
A New Stereo Fisheye Event Camera for Fast
Drone Detection and Tracking

Daniel Rodrigues Da Costa∗, Maxime Robic∗, Pascal Vasseur, Fabio Morbidi

Abstract— In this paper, we present a new compact vision
sensor consisting of two fisheye event cameras mounted back-
to-back, which offers a full 360-degree view of the surrounding
environment. We describe the optical design, projection model
and practical calibration using the incoming stream of events,
of the novel stereo camera, called SFERA. The potential of
SFERA for real-time target tracking is evaluated using a
Bayesian estimator adapted to the geometry of the sphere.
Real-world experiments with a prototype of SFERA, including
two synchronized Prophesee EVK4 cameras and a DJI Mavic
Air 2 quadrotor, show the effectiveness of the proposed system
for aerial surveillance.

I. INTRODUCTION

Event-based vision, also known as neuromorphic vision, is
a novel and increasingly popular paradigm in machine per-
ception [1]. Unlike traditional frame-based cameras, which
capture the absolute intensity perceived from a scene at a
constant rate, event cameras operate in an asynchronous fash-
ion, recording only discrete brightness changes at the time
they occur. Event cameras have low temporal latency, making
them insensitive to motion blur, they can work in low-light
conditions, and they do not suffer from saturation, thanks
to the high dynamic range. They generate sparse data in
dynamic environments and they are competitive in real-time
embedded applications, such as optical flow estimation [2],
visual odometry [3], [4], [5], and visual SLAM [6], [7].
Moreover, they are well suited for target tracking [8], [9],
especially of fast-moving objects [10], [11], since their
temporal resolution (in the order of microseconds) surpasses
that of conventional RGB cameras.

Yet, off-the-shelf event cameras suffer from a narrow
field of view (FoV), so either a fast target or the visual
features used for the navigation of an agile robot, might
unexpectedly exit from the tracking area. While an event
camera can be controlled to actively follow a specific target
(e.g. by visual servoing [12]), a better option is to enlarge its
FoV by using a rotating device [13], rigidly mount multiple
sensors on the same platform, or use a combination of
lenses and mirrors [14]. However, since the input data is
sparse and asynchronous, this new class of omnidirectional
sensors comes with a number of challenges pertaining to
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Fig. 1. Conceptual illustration of SFERA. The sensor is used here
for event-based omnidirectional detection and tracking of a flying object
(e.g. a drone).

the optical design, geometric modeling, calibration and real-
time data processing. To the best of our knowledge, no
omnidirectional event camera offering a full 360◦ (spherical)
FoV without rotating parts, has been proposed so far in
the literature.

Our objective, in this paper, is to capitalize on the benefits
of event-based mechanism and of a wide FoV. To this end,
we present the design, modeling and calibration of a new
omnidirectional event sensor, called SFERA (Stereo Fisheye
Event cameRA), which is composed of two synchronized
fisheye event cameras rigidly attached on the same support
and pointing in opposite directions1. SFERA has been de-
signed to be compact and to possess a dead zone of minimum
size on the spherical FoV (see Fig. 1). Omnidirectional vision
has been the subject of increasing attention in aerial robotics
over the past few years [15], [16], and our ultimate goal is
to equip multiple UAVs with our camera, for defense and
security applications.

Modeling and calibrating a multi-camera system (i.e. de-
termining the intrinsic parameters of each camera and the
rigid transformation between them) is usually a challeng-
ing and time-consuming process. In order to have a sin-
gle representation of input data, one may either choose
a central model, which considers a single and common
viewpoint for each camera [17], or a non-central model,
which assumes multiple viewpoints and involves more

1We use the term stereo, even though, unlike conventional stereo vision
systems, the two cameras of SFERA do not point in the same direction.
The more generic terms, dual or binocular, equally apply to our sensor.



complex (back-)projection functions [18]. In the case of
wide-angle cameras, e.g. cameras equipped with fisheye
lenses, these models should be modified to account for the
large FoV and optical distortions [19]. In this paper, we
adopt the classical unified central projection model [20], [21],
which has already been applied to dual-fisheye cameras (such
as the Ricoh Theta S) in [17]. In fact, the spherical geometry
is not only attractive to represent/visualize the events, but
also to efficiently process them.

Related work on event-camera calibration has mainly fo-
cused on the acquisition process. The idea is to reconstruct a
planar calibration pattern thanks to the camera’s motion [22],
[23], [24] or to an external source of light, e.g. blinking
screens or LEDs [25]. Traditional feature-based optimization
algorithms can then used to process the pseudo-images of
the calibration patterns. Recently, in [26], the authors have
proposed a motion-based auto-calibration algorithm, which
takes the lines present in the environment, as input. Finally,
in other works, a second sensor, e.g. a frame-based camera
in a stereo rig [27], [28] or a LiDAR [29], [30], has been
exploited: this greatly simplifies the pattern detection step
and the estimation of the extrinsic parameters. These cali-
bration methods are practical and guarantee low re-projection
errors, but they are almost exclusively meant for perspective
cameras and they are not applicable to dual sensors with a
small overlapping FoV. Inspired by [25], in this work, the
two fisheye event cameras of SFERA observe two blinking
patterns on two monitors and the events are aggregated to
generate pseudo-images, which are fed into conventional
calibration software for omnidirectional cameras.

A prototype of SFERA, including two synchronized
Prophesee EVK4 cameras, has been developed and validated.
In our real-world experiments, building upon earlier work on
panoramic vision [31], [32], [33], we successfully tested a
Bayesian state estimator (tracker) based on the von Mises-
Fisher (VMF) distribution, which fully benefits from our
representation of the events on the unit sphere. In summary,
the original contributions of this paper can be summarized
as follows:

• We introduce SFERA, the first event-based sensor with
a complete 360◦ FoV and no rotating parts,

• We describe the full pipeline, including the optical
design, geometric modeling, and calibration of SFERA,

• A prototype of SFERA has been developed and tested
via outdoor experiments, for fast drone detection and
tracking. To foster reproducible research, our open-
source C++ code is publicly available on GitHub2.

The remainder of this paper is organized as follows.
Sect. II deals with the optical design, image formation and
calibration of SFERA. Sect. III is devoted to the experimental
evaluation of our prototype of the stereo event camera.
Finally, in Sect. IV, the main contributions of the paper are
summarized and some possible avenues for future research
are outlined.

2https://github.com/maxrobic/SFERA
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Fig. 2. SFERA: optical design (top view). Two fisheye event cameras,
C1 and C2, are rigidly attached to the same support and point in opposite
directions. The blue area is covered by a single camera, the green area by
both cameras, and the red area by none of the cameras (dead zone).

II. DESIGN, MODELING AND CALIBRATION OF SFERA
In this section, we start by presenting the optical design

of SFERA. We proceed with a description of the camera
projection model and a discussion of the event acquisition
mechanism. Finally, we explain how the events are rep-
resented on the unit sphere, and introduce the calibration
protocol developed for SFERA.

A. Camera design
The optical design of SFERA is shown in Fig. 2.

Two event cameras, C1 and C2, are rigidly mounted back-
to-back on the same support and the distance between their
optical centers, o1 and o2, is L. To simplify the calibration
procedure (cf. Sect. II-D), we will assume that the optical
axes of the two cameras are aligned. Each event camera is
endowed with a fisheye lens, which is located at a distance
l1 (l2, respectively) from o1 (o2, respectively). The two
fisheye event cameras have a horizontal FoV, symmetric with
respect to the optical axis, of 180◦ + 2δi, i ∈ {1, 2}, with
δ1, δ2 ∈ (0, 90◦). As a result, by restricting our analysis
to the horizontal plane, we can identify three zones around
SFERA (cf. Fig. 2): the area covered by a single camera
(blue), the area covered by both cameras (green), and the
dead zone (red). In this plane, the dead zone has the shape
of a kite, with diagonals of length L + l1 + l2 and 2D,
respectively (note that if δ1 = δ2, the kite becomes a
rhombus). By using the law of sines and Apollonius theorem,
the diagonal D can be expressed as:

D =
L+ l1 + l2

2


2


cos2 δ1 + cos2 δ2

sin2(δ1 + δ2)


− 1 . (1)

Hence, the area of the dead zone is A = D(L + l1 + l2).
There are two ways to minimize A. The first is to minimize
l1, l2 and maximize δ1, δ2 by a suitable choice of fisheye
lenses. The second is to minimize the distance L between the
two event cameras. Obviously, physical constraints prevent
the distances l1, l2 and L from being equal to zero.



Fig. 3. SFERA: projection model. Each fisheye camera is modeled using a unit sphere, S1 and S2, a normalized plane and a pixel image.

B. Projection model

To describe SFERA, we chose the unified central pro-
jection model [20], [21]. This model has been extensively
used in the literature for wide-angle cameras (catadioptric
or fisheye), with a single viewpoint. Following [17], the
unified central projection model has been separately applied
to each lens of our stereo system. We made the simplifying
assumption that the distance L between the optical centers
of the two event cameras is small enough (compared to the
distance of the objects observed in the scene) to be ignored.
We can then consider a central representation of data, through
a unique projection surface (the unit sphere).

The full projection model of SFERA is depicted in Fig. 3.
With reference to the first camera, C1, a 3D point X is
projected on the surface of the unit sphere S1 centered at
FS1

= {OS1
; xS1

, yS1
, zS1

}, at point XS1
. Let Fm1

=
{Om1 ; xm1 , ym1 , zm1} be the frame with origin Om1 , at
a distance ξ1 from OS1 along the x-axis. By using the
projection point Om1

, XS1
is mapped to m = [x, y, 1]T

in the normalized plane. Finally, the point p = [u, v, 1]T is
expressed as p = K1m in pixel coordinates, where

K1 =



ku1

0 u01

0 kv1 v01
0 0 1


 , (2)

is the matrix of intrinsic parameters of the first camera.
In equation (2), (ku1

, kv1) are the focal lengths in pixels
in the horizontal and vertical directions, respectively, and
(u01 , v01) are the coordinates of the principal point in pixels.
The point m and the point XS1 on the unit sphere S1, are
thus related by the following formula [21]:

XS1
=




ξ1+
√

1+(1−ξ21)(x
2+y2)

x2+y2+1 x

ξ1+
√

1+(1−ξ21)(x
2+y2)

x2+y2+1 y

ξ1+
√

1+(1−ξ21)(x
2+y2)

x2+y2+1 − ξ1



. (3)

An equation analogous to (3) holds for the second camera,
C2, with parameters K2 and ξ2. In conclusion, the intrinsic
parameters of SFERA are (K1, ξ1, K2, ξ2). In Sect. II-D,
we will present an efficient calibration algorithm to estimate

these parameters. Before delving into it, in the next section
we will describe how event data is acquired and represented.

C. Representation of the events

SFERA generates an asynchronous stream of events, trig-
gered by brightness changes in the observed 3D scene.
An event e can be described by e = [u, v, t, p, i]T where
(u, v) is the pixel position of the event triggered at time t
(timestamp), p ∈ {+1,−1} is the polarity of the intensity
change, and i ∈ {1, 2} is the ID of the camera. Once SFERA
is calibrated, event e can be mapped to es = [θ, φ, t, p, i]T

on the surface of the unit sphere Si via equation (3), where
θ ∈ [0, π] is the polar angle and φ ∈ [0, 2π) is the
azimuthal angle.

Note that a brightness change occurring in the overlapping
zone between the two event cameras (green in Fig. 2), simul-
taneously triggers an event in C1 and C2. The projection
of these events on the unit sphere could then give rise
to artifacts (duplicate measurements), as a consequence of
our central projection hypothesis. This is, indeed, a known
problem in multi-fisheye camera systems, which is typically
handled by image stitching [34]. Unfortunately, this method
is not directly applicable to event data. However, as shown
in Sect. III, this modeling issue has a minor impact on the
acquisition process, and SFERA works as intended when the
observed objects are sufficiently far away from the camera.

D. Camera calibration

In this section, we briefly describe the calibration pro-
tocol put in place for our stereo fisheye event camera
(the corresponding code is available in the GitHub provided
in Sect. I). To guarantee high accuracy and repeatability,
we opted for a simple calibration setup in which SFERA is
placed at the same distance between two identical computer
screens displaying a blinking checkerboard pattern at a fixed
frequency f (see Fig. 4). The use of a fixed frequency f
allows to easily filter out the external noise (e.g. generated
by ambient light), and to capture pertinent information from
the calibration rig (see the left column in Fig. 5). The events
are accumulated to generate two grayscale pseudo-images of
the checkerboard patterns, from which the pixel coordinates
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Fig. 4. Calibration setup. Two blinking checkerboard patterns with
references frames Fr1 and Fr2 (red), are observed by SFERA on two
computer screens facing each other.

of the points of interest (corners) are extracted (right column
in Fig. 5). The pixel coordinates are then automatically
matched with the corresponding 3D world coordinates in the
checkerboards’ frames Fr1 and Fr2 . The extracted corners
are used to estimate the intrinsic parameters of the two
cameras via OpenCV’s omnicalib module in the imple-
mentation of [35], which takes the two grayscale pseudo-
images as input. This module relies on the calibration model
described in Sect. II-B.

III. EXPERIMENTAL VALIDATION

This section is divided into three parts. In the first part,
we describe our prototype of SFERA. We then discuss our
calibration results and we finally present the performance of
a Bayesian estimator for target tracking, which is tailored to
the geometry of the sphere.

A. Prototype of SFERA

Our current prototype of SFERA includes two Prophesee
EVK4-HD cameras equipped with Fujinon FE185C086HA-
11′′ fisheye lenses (see Fig. 6(a)). The lenses have a focal
length of 2.7 mm and an angular FoV of 185◦ (H) ×
140◦35′ (V), which provide an excellent coverage of the
surrounding environment (by consequence, δ1 = δ2 = 2.5◦).
The two cameras are clock-synchronized (Master-Slave con-
figuration) using a synchronization cable. With reference

Fig. 5. Two steps from our calibration protocol. (Left column) Events
generated by the blinking checkerboard patterns at a fixed frequency f =
15 Hz; (Right column) Accumulation of the events for feature detection
(the corners of the checkerboards). The top images correspond to C1

(Master) and the bottom images correspond to C2 (Slave).

to Fig. 2, we have l1 = l2 = 6.8 cm and we set L = 7.5 cm
(the minimum separation permitted by the two connectors
of the synchronization cable). In virtue of equation (1),
we obtain D = 2.42 m. Note that, in practice, an object
with a footprint comparable to that of small a quadrotor,
is still correctly perceived 1 m away from SFERA, despite
the partial occlusion due to the dead zone. Our prototype
has a small form factor: 23.5 × 5.5 × 5.5 cm3 (support
excluded). Since each lens (camera) weighs 160 g (80 g),
the total weight of SFERA is about 500 g (cables included).
Because of its compact design and low power consumption,
our prototype can be easily carried by any mobile robot.

B. Calibration results

The prototype of SFERA has been calibrated using the
algorithm described in Sect. II-D (the distortion coefficients
have been omitted). The estimated intrinsic parameters of
the two event cameras C1 and C2 are reported in Table I.
These parameters guarantee a small RMS reprojection error
(1.50 and 1.20 pixels for C1 and C2, respectively), and
a visualization of the events on the unit sphere which is
globally satisfying, as shown in the example in Fig. 6(b).
Note that the reference frame of SFERA (spherical view)
coincides with that of the Master camera. Overall, our results
indicate that the proposed calibration protocol is practical
yet accurate.

TABLE I
Estimated intrinsic parameters (in pixels, except for ξ1 and ξ2).

Camera kui kvi u0i v0i ξi

C1 (Master) 970.012 970.565 645.375 365.778 1.682
C2 (Slave) 972.311 969.822 618.132 361.180 1.685

C. Target detection and tracking with SFERA

In this section, we present a possible application of
SFERA to aerial monitoring. The goal is to rapidly detect
and track a flying object around the ground-based camera.
SFERA has a high temporal resolution, is able to detect
brightness changes induced by fast-moving objects and ben-
efits from a 360◦ FoV, thanks to the back-to-back stereo
configuration.

In the detection step, the events generated by the Master
and Slave cameras are clustered in the respective image
frames. The tracking step, instead, is entirely performed on
the unit sphere. For the first step, we used the cluster tracking
algorithm provided by Prophesee’s Metavision SDK, with an
accumulation time of tacc = 30 ms. This algorithm allows
to find the centroid of each active cluster which has been
potentially generated by a moving object. These centroids are
projected on the unit sphere via equation (3). For the tracking
step, we adapted the Bayesian state estimator (tracker) based
on the von Mises-Fisher (VMF) distribution [36] proposed
in [31], to our specific setting. As a standard Kalman filter,
the estimator goes through two distinct phases (prediction
and correction), and it recurrently updates two quantities:
the mean direction (or bearing vector) µ of the target
(a unit vector) and the concentration parameter κ ≥ 0,
which is the analogue of the inverse of the covariance in an
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Fig. 6. (a) Current prototype of SFERA; (b) Visualization of the (accumulated) events es on the unit sphere, using the intrinsic parameters reported
in Table I. In this example, SFERA captured the motion of two human bodies; (c) Testbed considered in the outdoor experiments described in Sect. III-C:
SFERA is mounted on a tripod and the quadrotor flies around it.

isotropic Gaussian distribution. The larger the value of κ,
the greater is the clustering around the mean direction [36,
Sect. 9.3.2]. Let xj ∼ VMF(µj , κj) where µj and κj

are, respectively, the mean direction and the concentration
parameter at time j ∈ {1, 2, . . .}. The estimator leverages
the following dynamic process model:

xj = Rjxj−1 ∗ wj−1, (4)

where “∗” is a convolution-like operation defined in [37,
Sect. 4.1], and wj−1 is a VMF-distributed noise. Equa-
tion (4) can be equivalently written, considering the mean
direction, as µj = Rjµj−1 where Rj is a rotation matrix.
In [31], the authors proposed an adaptive mechanism to esti-
mate Rj at each time step j. Matrix Rj is parameterized by
the average azimuthal displacement of µj = [µx

j , µ
y
j , µ

z
j ]

T

over the time interval ∆Tj , i.e.

Rj = Rotz(ωψ
mavg ∆Tj), ωψ

mavg =
1

τ

j
i= j−τ+1

ωψ
i , (5)

where Rotz( · ) denotes an elementary rotation about the
z-axis and ωψ

mavg is the moving average of the angular
velocity ωψ

i over the time window τ . The velocity ωψ
i is

computed via the backward Euler method

ωψ
i =

ψi − ψi−1

∆Ti
, ψi = arctan(µy

i /µ
x
i ). (6)

Differently from [31], in our case the target does not nec-
essarily lie on a great circle and we chose the axis-angle
representation of matrix Rj , to guarantee a full coverage of
the sphere. Equation (6) is thus modified as follows

ωi =
arccos(µT

i µi−1)

∆Ti
(µi × µi−1).

Finally, since our sensor is asynchronous, the intervals ∆Ti’s
are not necessarily identical. To cope with it, we replaced
the moving average in equation (5), with a weighted moving
average. For further details on the implementation of the
Bayesian estimator, the reader is referred to the GitHub of
our project.

To validate the estimator, we performed hardware experi-
ments with a DJI Mavic Air 2 quadrotor, in an urban park.
As shown in Fig. 6(c), SFERA was mounted on a tripod,
2 m above the ground level and it was connected to a
laptop with an Intel Core i7-13700H processor @ 3.7 GHz
and 16 GB of RAM, to process the incoming events. The
goal was to detect and track the manually-piloted drone
(see the video accompanying the paper). For the ground
truth, we took advantage of quadrotor’s flight record, which
includes the GNSS coordinates, altitude, attitude and ve-
locity from the IMU. Figs. 7 and 8 report qualitative and
quantitative results, respectively. Fig. 7(a) shows the GNSS
trajectory of the quadrotor (black) in local tangent plane
coordinates (ENU: East North Up). The initial (final) position
of the drone is marked with a red (green) disk. SFERA is
approximately located at (6, 4) m (orange disk). The flight
duration was 7 min and 42 s, the maximum altitude of the
quadrotor was 7.62 m, the maximum speed 24.09 km/h, and
the total distance traveled 527.79 m. The GNSS signal was
strong during the flight (22 satellites within line of sight, on
average): this guaranteed robust localization, with a position
accuracy of about 1 m. In Fig. 7(b), six snapshots, labeled
1 through 6 (spherical camera view), show the performance
of the tracker. They correspond to the six locations marked
with red boxes in Fig. 7(a). The estimated mean direction µ
is denoted with a green disk and the clusters of events are
depicted in black (a magenta disk indicates their centroid).
By and large, the Bayesian estimator is able to robustly track
the quadrotor, no matter its pose with respect to SFERA.

To confirm the previous findings, Fig. 8(a) reports the
time evolution of the ground truth (black) and estimated
mean direction (red) on the unit sphere, for a subset of
45 s of the trajectory shown in Fig. 7(a). To provide a
visual reference, this portion of the trajectory is marked in
cyan, in Fig. 7(a). The time evolution of the corresponding
angular estimation error γ = arccos(µTµGT) between the
estimated and actual mean direction µ and µGT, is shown
in Fig. 8(b). Note that the peak at t ∈ [157, 163] s, is due
to the re-initialization of the tracker, which occurs when the
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Fig. 8. Experiments: quantitative results. (a) Ground truth µGT (black) and estimated mean direction µ (red) on the unit sphere, for the portion of the
trajectory marked in cyan in Fig. 7(a); (b) Time evolution of the angular estimation error γ of the Bayesian estimator in degrees.

concentration parameter κ drops below a given threshold κτ

(we set κτ = 50 in our experiments). In spite of this
issue, which will be addressed in future works, the Bayesian
estimator runs on a standard CPU in real time (the detection
and tracking steps operate asynchronously at a frequency
exceeding 50 Hz) and delivers satisfactory results in terms
of accuracy: in fact, the mean estimation error is 12.8◦,
outside the interval [157, 163] s. Moreover, the estimator
is robust against the sharp and unpredictable luminosity
changes occurring in outdoor unstructured environments.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have introduced and fully character-
ized a novel omnidirectional event camera, called SFERA,
which consists of a pair of synchronized fisheye event
cameras placed at a fixed distance apart and pointing in
opposite directions. We have also presented a Bayesian
estimator (tracker), adapted to the specific output of SFERA
(a sparse and asynchronous stream of events, projected on

the unit sphere), which has been successfully tested with a
DJI Mavic Air 2 quadrotor, via outdoor experiments.

The work presented in this article is a stepping stone
towards an ultra-fast, 360-degree, detection and tracking
system for aerial surveillance (e.g. of malicious agents in the
proximity of airports or sensitive industrial areas). In future
research, we plan to further reduce the size and weight of our
prototype of SFERA (for example, by using more compact
fisheye lenses), a key prerequisite to install it on a swarm of
mini UAVs for defense and security missions.
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[6] H. Rebecq, T. Horstschäfer, G. Gallego, and D. Scaramuzza. EVO:
A Geometric Approach to Event-Based 6-DOF Parallel Tracking and
Mapping in Real Time. IEEE Rob. Autom. Lett., 2(2):593–600, 2016.
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