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Publications

Total w/ students
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Teaching

Master courses related to my research:

• Systèmes Robotiques Hétérogènes et Coopératifs (2018-present)
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• Perception Avancée et Robotique Mobile (2016-present)
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Multi-robot systems: an old tradition . . .

• Robotic Perception group

◦ Pioneer, back to 1990!

“Hiérarchie et communication pour une équipe de robots mobiles. Synchronisation

des actions ”, C. Pégard, J. Arnould, A. Lebrun, E. Mouaddib, B. Dolphin, Revue
d’Automatique et de Productique Appliquées, (3)2, 83-102, 1990
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Multi-robot systems: generalities

Nature

Technology

Amazon Robotics Electric Sky Drone Shows

Definition A multi-robot system is a set of n autonomous robots
working together to achieve a common task
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Formation control

Goal Find the control inputs of n mobile robots in order to
generate a predefined pattern (fixed or time-varying)
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Formation control

Goal Find the control inputs of n mobile robots in order to
generate a predefined pattern (fixed or time-varying)

• Criteria to define the pattern [Oh et al., 2015], [Ahn, 2020]:

◦ Absolute poses qi

◦ Relative distances dij
◦ Relative orientations αij

◦ Bearing angles βij

◦ A combination of distances and angles

1 1

2 2

3 3

d12 d23

d13
α23

α13

α12

β12
β21

β32
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Formation control: challenges

Q1: How to handle additional constraints?

• Kinodynamic constraints

• Input constraints (u ∈ U)

• Connectivity/visibility constraints

• Stability

. u ∈ U

.
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Formation control: challenges

Q1: How to handle additional constraints?

• Kinodynamic constraints

• Input constraints (u ∈ U)

• Connectivity/visibility constraints

• Stability

. u ∈ U

.

Q2: What is their impact on formation achievement?
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Leader-follower formations

• Two classes of robots: leader and followers

• The leader moves along a given trajectory

• The followers have to pursue the leader

Leader

Followers
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Leader-follower formations

• Two classes of robots: leader and followers

• The leader moves along a given trajectory Video (GRASP lab)

• The followers have to pursue the leader

Leader

Followers
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Unicycle robot

Kinematic model: 




ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

• q = [x, y, θ]T ∈ R
2× S

1: pose of the robot

• u = [v, ω]T : control input
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Unicycle robot

Kinematic model: 




ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

• q = [x, y, θ]T ∈ R
2× S

1: pose of the robot

• u = [v, ω]T : control input

Nonholonomic constraint: vLat = 0

.

.

(x, y)

θ

vLat = 0

W
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During my PhD and post-doc

• Input constraints (v, ω) ∈ U [Consolini et al., 2008]:

◦ How does U affect the achievement of a desired formation?

◦ Design a stabilizing controller that explicitly accounts for U
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◦ Design a stabilizing controller that explicitly accounts for U

• Hierarchical formations (“rooted trees”) [Consolini et al., 2009]

• Characterization of the “flexibility” in terms of formation

internal dynamics [Consolini et al., 2012]

• Vision-based localization for formation control [Morbidi et al., 2010]:

◦ Robots only equipped with panoramic cameras

◦ Nonlinear observability analysis to identify the most favorable
trajectories of the leader to maintain a desired formation

• Human-robot formation control via visuo-haptic feedback
[Scheggi et al., 2014]
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During my PhD and post-doc

• Wedge formation with 4 followers [Consolini et al., 2008]

◦ Distance-bearing constraints: (di, φi), i ∈ {1, 2, 3, 4}
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During my PhD and post-doc

• Hierarchical formation with 3 followers [Consolini et al., 2009]

◦ Distance-bearing constraints: (di, φi), i ∈ {1, 2, 3}
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Mobility of formations of unicycles

Classification of a wheeled robot by type [Campion et al., 1996]:

• δm: degree of mobility

• δs: degree of steerability

(3, 0) (2, 0) (2, 1) (1, 1) (1, 2)
Omnidirectional Unicycle Omni-steer Tricycle Two-steer
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Mobility of formations of unicycles

Classification of a wheeled robot by type [Campion et al., 1996]:

• δm: degree of mobility

• δs: degree of steerability

(3, 0) (2, 0) (2, 1) (1, 1) (1, 2)
Omnidirectional Unicycle Omni-steer Tricycle Two-steer

Problem Is it possible to extend the classification by type (δm, δs)
to distance-bearing formations of unicycles?

Simplifying assumptions:

• Centered fixed or steering wheels only

• Robots disposed at the vertices of regular convex polygons
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Mobility of formations of unicycles

Idea Notion of macro-robot [Morbidi & Bretagne, 2018]

Robot 2

Robot 1

d

xFyF

θ

	

	

Reduction procedure
(telescopic model)

Rear wheel

Front wheel

d

xF
yF

θ

β1

β2
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Mobility of formations of unicycles

Idea Notion of macro-robot [Morbidi & Bretagne, 2018]

Robot 2

Robot 1

d

xFyF

θ

	

	

Reduction procedure
(telescopic model)

Rear wheel

Front wheel

d

xF
yF

θ

β1

β2

• Parallels with concepts in the single-robot case (synchro-drive robot,
singular wheels configuration, etc.)
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Graph theory

Undirected graph G = (V, E):

1 2 3

4 5

G
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Graph theory

Undirected graph G = (V, E):

1 2 3

4 5

G

Degree matrix

D =





2 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 3





Adjacency matrix

A =





0 1 0 1 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 1 0





Laplacian matrix

L =





2 −1 0 −1 0
−1 3 −1 0 −1
0 −1 2 0 −1
−1 0 0 2 −1
0 −1 −1 −1 3
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Consensus protocol

• n single integrators: ẋi(t) = ui(t)

• Control input:

ui(t) =
∑

j ∈N (i)

(xj(t)− xi(t)), i ∈ {1, . . . , n}

• Collective dynamics [Olfati-Saber et al., 2007]:

ẋ(t) = −Lx(t)

with x = [x1, . . . , xn]
T

26 of 63



Consensus protocol

• n single integrators: ẋi(t) = ui(t)

• Control input:

ui(t) =
∑

j ∈N (i)

(xj(t)− xi(t)), i ∈ {1, . . . , n}

• Collective dynamics [Olfati-Saber et al., 2007]:
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• Control input:

ui(t) =
∑

j ∈N (i)

(xj(t)− xi(t)), i ∈ {1, . . . , n}

• Collective dynamics [Olfati-Saber et al., 2007]:
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Cooperative environmental monitoring

Goal Monitor a 2D environment with a swarm of fixed-wing UAVs

1

3

2
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Cooperative environmental monitoring

In [Morbidi et al., 2011]:

• n UAVs modeled as constant-speed unicycles (v > 0)
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Cooperative environmental monitoring

In [Morbidi et al., 2011]:

• n UAVs modeled as constant-speed unicycles (v > 0)

• The UAVs have limited sensing capabilities (i.e., they only sense
a portion of the environment)

• The target region to monitor is described by an ensemble N of particles

• The shape of the swarm and the ensemble of particles is described
via geometric moments [Belta et al., 2004]

Moments of the swarm ←→ MATCH ←→ Moments of the particles

f(q) =
1

n

n∑

i=1

φ(qi) f
⋆
env =

1

N

N∑

k=1

φ(qk)

φ(qi) = [qix, qiy , q
2
ix, q

2
iy , qixqiy , q

3
ix, q

3
iy , q

2
ixqiy , . . . ]

T Moment-generating
function
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Cooperative environmental monitoring

• Each UAV processes only the particles inside the Voronoi cell Vi

of the environment Q that it generates

• Each UAV locally estimates f(q) and f⋆env by running a PI average consensus
estimator [Lynch et al., 2008]

Q

Ni particles

Vi

UAV i
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Cooperative environmental monitoring

• Simulation
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Trajectory of the UAVs
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metric moments

• Animation
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Cooperative active target tracking

• A moving target and n cooperating mobile robots

1

2

3

4

5

6

Target
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Cooperative active target tracking

Goal Control the n robots along paths that minimize the
combined uncertainty about the target’s position
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Cooperative active target tracking

n double-integrator aerial vehicles [Morbidi & Mariottini, 2013]:

ṗi = qi,

q̇i = ui, i ∈ {1, . . . , n}

• pi ∈ R
3 : position of robot i

• qi ∈ R
3 : velocity of robot i

• ui ∈ R
3 : control input of robot i
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Cooperative active target tracking

n double-integrator aerial vehicles [Morbidi & Mariottini, 2013]:

ṗi = qi,

q̇i = ui, i ∈ {1, . . . , n}

• pi ∈ R
3 : position of robot i

• qi ∈ R
3 : velocity of robot i

• ui ∈ R
3 : control input of robot i

Assumptions:

• The position pi of robot i is perfectly known

• The robots communicate with each other

• Each robot is equipped with a 3D range-finding sensor
that it uses to measure the target
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Cooperative active target tracking

• The target moves in 3D according to the model:

ẋ(t) = Fx(t) +Gu(t) +w(t)

◦ x ∈ R
3 : position of the target

◦ u ∈ R
3 : exogenous input

◦ w ∈ R
3 : white Gaussian noise with zero mean and covariance Q
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Cooperative active target tracking

• The target moves in 3D according to the model:

ẋ(t) = Fx(t) +Gu(t) +w(t)

◦ x ∈ R
3 : position of the target

◦ u ∈ R
3 : exogenous input

◦ w ∈ R
3 : white Gaussian noise with zero mean and covariance Q

• Observation made by robot i:

zi(t) = Hi x(t) + vi(t)

◦ vi ∈ R
3 : zero-mean white Gaussian noise

◦ Measurement-noise processes of the n robots are independent
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Cooperative active target tracking

In a standard 3D range-finding sensor model [Ramachandra, 2000]

Hi = I3, i ∈ {1, . . . , n}

and the covariance matrix of vi is of the form

R
Car
i (t) , Ti(t)Ri(t)T

T
i (t)

where the rotation matrix

Ti = Rz(θi)Ry(φi) =




cos θi cosφi − sin θi cos θi sinφi

sin θi cosφi cos θi sin θi sinφi

− sinφi 0 cosφi





and Rz(θi), Ry(φi) are the basic 3× 3 rotation matrices about the z- and y-axes
of an angle θi and φi
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Cooperative active target tracking

• Measurement model: spherical coordinates

Target

Robot i

θi

φi

ex

ey

ez

ri eφ

eθ

er
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Cooperative active target tracking

Ri in RCar
i , Ti Ri T

T
i , is the covariance matrix of the measurement noise

in the range-bearing-polar frame of robot i

Ri = diag
(
σ
2
φi
, σ

2
θi
, σ

2
ri

)

where
σ2
ri

= fr(ri) , a2(ri − a1)
2 + a0

σ2
θi

= fθ(ri) , αθ fr(ri)

σ2
φi

= fφ(ri) , αφ fr(ri)

and a0, a1, a2, αθ, αφ > 0
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Cooperative active target tracking

Ri in RCar
i , Ti Ri T

T
i , is the covariance matrix of the measurement noise

in the range-bearing-polar frame of robot i

Ri = diag
(
σ
2
φi
, σ

2
θi
, σ

2
ri

)

where
σ2
ri

= fr(ri) , a2(ri − a1)
2 + a0

σ2
θi

= fθ(ri) , αθ fr(ri)

σ2
φi

= fφ(ri) , αφ fr(ri)

and a0, a1, a2, αθ, αφ > 0

This model assumes the existence of a
“sweet spot” located at a distance a1

from the target, where uncertainty in mea-
surements is minimal

fr(ri)

a1 ri

a0
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Cooperative active target tracking

For all i ∈ {1, . . . , n}:

• Target position measurements zi

• Covariance matrices RCar
i

are fused together to obtain:

• Global position estimate of the target x̂fus

• Global target position-error covariance Pfus
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Cooperative active target tracking

For all i ∈ {1, . . . , n}:

• Target position measurements zi

• Covariance matrices RCar
i

are fused together to obtain:

• Global position estimate of the target x̂fus

• Global target position-error covariance Pfus

Goal Control the robots in order to minimize a scalar function of Pfus

(thus reducing the target-estimation error)
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Cooperative active target tracking

Cost functions of the most popular optimum experimental design criteria:

J = ln det(Pfus) D-optimality (determinant) criterion

J = tr(Pfus) A-optimality (trace) criterion

J = λmax(Pfus) E-optimality criterion
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Cooperative active target tracking

Cost functions of the most popular optimum experimental design criteria:

J = ln det(Pfus) D-optimality (determinant) criterion

J = tr(Pfus) A-optimality (trace) criterion

J = λmax(Pfus) E-optimality criterion

We can define the gradient-based control of robot i as

ui = −Bqi − ΓTi

[
1

ri sin θi

∂ J

∂ φi

,
1

ri

∂ J

∂ θi
,

∂ J

∂ ri

]T

where

B ≻ 0 : damping matrix

Γ ≻ 0 : gain matrix
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( n∑

i=1

(RCar
i )−1

)−1

, x̂fus = Pfus

n∑

i=1

(RCar
i )−1

zi

• Fusion with Kalman-Bucy filter:

Ṗfus = FPfus + Pfus F
T + Q − Pfus CPfus

˙̂xfus = F x̂fus + Gu + Pfus (y − Cx̂fus)

where

C ,

n∑

i=1

(RCar
i )−1

, y ,

n∑

i=1

(RCar
i )−1

zi
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Cooperative active target tracking

Performance analysis

• Study the role played by:

◦ Sensors’ accuracy

◦ Target’s dynamics

on the steady-state tracking performance of the coordination strategy
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Cooperative active target tracking

Performance analysis

• Study the role played by:

◦ Sensors’ accuracy

◦ Target’s dynamics

on the steady-state tracking performance of the coordination strategy

• We can adopt Pfus as a performance metric

• Analytical bounds on Pfus can be derived by exploiting the monotonicity
property of the RDE arising from the Kalman-Bucy filter

• Extensions:

◦ ACLMT: “Active Cooperative Localization and Multi-target Tracking ”

◦ 6-DoF quadrotor model [Gürcüoglu et al., 2013]
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Cooperative 3D reconstruction

Goal Build a 3D model of a large-scale unknown environment
with n cooperating robots
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Cooperative 3D reconstruction

Goal Build a 3D model of a large-scale unknown environment
with n cooperating robots

• Motivation: programme e-Cathédrale (funding from ScanBot project)
◦ https://home.mis.u-picardie.fr/∼ecathedrale

Real 3D model
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Cooperative 3D reconstruction

Assumptions in [Hardouin et al., 2023]:

• Robots equipped with:

◦ Sensor which provides depth measurements (e.g. stereo or RGB-D camera)

◦ Communication system

◦ GNC system: the pose is known (e.g. with VO [Sanfourche et al., 2013])
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Cooperative 3D reconstruction

Assumptions in [Hardouin et al., 2023]:

• Robots equipped with:

◦ Sensor which provides depth measurements (e.g. stereo or RGB-D camera)

◦ Communication system

◦ GNC system: the pose is known (e.g. with VO [Sanfourche et al., 2013])

Our main focus: online path planning

Related work [Bircher et al., 2018], [Song & Jo, 2018]
[Schmid et al., 2020], [Lauri et al., 2020]:

• No check of completeness for the generation of new viewpoints

• Only in [Schmid et al., 2020], an explicit surface reconstruction

• Except for [Lauri et al., 2020], all methods are single robot
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Cooperative 3D reconstruction

Next-Best-View planning for online 3D reconstruction:

• Volumetric mapping (implicit surface representation): TSDF

• Surface completeness: ISE (Incomplete Surface Element)

◦ Roadmap of robot configurations in the free space to scan the ISEs

• Planning according to a surface criterion to perform the reconstruction

NBV planning for surface inspection via volumetric mapping

44 of 63



Cooperative 3D reconstruction

TSGA (TSP-Greedy Allocation) planner:

• High-level: Greedily assign the sequence of viewpoints to the robots
by iteratively solving a maxATSP

• Low-level: Compute the path in the free space using a Probabilistic
Roadmap planner (LazyPRM⋆)

dist-TSGA: Decentralized version of TSGA

Centralized architecture Decentralized architecture
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Cooperative 3D reconstruction

Simulations (ROS/Gazebo)

• 1, 3 and 5 hexarotors
with 4 DoFs

• Benchmark environments:
◦ Powerplant

◦ Statue of Liberty

Video
Experiments

• Centralized architecture:
from 1 to 4 Wifibots

• Decentralized architecture: 2 Wifibots

• Environments:
◦ Test arena: 8 × 7 × 2 m3

◦ Parking lot: 21 × 14 × 2 m3

46 of 63



Communication graph: beyond the Laplacian

• L = D−A (Laplacian)

• Q = D+A (Signless Laplacian [Cvetković et al., 2007])

• Lp(s) = D− sA, s ∈ R (Parametric Laplacian [Morbidi, 2014])

• Aα = αD+ (1− α)A, α ∈ [0, 1] [Nikiforov, 2017]

• ∆(s) = In − sA+ s2(D− In), s ∈ R (Deformed Laplacian [Morbidi, 2013])

• γ(A, S) = m1D
e1
a + m2D

e2
a Aa D

e3
a + m3In,

Da = D+ aIn, Aa = A+ aIn, S = {m1,m2,m3, e1, e2, e3, a}
(Parametrised GSO [Dasoulas et al., 2021])

• f(L) (Function of Laplacian [Morbidi, 2022])
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Deformed consensus

• Remark: ∆(1) = L and ∆(−1) = Q

s

L Q

−1 10

In
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Deformed consensus

• Remark: ∆(1) = L and ∆(−1) = Q

s

L Q

−1 10

In

Problem Study the stability properties of the system [Morbidi, 2013]:

ẋ(t) = −∆(s)x(t), s ∈ R

Link with QEP (Quadratic Eigenvalue Problem) [Tisseur & Meerbergen, 2001]

The deformed Laplacian has recently found application in:

• Semi-supervised learning [Gong et al., 2015]

• Design of centrality measures for (un)directed networks
[Grindrod et al., 2018], [Arrigo et al., 2018, 2019, 2020]
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Deformed consensus

Example

• Communication graph: G = P6

• Six robots rendezvous at (0, 0) and avoid two obstacles

• −1
s
−−→ 0 (from a marginally- to an asymptotically-stable equilibrium point)
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Function of Laplacian

Problem Find the functions f(L) that preserve the structure of L

• f(L) must be positive semidefinite

• f(L) must have zero row-sum and non-positive off-diagonal entries
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Function of Laplacian

Problem Find the functions f(L) that preserve the structure of L

• f(L) must be positive semidefinite

• f(L) must have zero row-sum and non-positive off-diagonal entries

Completely monotonic function:
Useful to characterize the admissible functions f(L) [Michelitsch et al., 2019]

In [Morbidi, 2022], application of this class of functions to consensus theory:

ẋ(t) = −f(L)x(t)

• Consensus value is left unchanged (f -invariance)

• Advantage: design flexibility

• Is the sparsity pattern of L preserved in f(L)? It is not, in general. But . . .
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Function of Laplacian

Numerical simulations

Shape-based formation control for single-integrator robots:

ẋ(t) = (−f(L) ⊗ I2)(x(t) − ξ)

ξ ∈ R
2n: vector of target positions [Mesbahi & Egerstedt, 2010]
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Function of Laplacian

Numerical simulations

Shape-based formation control for single-integrator robots:

ẋ(t) = (−f(L) ⊗ I2)(x(t) − ξ)

ξ ∈ R
2n: vector of target positions [Mesbahi & Egerstedt, 2010]

Example

• G = P10, ξ = vertices of a regular decagon

• Comparative analysis:

◦ f(L) = L, f(L) = log(3L+ I10), f(L) = I10 − e−3L

◦ Fiedler values:

λ2 ≃ 0.0979, log(3λ2 + 1) ≃ 0.2575, 1− e−3λ2 ≃ 0.2545

• Formation error: eee(t) = x(t)− ξ

52 of 63



Function of Laplacian

f(L) = L f(L) = log(3L + I10) f(L) = I10 − e
−3L
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Conclusion

• Formation control of mobile robots

◦ Favorite research topic since 2005

◦ Inclusion of additional constraints:

• Kinematic constraints of the robots

• Visibility/connectivity constraints

• Stability requirements
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Conclusion

• Formation control of mobile robots

◦ Favorite research topic since 2005

◦ Inclusion of additional constraints:

• Kinematic constraints of the robots

• Visibility/connectivity constraints

• Stability requirements

• Coordinated control of multi-robot systems

◦ New distributed algorithms for a team of UAVs:

• Environmental monitoring

• Active target tracking

• 3D reconstruction

◦ Communication graph: beyond the Laplacian

• Deformed Laplacian ∆(s)

• Function of Laplacian f(L)
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Future research

Collision avoidance is an essential prerequisite, but . . .

. . . a cooperative task is subject to a bunch of additional constraints:
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◦ Type of locomotion: ground, aerial, surface and underwater robots
◦ Role within the team: e.g. leader-follower model
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Future research

1. A general formulation encompassing the previous

(conflicting) requirements is still missing

◦ What is its nature and complexity?

?
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Future research

2. Which tasks are amenable to a distributed implementation?
◦ Generalized (Hölder) means [Bauso et al., 2006], [Cortés, 2008]:

Mp(x1, . . . , xn) =

(
1

n

n∑

i=1

x
p
i

)1

p

, p ∈ R \ {0}, xi > 0
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Future research

2. Which tasks are amenable to a distributed implementation?
◦ Generalized (Hölder) means [Bauso et al., 2006], [Cortés, 2008]:

Mp(x1, . . . , xn) =

(
1

n

n∑

i=1

x
p
i

)1

p

, p ∈ R \ {0}, xi > 0

3. Emergence of graph signal processing and its ramifications

(e.g. in image processing and machine learning with GNN)

◦ Many connections to explore with consensus theory

[Kortvelesy & Prorok, 2021], [Gama et al., 2022], [Marino et al., 2023]
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Future research

4. New sensing modalities

◦ Event cameras
• Mono and stereo (CERBERE and EVELOC projects):

PhD of D. Rossi and A. El Moudni
• Omnidirectional, mono and stereo (EVENTO and DEVIN projects):

PhD of D. Rodrigues da Costa
◦ Twin-fisheye cameras (ADAPT project, PanoraMIS dataset)
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4. New sensing modalities

◦ Event cameras
• Mono and stereo (CERBERE and EVELOC projects):

PhD of D. Rossi and A. El Moudni
• Omnidirectional, mono and stereo (EVENTO and DEVIN projects):

PhD of D. Rodrigues da Costa
◦ Twin-fisheye cameras (ADAPT project, PanoraMIS dataset)

5. Mixed human-robot teams

◦ Which is the most effective and intuitive means of communication
between humans and robots?

XPO Logistics
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