par rapport aux arcs orientés

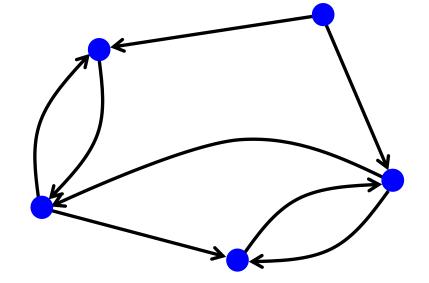
Définition (*Digraphe balancé*)

On dit que un digraphe \mathcal{D} est **balancé** si, pour chaque sommet, le *degré entrant* et le *degré sortant* sont identiques

Exemple (digraphes non pondérés):

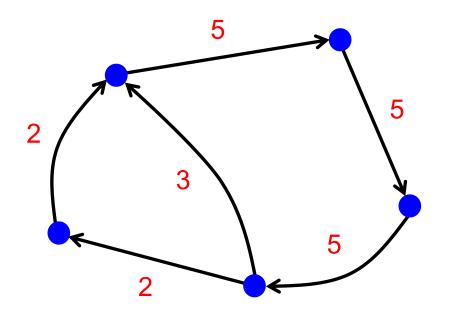


Digraphe balancé
degré entrant = degré sortant



Digraphe non balancé degré entrant ≠ degré sortant

Exemple (digraphes pondérés):



1 2 1/2

Digraphe balancé
degré entrant = degré sortant

Digraphe non balancé
degré entrant ≠ degré sortant

Si le digraphe est **balancé**, en plus de $\mathbf{L}(\mathcal{D})$ $\mathbf{1}=\mathbf{0}$ nous avons aussi la propriété que la somme des éléments sur chaque colonne de $\mathbf{L}(\mathcal{D})$ est zéro,

$$\mathbf{1}^T \mathbf{L}(\mathcal{D}) = \mathbf{0}^T$$
 $\mathbf{q}_1 = \mathbf{1}$

à savoir

$$\mathbf{q}_1 \,=\, \mathbf{1}$$

Donc, si le digraphe contient un arbre orienté enraciné et il est balancé, le protocole de consensus converge vers une valeur commune qui est la moyenne des états initiaux, c'est-à-dire le consensus en moyenne, car:

$$\lim_{t \to \infty} \mathbf{x}(t) = \frac{1}{n} \mathbf{1} \mathbf{1}^T \mathbf{x}_0.$$

Théorème

Le protocole $\dot{\mathbf{x}}(t) = -\mathbf{L}(\mathcal{D})\,\mathbf{x}(t)$, parvient au *consensus en moyenne* pour toute condition initiale \mathbf{x}_0 si et seulement si le digraphe \mathcal{D} est **faiblement connexe** et **balancé**

Exemples:

