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Signaux sur graphes : généralités ot .

Aujourd’hui, de plus en plus de données
structurées sur forme de graphe :

®  Réseaux sociaux
= Réseaux de régulation (génique)
®  Réseaux cérébraux fonctionnels
=  Graphes des citations
® Réseaux €lectriques
® Réseaux de capteurs
® Réseaux de chaleur et d’égouts
" Réseaux routiers
¢ ¢ ® ®
¢ ¢ ¢ ®
® ® ® ® ® ® ® ® ®
Domaine d’un signal Domaine d’un signal
discret 1D (segment) discret 2D (grille réguliere) Domaine irrégulier (graphe)

Fabio Morbidi 3
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Signaux sur graphes : définition ot .

Définition :
Etant donné un graphe non orienté G — (V, E), un signal sur graphe est une
fonction f(x) a valeurs réelles définie sur les sommets du graphe G, c’est-a-dire :

flx): V— R
On écrira f = [f(1), f(2),..., f(n)]*, pour indiquer le vecteur qui contient
les n valeurs prises par le signal f(z) sur les sommets du graphe
Exemple 1: f11) =
EORENE)
R
ran) L7

° °
® . o®
Fabio Morbidi 4
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Signaux sur graphes : exemples ot .
Exemple 2 :
Signal

f(2) =sin(27i/n), 1 € {1,2,...,n}

sur un graphe aléatoire 2D avec n = 100 sommets

e @
®
@ @ ®
*o o @ ®
) @
T oe,e E ¥
o0 . o Q b
. 7 -
., ° f
o 0
% (2 @ ) e
-0.2
o ® @
s e o -0.4
@ N
® -0.6
@ ® ®
' @ ® : -0.8

g ° ® B

° b Y ® o -1

L/ o

oo Fabio Morbidi 5
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Signaux sur graphes : exemples ot .

Exemple 3 :

Réseau routier de I'état du Minnesota (2600 sommets et 3300 arétes)
https://networkrepository.com/road-minnesota.php

Les barres bleues et noires représentent
la valeur absolue des composantes
positives et négatives du signal f,
respectivement

Réseau routier Signal sur le réseau

«  “Vertex-frequency analysis on graphs”, D.l. Shuman, B. Ricaud, P. Vandergheynst,
Appl. Comput. Harmon. Anal., vol. 40, n. 2, pp. 260-291, 2016

Fabio Morbidi 6
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Exemple 4 (Pixels d’'une image) :

000 0 0 00 66 0 00 0000

. 6 0666066600404 04L + Graphegrille pourreprésenter une image

Sl LIt el « chaque sommet du graphe correspond & un pixel
00— 80000 de I'image. Le signal associé a chagque sommet est
000000000000000 I'intensité du pixel correspondant (niveau de gris: [0, 255])
000888 -« Dans un graphe qui est indépendant du signal, tous
5000000666600 les poids sur les arétes ont la méme valeur (la valeur 1)
------- 00 e e e 0
o—O0—0O0—0O——0—0—0—0C -: _ ? : : : 0 " 3 q 7. ‘ 9 5 é a / 8
o0 OO0 00V O-O0OOCO0O-O0O 09 fi,uafa)o r q / oz 5 0 @‘ (D 4 4
OO O 00000 e 0 e 0 0@ ’ - ’;‘e’ 0 6 7 o I 6 3 é 3 7 o
OO0 00 0 0 0 O O Ylaidor  Allendoun 3779746 b | ‘Za
; , (8 (h) [0 2 3 g,
Graphe grille pour représenter hrte e 2 ed  ERD / gq ;‘3 2 G ; D\‘g
I'image d’un numéro (le « 3 ») o ® 0 9219/5808Y
écrit & la main (dataset USPS - §s202 Fooeq - 3& SE6LEBS 8899
U.S. Postal Service) - i, 2y 704 ¢3543
196170 62 23

* "A database for handwritten text recognition research", J.J. Hull, IEEE Trans. Pattern
Anal. Mach. Intell., vol. 16, n. 5, pp. 550-554, 1994

Fabio Morbidi 7
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Définition :
Le traitement du signal sur graphes (« graph signal processing ») est I'étude des
outils de calcul pour traiter et analyser les données définies sur des domaines

ou des structures de corrélation non réguliéres (graphes)

= Dans ce qui suit, nous verrons quelgue notion de base :
1. Transformée de Fourier d’'un signal sur graphe
2. Produit de convolution de deux signaux sur graphe
3. Filtrage de signaux sur graphe
4. Echantillonnage de signaux sur graphe

5. Réseaux de neurones sur graphes (GNN)

“Graph Signal Processing: Overview, Challenges, and Applications®, A. Ortega, P. Frossard,
J. Kovacevic¢, J.M.F. Moura, P. Vandergheynst, Proc. IEEE, vol. 106, n. 5, pp. 808-828, 2018

Fabio Morbidi 8
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Traitement du signal sur graphes ]W ,

= Domaine de recherche trés récent (2010 — aujourd’hui)

4 Premier livre publié en 2022 :

“Introduction to Graph Signal Processing*
A. Ortega, Cambridge University Press, 2022

www.graph-signal-processing-book.org

Etat de I'art récent :

* “Discrete signal processing on graphs®,
A. Sandryhaila, J.M.F. Moura, IEEE Trans.
Signal Process., vol. 61, n. 7, pp. 1644-1656, 2013

" Introduction to\}p

“The emerging field of signal processing on graphs:

Extending high-dimensional data analysis to networks
a Graph Slgnal and other irreqular domains®, D. |. Shuman, S.K. Narang,
W P. Frossard, A. Ortega, P. Vandergheynst, IEEE Signal
v Process"‘g Process. Mag., vol. 30, n. 3, pp. 83-98, 2013
Antonio Ortega * “Cooperative and Graph Signal Processing: Principles

and Applications*, P.M. Djuric, C. Richard (éditeurs),
Academic Press, 2018

Fabio Morbidi 9
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Traitement du signal sur graphes ]W ,

= Domaine de recherche trés récent (2010 — aujourd’hui)

7§

v c, =
.;

\\I

'

IMAGE X

Compression, Coding and Protection of Images and Videos

Graph Spectral
Image Processing

Coordinated by
Gene Cheung and Enrico Magli

S WILEY

’ A
“ ‘ .‘—-5
R A .5

4 Pour le traitement d’'images :

“Graph Spectral Image Processing*
G. Cheung, E. Magli (éditeurs), ISTE Wiley,
Novembre 2021

www.iste.co.uk/book.php?id=1790

Etat de I'art récent :

» “Graph Spectral Image Processing®, G. Cheung,
E. Magli, Y. Tanaka, M.K. Ng, Proc. IEEE, vol. 106,
n. 5, pp. 907-930, 2018

Fabio Morbidi 10
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Transformée de Fourier sur graphe ot .

Nous avons vu que la matrice laplacienne L d’un graphe non orienté est
une matrice symeétrique. Elle admet donc la factorisation spectrale suivante :

L = UAU?

avec

A = diag(A1, A2, ..., A\n) : matrice diagonale n. X n avec les valeurs propres de L
en ordre croissant sur la diagonale principale

U = [u; uy - - u,]: matrice orthogonale n x n dont les colonnes sont les vecteurs
propres normalisés de L

Définition (GFT)
La transformée de Fourier sur graphe (GFT) 35[ : ] du signal f(z) est définie comme suit :

AN

Ff)=f=U'f

La GFT ]? d’un signal f défini sur les sommets d’'un graphe G est donc I'expansion de f
selon les vecteurs propres de L

°
® . o®
. °
o0 Fabio Morbidi 11
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Transformée de Fourier sur graphe ot .

Définition (/IGFT)
De la méme facgon, la transformée de Fourier inverse sur graphe (IGFT)
du signal f s’écrit, en matriciel :

F7Ufl2Uf

Remarques :

= La GFT projette le signal sur graphe d’entrée sur I'espace engendré par les colonnes
orthogonales de U (appelée aussi base de Fourier). Les éléments du signal f
transformé, sont les coordonnées du signal sur graphe dans un nouvel espace,
de maniére a ce que le signal d’entrée puisse étre représenté comme :

F=>Y fiu
1=1

ce que est exactement I'IGFT

= || est facile a vérifier que la GFT (comme la transformée de Fourier classique)
satisfait I'égalité de Parseval, c’est-a-dire :

nE IFI1P = IIFI°
Fabio Morbidi 12
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Remarques (suite /)

Comme la transformée de Fourier classique, la GFT permet de représenter
un signal dans deux domaines différents : le domaine des sommets et le domaine
spectral du graphe (ou domaine de Fourier sur graphe)

On peut interpréter les valeurs propres de L. comme des fréquences : une valeur
propre élevée entraine une plus grande variabilité du vecteur propre
correspondant

Il est a noter que la définition de GFT et d'IGFT dépend du choix des vecteurs
propres de L, qui n’est pas nécessairement unique

En alternative, une GFT peut étre définie en utilisant la matrice d’adjacence
du graphe A et cette définition est aussi utilisable avec les graphes orientés*.
D’ailleurs, on peut interpréter A et L (et leurs formes symétriques normalisées,
AT — AT1V/2A ATV2 et IYM = A~1/21, A~1/2 | respectivement) comme une
classe générale de opérateurs de decalage des graphes (GSO: « graph shift
operators »)

* “Discrete signal processing on graphs®, A. Sandryhaila, J.M.F. Moura, IEEE Trans.
Signal Process., vol. 61, n. 7, pp. 1644-1656, 2013

Fabio Morbidi
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Transformée de Fourier sur graphe ot .

Remarques (suite I/)

= Sur la base de l'interprétation des valeurs propres de L. comme des fréquences,
on peut introduire la définition suivante :

Définition (Signal sur graphe a bande limitée)

Un signal sur graphe avec une bande limitée w, est un signal qui a zéro coefficients
de la GFT au dessus de sa bande passante w, a savoir son support spectral est
restreint a 'ensemble des fréquences |0, w|

FOu) 4

_ | |
0 w > Ai(L)

« L'espace de tous les signaux a bande limitée w sur un graphe G s’appelle
espace de Paley-Wiener, noté PW,,(G) C R".

°
® . o®
. °
o0 Fabio Morbidi 14
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Exemple 1 :
e 'y
b »
& [
*e » » .
o .
‘... .. | .!' & a
. o
a o % o a
g o
s [ ]
.‘ h L o9
.
“ :) "
® Y25\

Signal défini sur un graphe

aléatoire 2D avec 100 sommets:

f(i) =sin(27wi/n), i € {1,2,...,n}

(‘. X
GFT de f

35
3
425

{15

1 0.5

-05

-15

—_ () |

W

|‘l“i | J”uhlﬂu,.“l cill s l

o 1 2 3 4 5 & 7
Ai(L)

Signal f dans le
domaine spectral
du graphe
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Transformée de Fourier sur graphe ot .

Exemple 2 (Signal lisse sur graphe) :

= Pour mesurer la régularité d’un signal f sur un graphe G, on peut utiliser
la forme quadratique laplacienne (cf. le potentiel laplacien) définie par :

QL) = 206(F) = FTLF = 5 3 ay(F) ~ £(7)?

i,J=1

n

ou a;; estI'élément (¢, j) de la matrice d’adjacence A du graphe G
= Clairement, Q(L) = 0 si f est un signal constant sur le graphe G

= De maniére plus générale, on peut remarquer que plus la valeur de Q(L) est faible,
plus les valeurs des signaux sur les sommets voisins sont similaires (c’est-a-dire,

plus la variation de f par rapport a G est faible)

» “Learning Graphs from Data: A signal representation perspective®, X. Dong, D. Thanou,

.EE.;. M. Rabbat, P. Frossard, IEEE Signal Processing Magazine, vol. 36, n. 3, pp. 44-63, 2019

Fabio Morbidi 16
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Transformée de Fourier sur graphe ot .

Exemple 2 (Signal lisse sur graphe) :

(@) Un signal lisse sur graphe . 3
avec Q(L) =1

(b) Les coefficients de sa GFT
dans le domaine spectral du
graphe. Le signal a une
représentation lisse sur le
graphe, car ses valeurs varient
lentement sur les arétes du
graphe. Le signal consiste
principalement de composantes
a basse fréquence dans le
domaine spectral du graphe

b
o
D

N

Magnitude of GFT Coefficient
- 4]

o
(]

o
4

oo o * o ?
2 3 4 5 6 7 8 9
Eigenvalue Index (Low-to-High Frequency)

(b)

-t

(c) Un signal moins lisse sur
graphe avec Q(L) =5

(d) Les coefficients de sa GFT
dans le domaine spectral
du graphe. Un choix différent
du graphe produit une
représentation différente
du méme signal

Magnitude of GFT Coefficient
o

05 I
0e @ L L & 9
1 2 3 4 5 6 7 8 9
Eigenvalue Index (Low-to-High Frequency)

(d)

Fabio Morbidi 17
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Rappel :
Le produit de convolution de deux signaux f et g, est un autre signal noté f * g, défini par :

Fra)® 2 [ frgt-ryar f

* Méme si on utilise le symbole , il ne représente pas nécessairement un temps g \

« Achaque instant de temps ¢, la formule de convolution nous donne l'aire sous
le signal f(7) pondérée par le signal g(—7) décalé d’'une quantité t. Comme ¢
varie, le signal de pondération g(t — 7) « met en évidence » différentes parties f=*g

du signal d’entrée f(7)
La transformée de Fourier d'un produit de convolution s'obtient par Jan Dl
multiplication des transformées de Fourier des signaux : 4
= Sif et g sontintégrables alors :

Ff gl = Ff] F1d]

= Sif et g sontde carré intégrable alors :

frg=T Zf]1 7]

ou .% désigne la transformée de Fourier et Z 1 |a transformée de Fourier inverse

Fabio Morbidi 18
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Produit de convolution sur graphe ]W .

Probléme :
= La définition de convolution entre deux signaux ne peut pas étre appliquée directement
aux signaux sur graphes, car 'opération de translation n’est pas définie pour ces signaux

= Cependant, on peut remplacer la translation par exponentiel complexe de la transformée
de Fourier classique (Vto si h(t) = f(t — to) alors .Z[h] = e~ 2™t0¢ Z[f]), avec les
vecteurs propres de la matrice laplacienne et introduire un operateur de convolution
généralise

Définition (Produit de Hadamard)

Le produit de Hadamard (ou « produit élément par élément ») A o B de deux matrices
A, B ¢ R™*" est une matrice m x n avec éléments donnés par :

[A o BJ;; = [A]i;[B]y;

1 3 -5 4 -2 1
A = , B=
[O 2 7] [1 —1 6]
4 —6 =5
A oB =
0 —2 42

Exemple :

P [ )
.m*. Commande Matlab : A. *B
. [ )
Fabio Morbidi 19
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Produit de convolution sur graphe

Définition (Convolution de deux signaux sur graphes)

Soient f(x) et g(x) deux signaux définis sur le méme graphe G, et f et g les vecteurs
contenant les valeurs prises par les deux signaux sur les sommets de G .

On définit alors la convolution sur graphe “*g” de f(zx) et g(x) de la fagon suivante :

fxgg= T [F[floFg]] = U(U'f o Uly)

Exemple : 5 4 2 -1 0 0 -1
-1 3 -1 0 -1
G L=|0 -1 3 -1 -1
o 0 -1 2 -1
-1 -1 -1 -1 4|
1 ® [0.4472  0.6533  0.5000 —0.2706 —0.2236 |
5 0.4472  0.2706  —0.5000 0.6533 —0.2236
. U = | 04472 —0.2706 —0.5000 —0.6533 —0.2236
f=1052141 =3 0.4472 —0.6533  0.5000  0.2706 —0.2236
g =[-1,0,5,6,1" 04472 0.0000  —0.5000 —0.0000  0.8944 |

f *g g = [5.1877, 5.6168, 1.5386, 1.9677, 10.2859]”

o °
°%e 0
® °
0% °
. [ )
Fabio Morbidi 20
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Définition (filtre sur graphe) :
Les filtres sur graphe (invariants par rapport aux sommets), sont des opérateurs linéaires
sur les signaux sur graphes H : R"” — R", de la forme :

m—1
H £ ) oL
avec P
m — 1 : ordre du filtre
c=lco, Ciy..., Cm_1]’ € R™ :vecteur des coefficients du filtre

Remarque :
On peut observer que les filtres sur graphes sont des polynémes de la matrice laplacienne L
de degré m — 1

Exemple (Filtre d’ordre 3) :
H = 2I,, + 3L — 4L* + 7L°

avec

T T
‘sé.;.. Cc — [607 C1, C2, 63] — [27 37 _47 7]
o .
. [ )
Fabio Morbidi 21
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= On peut réécrire le filtre sur graphe H de facon équivalente comme suit :
m—1
H = U(chA’“)UT
k=0

= Nous pouvons interpréter la matrice diagonale
m—1
H = Z Ck Ak
k=20
comme la réponse en fréquence de H . On peut réécrire cette matrice comme H= diag(c)
ou le vecteur ¢ € R"™ contient les 1 réponses en fréquence du filtre sur graphe
= Le filtrage d’'un signal f par le filtre H, s’écrit donc :
f" = UHU'f

»  “Optimal graph-filter design and applications to distributed linear network operators®, S. Segarra,
A.G. Marques, A. Ribeiro, IEEE Trans. Signal Process., vol. 65, n. 15, pp. 4117-4131, 2017

«  “Design of graph filters and filterbanks®, N. Tremblay, P. Gongalves, P. Borgnat. Ch. 11,
in Cooperative and Graph Signal Processing, pp. 299-324, Academic Press, 2018

Fabio Morbidi 22
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= Une théorie de I'échantillonnage sur graphe

est de grand intérét pour de nombreuses
applications pratiques

|

»
I’Exemple. «i 1 @.
Etant donné un graphe qui représente les connexions entre ; ”‘
des amis sur Facebook, on peut décider d’échantillonner - ‘T[\
une fraction des utilisateurs, trouver leurs hobbies et ensuite V1 @ »
essayer de reconstruire les hobbies de tous les utilisateurs « )

Définition (Sous-échantillonnage d’un signal sur graphe)

L'opération de sous-échantillonnage d’un signal sur graphe f est définie comme

la restriction du signal f sur un certain sous-ensemble des sommets S C V' de G,
appelé ensemble de sous-échantillonnage.

Le signal sous-échantillonné est noté f(S) : il est un vecteur de taille réduite m <n
ou n est le nombre de sommets de ¢

° °
® . o®
Fabio Morbidi

23



UNIVERSITE

de Picardie

Echantillonnage sur graphe ]W o

Probléme direct :

Déterminer les ensembles de sous-échantillonnage qui permettent de reconstruire
de facon unique un signal f avec une bande passante w. donnée (cf. théoréme
d’échantillonnage ou théoreme de Shannon en théorie du signal classique)

Probléme inverse :

Etant donné un signal f avec une bande passante w. A
determiner quel est /e plus petit sous-ensemble des 5 ab 9
sommets du graphe St tel que le signal est représenté

de fagon unique par f(S,pt) ( 7

B,y

V:{’Ul,vz,...,’vll} 1 5

« Théorie de I'échantillonnage pour signaux définis uniquement sur graphes non orienteés :

“Towards a sampling theorem for signals on arbitrary graphs®, A. Anis, A. Gadde, A. Ortega,
in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp. 3864-3868, 2014

« Théorie de I'échantillonnage pour signaux définis sur graphes non orientés et orientés :
“Discrete Signal Processing on Graphs: Sampling Theory”, S. Chen, R. Varma, A. Sandryhaila,
J. Kovacevié¢, IEEE Trans. Signal Processing, vol. 63, n. 24, pp. 6510-6523, 2015

Fabio Morbidi 24
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= Structure générale des réseaux de neurones sur graphes (GNN)

Skip !

- ——

u’ Sampling Conv/Recurrent f Pooling \:
. Operator Operator Operator
i r——————————— —,—, ¢ e————————— 7
Input Bl N i Output ~
Node Loss Function )
Embedding
GNN GNN . .
@ Layer — T — see |:> Edge . [:> .TralnlngSenlng ) Tafk
Embedding Supervised Node-level
* Semi-supervised * Edge-level
Graph * Unsupervised * Graph-level
— Embedding \ /

=  “Graph neural networks: A review of methods and applications®, J. Zhou, G. Cui, S. Hu,
Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Al Open, vol, 1, pp. 57-81, 2020

Fabio Morbidi 25
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= Vue d’ensemble des modules computationnels d’'un GNN

iy " Spectral ] _______
— | Convolutional | ' Basic |
| operator | e e
""""" ! Spatial | -- IL Attentional !
. Fo T \ l Framework !
Propagation [ - , Convergence bt 1
module ' Recurrent 0
I operator , | -
Smmmmmmmms | Gate
(T T T T T T T S SeTmmmmmss
! Skip !
1 connection |

—— = ——

- = = — -

—— o = —

Sampling
module

—— = = —

o o =

_________

Pooling
module

m o mm o o =

&P

—

g ng
H<Q
SR
o)
0

_________
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= Nous avons vu que la convolution sur graphe de deux signaux f(x) et g(x) s’écrit :

frgg = FF[floF[g]] = UU'f o Ulyg)

= Nous pouvons simplifier I'expression UTf, en utilisant une matrice diagonale W (« filtre »)
calculable par apprentissage. Nous avons donc la formule suivante des méthodes
spectrales, pour le calcul de la convolution :

fu*g g = UWU'g

Remarque :

Dans I'expression précédente, on
retrouve souvent aussi une fonction
non linéaire d’activation o ( - )

Linear Unit »)

Tanh

A

o(z) = tanh(z)

RelLU

appliquée aux valeurs du signal o(z) = max(0, z) ¥
sur graphe (par ex. une sigmoide
ou une fonction ReLU, « Rectified 1 Sigmoide Linéaire
o(x) = T o(r)==x
T
Fabio Morbidi 27
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= Plusieurs fagons de définir le filtre W :

« Spectral Network [Bruna et al., 2014] (W = diag(w) obtenu par apprentissage)

» ChebNet [Defferrard et al., 2016] (filtres polynomiaux de Chebyshev)

» CayleyNets [Levie et al., 2019] (filtres polynomiaux de Cayley)

 ARMA [Bianchi et al., 2022] (filtres rationnels ARMA, “AutoRegressive Moving Average®)
 GCN (Graph Convolutional Network) [Kipf & Welling, 2017]

 AGCN (Adaptive Graph Convolution Network) [Li et al., 2018]

* DGCN (Dual Graph Convolutional Network) [Zhuang & Ma, 2018]

»  GWNN (Graph Wavelet Neural Network) [Xu et al., 2019]

AGCN et DGCN essaient d’'améliorer les méthodes spectrales en « augmentant » la matrice
laplacienne, tandis que GWNN fournit une alternative a la transformée de Fourier

Articles survey sur les GNN :

= “Graph neural networks: A review of methods and applications®, J. Zhou, G. Cui, S. Hu, Z. Zhang,
C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Al Open, vol, 1, pp. 57-81, 2020

= “Graphs, Convolutions, and Neural Networks: From graph filters to graph neural networks*”
F. Gama, E. Isufi, G. Leus, A. Ribeiro, IEEE Signal Process. Mag., vol. 37, n. 6, pp. 128-138, 2020

= “Graph signal processing for machine learning: A review and new perspectives®, X. Dong, D. Thanou,
L. Toni, M. Bronstein, P. Frossard, IEEE Signal Process. Mag., vol. 37, n. 6, pp. 117-127, 2020

= “A Comprehensive Survey on Graph Neural Networks®, Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang,

S.Y. Philip, IEEE Trans. Neural Networks Learn. Syst., vol. 32, n. 1, pp. 4-24, 2021
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Autres axes de recherche et outils logiciels ] e ,

* Compression et reconstruction de signaux sur graphe

=  “Graph-Based Compression of Dynamic 3D Point Cloud Sequences®, D. Thanou, P.A. Chou,
P. Frossard, IEEE Trans. Image Processing, vol. 25, n. 4, pp. 1765-1778, 2016

= “Graph-signal Reconstruction and Blind Deconvolution for Structured Inputs®, D. Ramirez,
A.G. Marques, S. Segarra, Signal Processing, vol. 188, p. 108180, 2021

* Transformée en ondelettes sur graphe (“graph wavelet transform”)

=  “Wavelets on graphs via spectral graph theory®, D. K. Hammond, P. Vandergheynst, R. Gribonval,
Appl. Comput. Harmon. Anal., vol. 30, n. 2, pp. 129-150, 2011

= “Design of graph filters and filterbanks®, N. Tremblay, P. Gongalves, P. Borgnat. Ch. 11,
in Cooperative and Graph Signal Processing, pp. 299-324, Academic Press, 2018

* Logiciel pour le traitement du signal sur graphe (Matlab)

“GSPBOX: A toolbox for signal processing on graphs®, N. Perraudin, J. Paratte, D. Shuman,
L. Martin, V. Kalofolias, P. Vandergheynst, D.K. Hammond, arXiv e-print, aolt 2014,
https://epfl-lts2.github.io/gspbox-html

“GraSP: A Matlab Toolbox for Graph Signal Processing®, B. Girault, S.S. Narayanan, A. Ortega,
P. Gongalves, E. Fleury, in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing,
pp. 6574-6575, 2017, https://qgitlab.inria.fr/bgirault/grasp
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