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• M. El Mustapha Mouaddib, PU, Université de Picardie Jules Verne (parrain HDR)
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société. On a souvent tendance à l’oublier :
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Titre de la thèse de doctorat : Leader-Follower Formation Control and Visibility Maintenance
of Nonholonomic Mobile Robots.
Date de la soutenance : 27 mars 2009
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Chapter 1

Activités scientifiques et pédagogiques

My colleague Watson is limited in its thinking to rather
narrow confines, but possesses the utmost tenacity.

“A Wild Sheep Chase” – Haruki Murakami, 1982

Résumé

Ce premier chapitre présente l’ensemble de mes activités activités scientifiques, pédagogiques
et administratives depuis ma soutenance de thèse à l’Università di Siena, Italie, en mars 2009.

1.1 Recherche

1.1.1 Résumé des activités de recherche

Mes activités de recherche au cours des quinze dernières années (2009 - aujourd’hui),
se sont concentrées dans les domaines de la Robotique et de l’Automatique. En particulier,
mon travail s’est articulé autour des deux axes suivants :

1. Systèmes multi-robots

(a) Contrôle de formations de robots non holonômes

(b) Analyse et commande de systèmes robotiques en réseaux

2. Vision omnidirectionnelle

(a) Caméras catadioptriques et twin-fisheye pour la navigation de robots.

Une description détaillée de ces deux axes est fournie dans la suite. Il est à noter que
les renvois mentionnées dans cette section concernent exclusivement mes publications,
dont la liste complète est donnée dans la Sect. 1.1.2. Un bilan des travaux publiés après
ma thèse dans chaque axe et des encadrements, est présenté dans les Tableaux 1.1 et 1.2.

Il est enfin important de souligner que dans ce mémoire d’HDR, pour des raisons
d’espace et de cohérence thématique, on a fait le choix délibéré de privilégier le 1er axe
(“Systèmes multi-robots”) qui sera développé davantage dans les prochains chapitres.

1



2 1. Activités scientifiques et pédagogiques

Systèmes multi-robots

“E pluribus unum”, locution latine signifiant “un seul à partir de plusieurs” (Moretum,
Virgile), ou plus librement “l’union fait la force”, est la devise qui apparaı̂t sur le grand
sceau des États-Unis, mais elle peut être aussi considérée comme une des lignes direc-
trices de ma carrière de chercheur. En fait, à partir de la fin de mon Master à l’Università
di Siena en 2005, je me suis intéressé à la commande de systèmes multi-robots. Cela a
coı̈ncidé avec une explosion d’activité autour des systèmes multi-agents qui a com-
mencée au début des années 2000 en Théorie des Systèmes et s’est propagée rapidement,
en moins d’une décennie, dans de nombreux autres domaines, comme la Robotique, les
Télécommunications, le Traitement du Signal, l’Intelligence Artificielle et la Science des
Réseaux. Les raisons de ce succès sont multiples et variées, et elles incluent une plus
grande disponibilité des technologies de communication sans fil et de processeurs à
faible coût, l’intérêt croissant porté au calcul parallèle et à l’informatique embarquée,
la miniaturisation des capteurs et la définition de tâches de plus en plus complexes
nécessitant l’action conjointe de groupes de robots pour être menées à bien.

(a) Pendant mes études de doctorat (2005 - 2009), j’ai travaillé sur le problème du
contrôle de formation, qui a suscité un vif intérêt dans la littérature des systèmes multi-
agents, à cause de son vaste potentiel d’application. L’idée de base est assez simple et
consiste à contrôler la position et l’orientation relative des robots dans un groupe, tout
en permettant au groupe de se déplacer d’un seul bloc. En particulier, mes travaux de
recherche ont porté sur formations de robots non holonômes qui suivent un paradigme de
type leader-follower. Dans ce cadre, un robot (le leader) guide les suiveurs (les followers),
et tous les véhicules ont des contraintes cinématiques. Ces contraintes entraı̂nent une
réduction de l’ensemble des déplacements instantanés que les robots peuvent effectuer.
L’effet des contraintes de vitesse sur la stabilité d’une formation de deux robots, a été
étudié dans [C1, C3, C5, J2] d’un point de vue purement géométrique. Ces résultats ont
été étendus à des formations leader-follower organisées selon une structure hiérarchique
dans [C7, J4] (une collaboration avec L. Consolini, Università di Parma, Italie), et à des
systèmes constitués d’un tractor-trailer et d’un robot tricycle, dans [BC1]. Enfin, sur le
même sujet, dans [C15, C18, J9], la notion inédite de dynamique interne d’une formation
de robots a été introduite pour décrire la “rigidité” des structures hiérarchiques étudiées
en [C7, J4].

Une autre série de travaux connexes, [C2, C8, J5, J6], a porté sur les formations
leader-follower de robots de type unicycle, equipés de caméras panoramiques non cal-
ibrées. Le fait que ces caméras sont les seuls capteurs embarqués, rend le problème de
contrôle de formation particulièrement difficile car les robots ne disposent pas directe-
ment des mesures de distance. En [C2, C8, J5, J6], nous avons pu montrer qu’il est possi-
ble d’estimer la distance entre le leader et les followers (par le biais du filtre de Kalman

2



1.1. Recherche 3

étendu ou d’autres observateurs non-linéaires), en utilisant uniquement les mesures an-
gulaires relatives entre les robots fournies par les caméras panoramiques. Notamment,
une analyse de l’observabilité du système dynamique non-linéaire qui décrit la for-
mation, a permis d’identifier analytiquement les trajectoires pour lesquelles on a une
meilleure estimation de la distance entre le leader et les followers.

Le problème du maintien de la visibilité a été largement étudié en théorie des jeux
(problème de pursuit-evasion) et en géométrie algorithmique (problème de la galerie
d’art et de l’illumination), il a aussi des liens forts avec le contrôle de formation. Dans
[C9, J8], en collaboration avec le Prof. F. Bullo (University of California Santa Barbara,
USA), une nouvelle stratégie a été conçue pour le contrôle de la visibilité de robots
leader-follower de type Dubins. L’utilisation de la notion géométrique d’invariance
contrôlée constitue un apport original de ces deux publications.

D’autres travaux menés pendant mon post-doc à l’Università di Siena, Italie [C27,
J15], ont abordé le problème de coordination du mouvement d’une équipe mixte con-
stituée d’un leader humain et d’une cohorte de robots mobiles. Chaque robot est équipé
d’une caméra RGB-D et le leader porte un bracelet vibro-tactile doté de connexion Blue-
tooth, grâce auquel ses mouvements peuvent être contrôlés à distance. Pour valider la
loi de commande proposée, la première à notre connaissance à faire intervenir un retour
haptique, une campagne d’expérimentation a été réalisée avec un opérateur humain et
deux robots Pioneer. Enfin, une nouvelle caractérisation de la mobilité de formations de
robots de type unicycle avec contraintes de distance/orientation relative, a été présentée
récemment dans [C33]. La fameuse condition de “roulement sans glissement” d’un roue
fixe standard, joue un rôle crucial dans la classification hiérarchique par “type” intro-
duite dans ce travail.

(b) Durant mon post-doctorat à la Northwestern University, USA (2009 - 2010), mes
intérêts de recherche se sont progressivement réorientés vers l’estimation et la commande
distribuées de systèmes dynamiques en réseaux. Au cours du post-doc au sein du “Center
for Robotics and Biosystems” (N×R), j’ai eu l’occasion d’approfondir mes connaissances
et d’interagir avec quelques grands experts du domaine (le Prof. K.M. Lynch et le Prof.
R.A. Freeman). Cette expérience m’a permis de gagner en maturité et elle a eu un im-
pact profond et durable sur ma carrière. Mon premier travail dans ce nouveau domaine,
[C19], propose une stratégie basée sur l’estimation et la commande distribuées pour
une volée d’UAVs (Unmanned Aerial Vehicles). Les véhicules sont modélisés comme
unicycles avec une vitesse de translation positive et ils doivent se reconfigurer dans
l’espace pour surveiller l’apparition d’événements d’intérêt dans un environnement 2D.
Une première contribution originale de [C19] est l’utilisation de moments géométriques
pour décrire la forme de la cohorte de robots et les événements à surveiller (par exem-
ple, un déversement de pétrole dérivant dans l’océan). La deuxième contribution est

3



4 1. Activités scientifiques et pédagogiques

l’emploi d’estimateurs proportionnels-intégraux basés sur le consensus dynamique en
moyenne (ou “dynamic average consensus estimators”) pour la reconstruction locale
des moments désirés.

Plus récemment (avec A. Kibangou, Université Grenoble Alpes), un algorithme des
moindres carrés basé sur la même famille d’estimateurs PI distribués que [C19] a été
utilisé pour reconstruire la topologie d’un réseau inconnu. Le nouvel algorithme, qui a fait
l’objet de la publication [J14], fait appel à des séries temporelles entachées de bruit au
niveau de chaque nœud du réseau, et contrairement à ce qui est fait dans la littérature,
il est totalement décentralisé.

Inspirés par une série de travaux antérieurs du groupe de recherche de la North-
western University, les articles [C21, J12] proposent une solution originale au problème
du suivi actif d’une cible par une équipe d’UAVs modelisés comme double intégrateurs.
Dans [C20] (avec G.L. Mariottini et C. Ray, University of Texas at Arlington, USA),
la théorie introduite dans [J12] a été revisitée pour une application médicale (analyse
automatique de la démarche de personnes à mobilité réduite) et adaptée à une cohorte
hétérogène d’UAVs et de robots terrestres équipés de télémetres 2D. Enfin, une formula-
tion à temps discret du problème traité dans [J12] est présentée et validée expérimentale-
ment à l’aide d’un AR.Drone de Parrot, dans [C25].

Dans la littérature des systèmes multi-agents, la contrainte de connexité est bien con-
nue car elle est essentielle pour garantir l’exécution correcte de nombreuses tâches dis-
tribuées (par exemple, dans le problème de l’accord ou “agreement problem”, les états
des agents convergent vers la même valeur uniquement si le réseau de communica-
tion reste connexe en permanence). Plusieurs solutions existent dans la littérature pour
garantir le maintien de la connexité dans une cohorte de robots, comme par exem-
ple les champs de potentiel, les fonctions de navigation ou les approches basées sur
l’optimisation géométrique. Les articles [C12, C17] proposent des solutions purement
géométriques au problème de la connexité pour des robots de type intégrateur et uni-
cycle, en poursuite cyclique. Plus récemment, des algorithmes innovants ont été mis au
point dans [C23] pour contrôler la connexité algébrique et pour subdiviser automatique-
ment un réseau de robots en deux groupes, grâce au partitionnement spectral (ou “spec-
tral clustering”).

Pendant mon séjour à la Johannes Kepler University, Autriche (2011 - 2012), mon
activité pédagogique m’a permis d’approfondir mes connaissances en commande op-
timale, et j’ai eu l’opportunité de collaborer avec le Prof. P. Colaneri (Politecnico di
Milano, Italie) au sujet du contrôle optimal décentralisé de pelotons de voitures [C24].
La source principale d’originalité de la méthode proposée, réside dans la mannière
d’incorporer la contrainte de “string stability” dans un problème de commande linéaire
quadratique (LQ) classique. Mon intérêt pour la théorie du consensus n’a pas diminué
pendant le séjour autrichien, et à partir de 2012 j’ai travaillé sur deux variantes de la ma-
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trice laplacienne d’un graphe : le laplacien déformé [J13, C22] et le laplacien paramétrique
(ou “Laplacian pencil”) [C28]. J’estime que [J13] est un de mes travaux les plus origin-
aux et c’est remarquable que certaines des idées présentées dans cet article aient stimulé
la recherche dans des domaines assez éloignés de la robotique coopérative (par exem-
ple, en apprentissage semi-supervisé ou dans la conception de nouvelles mesures de
centralité pour des réseaux non orientés et orientés).

Pendant la période passée à l’Université de Picardie Jules Verne comme Maı̂tre de
Conférences (2014 - aujourd’hui), j’ai poursuivi mes activités de recherche autour des
systèmes robotiques en réseaux. Cette démarche a abouti aux travaux [C35], [J21] et
[C36, C38]. Le protocole de consensus en temps discret a été étudié en [C35], et une
nouvelle approche basée sur la projection sur un sous-espace vectoriel a été proposée pour
incorporer facilement les contraintes sur l’état du système (par exemple, contraintes sur
la perception, la communication ou sur l’évitement d’obstacle), sans modifier la valeur
de consensus. Dans le même esprit que [J13], une classe de fonctions de la matrice
laplacienne d’un graphe qui préservent ses propriétés (semi-définie positivité, somme
des lignes égale à zéro et éléments hors-diagonale non positifs) a été étudiée dans [J21].
Ces fonctions de la matrice laplacienne ont trouvé leur emploi dans la commande dis-
tribuée de formations de robots de type intégrateur.

Enfin, un nouvel algorithme “Next-Best-View” basé surface pour la planification
de trajectoire, a été introduit dans [C36] pour la reconstruction d’un environnement 3D
de grande envergure avec un UAV équipé d’une caméra de profondeur ou d’un banc
stéréo (un travail conjoint avec J. Marzat et J. Moras, ONERA DTIS). Le planificateur
TSGA (“TSP-Greedy Allocation”) proposé, a été récemment adapté en [C38] à un co-
horte d’UAVs travaillant de concert, pour rendre la reconstruction 3D plus rapide. Une
version complètement décentralisée de l’algorithme est actuellement à l’étude et une cam-
pagne d’expérimentations avec un groupe de robots terrestres (WiFibots) est en cours.
Ce travail s’inscrit dans la thèse de G. Hardouin : un article de revue qui présente
l’ensemble des nos résultats a été publié en août 2023 [J24]. Le doctorant a été cofi-
nancé par la région Hauts-de-France et l’ONERA DTIS dans le cadre du projet ScanBot.
L’objectif final de ce projet sera d’appliquer les outils de planification développés au
patrimoine monumental numérique (cf. le programme e-Cathédrale de l’équipe PR).

Il est utile de préciser ici que l’activité de recherche autour des systèmes multi-robots
menée à l’UPJV depuis 2014, n’est pas isolée mais elle fait partie intégrante de mon
projet professionnel. En fait, elle est cohérente avec mon activité pédagogique : j’ai
dispensé deux cours de Master sur la théorie des systèmes multi-agents au département
EEA en 2018-2021, “Systèmes Robotiques Hétérogènes et Coopératifs” et “Surveillance
Distribuée de Systèmes Multi-Agents”, dérivés du cours de Master intitulé “Distributed
and Cooperative Control for Multi-agent Systems” que j’ai donné en 2012 à la Johannes
Kepler University. Par ailleurs, un parcours centré sur les systèmes multi-agents et la
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Publications [J24], [J21], [J15], [J14], [J13], [J12],
[J9], [C38], [C35], [C33], [C28], [C27],
[C25], [C24], [C23], [C22], [C21],
[C20], [C19], [C18], [C17], [C15]

Encadrements 1 doctorant (G. Hardouin)

Table 1.1: Bilan des publications après ma thèse dans l’axe “Systèmes Multi-Robots” et
encadrements.

robotique collaborative, appelé “SDD : Systèmes Distribués et Dynamiques” (Master
mention Informatique) a ouvert dans l’année universitaire 2022-2023 à l’UPJV et une
action inter-équipe (équipe PR et équipe SDMA du laboratoire MIS), appelée “Cohortes
de Robots”, existe depuis 2007. Enfin, je travaille régulièrement comme Éditeur Associé
avec un profile “Multi-Robot Systems”, pour les IEEE Transactions on Robotics, pour le
Conference Review Board de IROS et le Conference Editorial Board de ICRA tous les
6 mois, et je suis un reviewer spécialisé dans ce même domaine pour plusieurs revues
internationales (cf. Sect. 1.1.4).

Vision omnidirectionnelle

Les caméras sont largement utilisées aujourd’hui en robotique mobile, car elles sont pe-
tites, légères, peu coûteuses et elles fournissent des informations sur le milieu environ-
nant, bien plus riches que celles d’autres capteurs extéroceptifs. Cependant, leur champ
de vue limité est problématique pour la navigation d’un robot dans un environnement
inconnu.

(a) Les caméras catadioptriques combinent des éléments qui réfractent (lentilles) et
réfléchissent (miroirs convexes) la lumière, et elles ont un champ de vue qui est bien plus
large (supérieur à 180◦) que celui d’une caméra perspective traditionnelle. Cette car-
actéristique rend ces capteurs fort séduisants pour de nombreuses applications robo-
tiques, comprenant la localisation, l’estimation d’orientation 3D et l’asservissement vi-
suel, entre autres. Un algorithme robuste et rapide qui s’appuie sur des nouvelles pro-
priétés géométriques des images acquises par une caméra catadioptrique avec miroir
parabolique (caméra para-catadioptrique), est proposé dans [BC2, J11] pour estimer
l’orientation d’un robot mobile à roues. Le compas visuel non calibré a été modifié
dans [C26], afin d’estimer le cap d’un robot aérien avec une caméra para-catadioptrique
embarquée.

Dans la même veine, un compas visuel omnidirectionnel basé sur la corrélation de
phase dans le domaine de Fourier 2D, a été présenté dans [J18]. Le compas est direct
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(à savoir, il traite la totalité de l’image panoramique sans aucune extraction de points
d’intérêt), précis et robuste au bruit dans l’image, et il n’a besoin que d’une connaissance
partielle des paramètres internes de la caméra. Des tests en conditions réelles, effectués
avec une caméra hyper-catadioptrique (une caméra dotée d’un miroir hyperbolique)
montée sur l’effecteur d’un manipulateur Stäubli et sur un robot Pioneer, ont démontré
que la nouvelle approche affiche des performances très satisfaisantes.

Les caméras twin-fisheye sont des capteurs de vision émergents qui comprennent
deux lentilles fisheye montées dos à dos sur le même support, et une série de prismes
qui dirigent les faisceaux lumineux vers deux éléments photosensibles. Plusieurs pro-
duits grand public sont disponibles aujourd’hui sur le marché, comme par exemple la
Gear 360 de Samsung, la 360 CAM de LG, la Theta de Ricoh et la ONE X2 de Insta360.
Dans [C31, CN1], un nouveau gyroscope visuel sphérique a été introduit pour la navi-
gation de robots mobiles. En transformant l’intensité lumineuse en mélanges de poten-
tiels photométriques, une nouvelle mesure de similarité de l’image a été proposée. Elle
peut être facilement intégrée dans une procédure classique d’optimisation non-linéaire
aux moindres carrées et offre un domaine de convergence élargi. La méthode fournit
une estimation de l’orientation 3D précise et robuste, et elle est simple d’utilisation car
elle comporte un seul paramètre de réglage, la largeur des potentiels photométriques
(fonctions gaussiennes dans [C31]), qui contrôle le pouvoir d’attraction de chaque pixel.
Le gyroscope a été testé avec des séquences d’images générées par une caméra twin-
fisheye montée sur l’effectuer d’un manipulateur et sur un UAV à voilure fixe (Disco
FPV de Parrot). Récemment, les images sphériques capturées par la même caméra
(la Theta S de Ricoh), ont été utilisées dans un nouveau système d’aide à la conduite

Publications [B1], [J23], [J22], [J20], [J19], [J18], [J11], [C40], [C37], [C31], [C26],
[CN1], [O6]

Encadrements

• 1 post-doc (H.-E. Benseddik)

• 2 doctorants (J. Caracotte, D. Rodrigues da Costa)

• 1 ingénieur de recherche (S. Delmas)

• 3 étudiants de Master (J. Albrand, M. Jeanne-Rose,
M. Selmi)

Table 1.2: Bilan des publications après ma thèse dans l’axe “Vision Omnidirectionnelle” et en-
cadrements.
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destiné aux utilisateurs de fauteuils roulants électriques [C40],[J22],[J23]. La contri-
bution de l’ingénieur de recherche S. Delmas, que j’ai encadré, a été fondamentale
pour le développement logiciel et pour la validation du dispositif sur fauteuil roulant.
Dans le cadre du même projet (Interreg VA ADAPT, post-doc de H.-E. Benseddik), une
vaste base de données d’images catadioptriques et twin-fisheye avec une vérité terrain
précise, nommée PanoraMIS [J19], a été créée et mise à disposition sur Internet pour la
communauté de vision pour la robotique.

Pendant la thèse de D. Rodrigues da Costa, la première caméra événementielle omni-
directionnelle a été conçue [O6], et un gyroscope visuel basé sur l’observation de droites
dans un environnement de type Manhattan a été mis à point et il est actuellement en
cours de validation sur un robot Stäubli TX-60, qui nous fournit une vérité-terrain très
précise, au département EEA de l’UPJV.

D’autre part, dans la thèse de J. Caracotte, nous avons pu mettre à profit nos con-
naissances au sujet des caméras catadioptriques et twin-fisheye, en vision par ordinateur.
En fait, dans [J20], nous avons introduit une théorie générale de la stéréophotométrie
pour les caméras à projection centrale, qui a été adaptée aux caméras twin-fisheye
dans [C37].

Enfin, sur le thème de la vision omnidirectionnelle, j’ai coordonné avec un collègue
du laboratoire MIS (Prof. P. Vasseur) un ouvrage, [B1], qui sera publié par ISTE-Wiley
en décembre 2023.

1.1.2 Production scientifique

Le Tableau 1.3 fournit une synthèse de la production scientifique pendant (2005-2009)
et après ma thèse de doctorat (2009 - aujourd’hui).

B J BC C JN CN Total

Pendant la thèse 0 6 2 13 0 0 21

Après la thèse 1 18 2 29 2 2 54

Table 1.3: Nombre de publications par type : B = ouvrage, J = revue internationale, BC = chapitre
d’ouvrage, C = conférence internationale, JN = revue nationale, CN = conférence nationale.

Ouvrages

B1. P. Vasseur, F. Morbidi (editors), “Omnidirectional Vision: From Theory to Applica-
tions”, 10 authors, ISTE - Wiley, Series: SCIENCES - Sensors and Image Processing,
December 2023, www.iste.co.uk/book.php?id=2075
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Revues internationales à comité de lecture

J24. G. Hardouin, J. Moras, F. Morbidi, J. Marzat, E. Mouaddib, “A Multi-Robot System
for 3D Surface Reconstruction with Centralized and Distributed Architectures”, IEEE
Transactions on Robotics, vol. 39, n. 4, pp. 2623-2638, August 2023. Journal
Impact Factor (IF), November 2023: 7.8

J23. S. Delmas, F. Morbidi, G. Caron, M. Babel, F. Pasteau, “SpheriCol: A Driving Assis-
tant for Power Wheelchairs based on Spherical Vision”, IEEE Transactions on Medical
Robotics and Bionics, vol. 5, n. 2, pp. 387-400, May 2023. IF: 3.7

J22. F. Morbidi, L. Devigne, C.S. Teodorescu, B. Fraudet, É. Leblong, T. Carlson, M.
Babel, G. Caron, S. Delmas, F. Pasteau, G. Vailland, V. Gouranton, S. Guégan,
R. Le Breton, N. Ragot, “Assistive Robotic Technologies for Next-Generation Smart
Wheelchairs: Codesign and Modularity to Improve Users’ Quality of Life”, IEEE Robotics
& Automation Magazine, vol. 30, n. 1, pp. 24-35, March 2023 (also accepted for
presentation at the IEEE International Conference on Robotics and Automation,
London, May 29 - June 2, 2023). IF: 5.7

J21. F. Morbidi, “Functions of the Laplacian matrix with application to distributed formation
control”, IEEE Transactions on Control of Network Systems, vol. 9, n. 3, pp. 1459-
1467, September 2022. IF: 4.2

J20. J. Caracotte, F. Morbidi, E. Mouaddib, “Photometric stereo with central panoramic
cameras”, Computer Vision and Image Understanding, vol. 201, article 103080, De-
cember 2020. IF : 4.5

J19. H.-E. Benseddik, F. Morbidi, G. Caron, “PanoraMIS: An Ultra-wide Field of View
Image Dataset for Vision-based Robot-Motion Estimation”, The International Journal
of Robotics Research, vol. 39, n. 9, pp. 1037-1051, August 2020. IF: 9.2

J18. F. Morbidi, G. Caron, “Phase Correlation for Dense Visual Compass from Omnidirec-
tional Camera-Robot Images”, IEEE Robotics and Automation Letters, vol. 2, n. 2,
pp. 688-695, April 2017 (also accepted for presentation at the IEEE International
Conference on Robotics and Automation, Singapore, May 29 - June 3, 2017). IF: 5.2

J17. A.N. Staranowicz, G.R. Brown, F. Morbidi, G.L. Mariottini, “Practical and accurate
calibration of RGB-D cameras using spheres”, Computer Vision and Image Under-
standing, vol. 137, pp. 102-114, August 2015. IF: 4.5

J16. C. Canudas de Wit, F. Morbidi, L. León Ojeda, A.Y. Kibangou, I. Bellicot, P. Belle-
main, “Grenoble Traffic Lab: An experimental platform for advanced traffic monitoring
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and forecasting”, IEEE Control Systems Magazine, vol. 35, n. 3, pp. 23-39, June
2015. IF: 5.7

J15. S. Scheggi, F. Morbidi, D. Prattichizzo, “Human-robot formation control via visual and
vibrotactile haptic feedback”, IEEE Transactions on Haptics, vol. 7, n. 4, pp. 499-511,
December 2014. IF: 2.9

J14. F. Morbidi, A.Y. Kibangou, “A Distributed Solution to the Network Reconstruction
Problem”, Systems & Control Letters, vol. 70, pp. 85-91, August 2014. IF: 2.6

J13. F. Morbidi, “The Deformed Consensus Protocol”, Automatica, vol. 49, n. 10, pp. 3049-
3055, October 2013. IF: 6.4

J12. F. Morbidi, G.L. Mariottini, “Active Target Tracking and Cooperative Localization for
Teams of Aerial Vehicles”, IEEE Transactions on Control Systems Technology, vol.
21, n. 5, pp. 1694-1707, September 2013. IF: 4.8

J11. G.L. Mariottini, S. Scheggi, F. Morbidi, D. Prattichizzo, “An Accurate and Robust
Visual-Compass Algorithm for Robot-mounted Omnidirectional Cameras”, Robotics and
Autonomous Systems, vol. 60, n. 9, pp. 1179-1190, September 2012. IF: 4.3

J10. G.L. Mariottini, S. Scheggi, F. Morbidi, D. Prattichizzo, “Planar mirrors for image-
based robot localization and 3-D reconstruction”, Mechatronics, Special Issue on Vi-
sual Servoing, vol. 22, n. 4, pp. 398-409, June 2012. IF: 3.3

J9. L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “On a class of hierarchical
formations of unicycles and their internal dynamics”, IEEE Transactions on Automatic
Control, vol. 57, n. 4, pp. 847-859, April 2012. IF: 6.8

J8. F. Morbidi, F. Bullo, D. Prattichizzo, “Visibility maintenance via controlled invariance
for leader-follower vehicle formations”, Automatica, vol. 47, n. 5, pp. 1060-1067, May
2011. IF: 6.4

J7. F. Chinello, S. Scheggi, F. Morbidi, D. Prattichizzo, “The KUKA Control Toolbox:
motion control of KUKA robot manipulators with MATLAB”, IEEE Robotics and Au-
tomation Magazine, vol. 18, n. 4, pp. 69-79, December 2011. IF: 3.591

J6. F. Morbidi, G.L. Mariottini, D. Prattichizzo, “Observer design via Immersion and In-
variance for vision-based leader-follower formation control” Automatica, vol. 46, n. 1,
pp. 148-154, January 2010. IF: 6.4

J5. G.L. Mariottini, F. Morbidi, D. Prattichizzo, N. Vander Valk, N. Michael, G.J. Pap-
pas, K. Daniilidis, “Vision-based Localization for Leader-Follower Formation Control”,
IEEE Transactions on Robotics, vol. 25, n. 6, pp. 1431-1438, December 2009. IF: 7.8
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J4. L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “Stabilization of a hierarchical
formation of unicycle robots with input constraints”, IEEE Transactions on Robotics,
vol. 25, n. 5, pp. 1176-1184, October 2009. IF: 7.8

J3. F. Morbidi, A. Garulli, D. Prattichizzo, C. Rizzo, S. Rossi,“Application of Kalman
filter to remove TMS-induced artifacts from EEG recordings”, IEEE Transactions on
Control Systems Technology, vol. 16, n. 6, pp. 1360-1366, November 2008. IF: 4.8

J2. L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “Leader-Follower Formation
Control of Nonholonomic Mobile Robots with Input Constraints”, Automatica, vol. 44,
n. 5, pp. 1343-1349, May 2008. IF: 6.4

J1. F. Morbidi, A. Garulli, D. Prattichizzo, C. Rizzo, P. Manganotti, S. Rossi, “Off-line
removal of TMS-induced artifacts on human electroencephalography by Kalman filter”,
Journal of Neuroscience Methods, vol. 162, pp. 293-302, May 2007. IF: 3

Chapitres d’ouvrage

BC4. A. Staranowicz, G.R. Brown, F. Morbidi, G.L. Mariottini, “Easy-to-Use and Accurate
Calibration of RGB-D Cameras from Spheres”, in Proc. 6th Pacific-Rim Symposium
on Image and Video Technology, R. Klette, M. Rivera, S. Satoh, Eds., Lecture Notes
in Computer Science, Springer, Volume 8333, pp. 265-278, 2014.

BC3. G.L. Mariottini, S. Scheggi, F. Morbidi, D. Prattichizzo, “Catadioptric Stereo with
Planar Mirrors: Multiple-View Geometry and Camera Localization”, in Visual Servo-
ing via Advanced Numerical Methods, G. Chesi and K. Hashimoto, Eds., Lecture
Notes in Computer Science, Springer, pp. 3-22, 2010.

BC2. G.L. Mariottini, S. Scheggi, F. Morbidi, D. Prattichizzo,“A Robust Uncalibrated Vi-
sual Compass Algorithm from Paracatadioptric Line Images” in Proc. 1st Workshop on
Omnidirectional Robot Vision, E. Menegatti and T. Pajdla, Eds., Lecture Notes in
Computer Science, Springer, pp. 242-255, November 2008.

BC1. F. Morbidi, D. Prattichizzo,“Sliding mode formation tracking control of a tractor and
trailer-car system”, in Proc. Robotics: Science and Systems III, W. Burgard, O. Brock
and C. Stachniss Eds., MIT press, Cambridge MA, pp. 113-120, March 2008.

Conférences internationales avec actes et comité de lecture

C42. A. El Moudni, F. Morbidi, S. Kramm, R. Boutteau, “An Event-based Stereo 3D Map-
ping and Tracking Pipeline for Autonomous Vehicles”, in Proc. 26th IEEE International
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Conference on Intelligent Transportation Systems, Workshop “Beyond Traditional
Sensing for Intelligent Transportation”, Bilbao, Spain, September 24-28, 2023.

C41. F. Morbidi, D. Pisarski, “Practical and Accurate Generation of Energy-Optimal Trajec-
tories for a Planar Quadrotor”, in Proc. IEEE International Conference on Robotics
and Automation, Xi’an, China, pp. 355-361, May 30 - June 5, 2021.

C40. S. Delmas, F. Morbidi, G. Caron, J. Albrand, M. Jeanne-Rose, L. Devigne, M. Ba-
bel, “SpheriCol: A Driving Assistance System for Power Wheelchairs Based on Spherical
Vision and Range Measurements”, in Proc. IEEE/SICE International Symposium on
System Integration, Iwaki, Japan, pp. 505-510, January 11-14, 2021.

C39. D. Adlakha, A. Habed, F. Morbidi, C. Demonceaux, M. de Mathelin, “Stratified
Autocalibration of Cameras with Euclidean Image Plane”, in Proc. 31st British Machine
Vision Conference, Manchester, UK, paper 26, September 7-11, 2020.

C38. G. Hardouin, J. Moras, F. Morbidi, J. Marzat, E. Mouaddib, “Next-Best-View plan-
ning for surface reconstruction of large-scale 3D environments with multiple UAVs”, in
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Las
Vegas, USA, October 25-29, 2020.

C37. J. Caracotte, F. Morbidi, E. Mouaddib, “Photometric Stereo with Twin-Fisheye Cam-
eras”, in Proc. 25th International Conference on Pattern Recognition, Milan, Italy,
pp. 5270-5277, January 10-15, 2021.

C36. G. Hardouin, F. Morbidi, J. Moras, J. Marzat, E. Mouaddib, “Surface-driven Next-
Best-View planning for exploration of large-scale 3D environments”, in Proc. 21st IFAC
World Congress, Berlin, Germany, pp. 15501-15507, 12-17 July 2020.

C35. F. Morbidi, “Subspace Projectors for State-Constrained Multi-Robot Consensus, in Proc.
IEEE International Conference on Robotics and Automation, Paris, France, pp.
7705-7711, May 31 - June 4, 2020.

C34. D. Adlakha, A. Habed, F. Morbidi, C. Demonceaux, M. de Mathelin, “QUARCH:
A New Quasi-Affine Reconstruction Stratum from Vague Relative Camera Orientation
Knowledge, in Proc. 17th International Conference on Computer Vision, Seoul, Re-
public of Korea, pp. 1082-1090, October 29 - November 1, 2019.

C33. F. Morbidi, E. Bretagne, “A New Characterization of Mobility for Distance-Bearing
Formations of Unicycle Robots, in Proc. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, Madrid, Spain, pp. 4833-4839, October 1-5, 2018.
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C32. F. Morbidi, D. Bicego, M. Ryll, A. Franchi, “Energy-Efficient Trajectory Generation
for a Hexarotor with Dual-Tilting Propellers”, in Proc. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Madrid, Spain, pp. 6226-6232, October
1-5, 2018.

C31. G. Caron, F. Morbidi, “Spherical Visual Gyroscope for Autonomous Robots using the
Mixture of Photometric Potentials”, in Proc. IEEE International Conference on Robo-
tics and Automation, Brisbane, Australia, pp. 820-827, May 21-25, 2018.

C30. F. Morbidi, R. Cano, D. Lara, “Minimum-Energy Path Generation for a Quadrotor
UAV”, in Proc. IEEE International Conference on Robotics and Automation, Stock-
holm, Sweden, pp. 1492-1498, May 16-21, 2016.

C29. F. Morbidi, L. León Ojeda, C. Canudas de Wit, I. Bellicot, “Robust mode selection
for highway traffic density estimation”, in Proc. European Control Conference, in-
vited session “Traffic Control and Estimation: New Trends and Opportunities”,
Strasbourg, France, pp. 2576-2580, June 24-27, 2014.

C28. F. Morbidi, “The Second-order Parametric Consensus Protocol”, in Proc. European
Control Conference, Strasbourg, France, pp. 202-207, June 24-27, 2014.

C27. S. Scheggi, M. Aggravi, F. Morbidi, D. Prattichizzo, “Cooperative human-robot haptic
navigation”, in Proc. IEEE International Conference on Robotics and Automation,
Hong Kong, China, pp. 2693-2698, May 31 - June 5, 2014.

C26. S. Scheggi, F. Morbidi, D. Prattichizzo, “Uncalibrated Visual Compass from Omnidi-
rectional Line Images with Application to Attitude MAV Estimation”, in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp.
1602-1607, November 3-7, 2013.

C25. U. Gürcüoğlu, G.A. Puerto-Souza, F. Morbidi, G.L. Mariottini, “Hierarchical Control
of a Team of Quadrotors for Cooperative Active Target Tracking”, in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp.
5730-5735, November 3-7, 2013.

C24. F. Morbidi, P. Colaneri, T. Stanger, “Decentralized optimal control of a vehicle platoon
with guaranteed string stability”, in Proc. European Control Conference, Zurich,
Switzerland, pp. 3494-3499, July 17-19, 2013.

C23. F. Morbidi, “On the control of the algebraic connectivity and clustering of a network of
mobile agents”, in Proc. European Control Conference, Zurich, Switzerland, pp.
2801-2806, July 17-19, 2013.
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C22. F. Morbidi, “On the Properties of the Deformed Consensus Protocol”, in Proc. 51st IEEE
Conference on Decision and Control, Maui, Hawaii, USA, pp. 812-817, December
10-13, 2012.

C21. F. Morbidi, G.L. Mariottini, “On Active Target Tracking and Cooperative Localization
for Multiple Aerial Vehicles”, in Proc. IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, invited session on “Aerial Robotics”, San Francisco, CA,
USA, pp. 2229-2234, September 25-30, 2011.

C20. F. Morbidi, C. Ray, G.L. Mariottini, “Cooperative active target tracking for heteroge-
neous robots with application to gait monitoring”, in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, USA, pp. 3608-
3613, September 25-30, 2011.

C19. F. Morbidi, R.A. Freeman, K.M. Lynch, “Estimation and Control of UAV Swarms for
Distributed Monitoring Tasks”, in Proc. American Control Conference, San Fran-
cisco, CA, USA, pp. 1069-1075, June 29-July 1, 2011.

C18. L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “On internal dynamics of for-
mations of unicycle robots”, in Proc. 49th IEEE Conference on Decision and Control,
pp. 5462–5467, Atlanta, GA, USA, December 15-17, 2010.

C17. F. Morbidi, A. Giannitrapani, D. Prattichizzo, “Maintaining connectivity among mul-
tiple agents in cyclic pursuit: a geometric approach”, in Proc. 49th IEEE Conference on
Decision and Control, pp. 7461–7466, Atlanta, GA, USA, December 15-17, 2010.

C16. G. Marro, F. Morbidi, L. Ntogramatzidis, D. Prattichizzo, “Geometric Control Theory
for Linear Systems: a Tutorial”, in Proc. 19th International Symposium on Mathe-
matical Theory of Networks and Systems, pp. 1579–1590, Budapest, Hungary, July
5-9, 2010.

C15. L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “Non-rigid Formations of Non-
holonomic Robots”, in Proc. IEEE International Conference on Robotics and Au-
tomation, pp. 4976-4981, Anchorage, AK, USA, May 3-8, 2010.

C14. F. Chinello, S. Scheggi, F. Morbidi, D. Prattichizzo, “KCT: a MATLAB toolbox for
motion control of KUKA robot manipulators”, in Proc. IEEE International Conference
on Robotics and Automation, pp. 4603-4608, Anchorage, AK, USA, May 3-8, 2010.

C13. G. Marro, F. Morbidi, D. Prattichizzo, “A Geometric Solution to the Cheap Spectral
Factorization Problem”, in Proc. European Control Conference, pp. 814-819, Bu-
dapest, Hungary, August 23-26, 2009.
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C12. F. Morbidi, G. Ripaccioli, D. Prattichizzo, “On Connectivity Maintenance in Linear
Cyclic Pursuit”, in Proc. IEEE International Conference on Robotics and Automa-
tion, pp. 363-368, Kobe, Japan, May 12-17, 2009.

C11. F. Morbidi and D. Prattichizzo, “Range estimation from a moving camera: an I&I ap-
proach”, in Proc. IEEE International Conference on Robotics and Automation, pp.
2810-2815, Kobe, Japan, May 12-17, 2009.

C10. G.L. Mariottini, S. Scheggi, F. Morbidi, D. Prattichizzo, “Planar Catadioptric Stereo:
Single and Multi-View Geometry for Calibration and Localization”, in Proc. IEEE In-
ternational Conference on Robotics and Automation, pp. 1510-1515, Kobe, Japan,
May 12-17, 2009.

C9. F. Morbidi, F. Bullo, D. Prattichizzo, “On leader-follower visibility maintenance for
Dubins-like vehicles via controlled invariance”, in Proc. 47th IEEE Conference on De-
cision and Control, pp. 1821-1826, Cancun, Mexico, December 9-11, 2008.

C8. F. Morbidi, G.L. Mariottini, D. Prattichizzo, “Vision-based range estimation via Im-
mersion and Invariance for robot formation control”, in Proc. of the IEEE International
Conference on Robotics and Automation, pp. 504-509, Pasadena, CA, USA, May
19-23, 2008.

C7. L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “Steering hierarchical forma-
tions of unicycle robots”, in Proc. 46th IEEE Conference on Decision and Control,
pp. 1410-1415, New Orleans, LA, USA, December 12-14, 2007.

C6. G. Marro, F. Morbidi, D. Prattichizzo, “H2-Pseudo Optimal Model Following: A Geo-
metric Approach”, in Proc. 3rd IFAC Symposium on System, Structure and Control,
Foz do Iguaçu, Brazil, October 17-19, 2007.

C5. F. Morbidi, L. Consolini, D. Prattichizzo, M. Tosques, “Leader-Follower Formation
Control as a Disturbance Decoupling Problem”, in Proc. European Control Confer-
ence, pp. 1492-1497, Kos, Greece, July 2-5, 2007.

C4. F. Morbidi, A. Garulli, D. Prattichizzo, C. Rizzo, S.Rossi, “A Kalman filter approach
to remove TMS-induced artifacts from EEG recordings”, in Proc. European Control
Conference, pp. 2201-2206, Kos, Greece, July 2-5, 2007.

C3. L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “A Geometric Characterization
of Leader-Follower Formation Control”, in Proc. of the IEEE International Conference
on Robotics and Automation, pp. 2397-2402, Rome, April 10-14, 2007.
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C2. G.L. Mariottini, F. Morbidi, D. Prattichizzo, G.J. Pappas, K. Daniilidis, “Leader-
Follower Formations: Uncalibrated Vision-Based Localization and Control”, in Proc. of
the IEEE International Conference on Robotics and Automation, pp. 2403-2408,
Rome, April 10-14, 2007.

C1. L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, “On the Control of a Leader-
Follower Formation of Nonholonomic Mobile Robots”, in Proc. 45th IEEE Conference
on Decision and Control, pp. 5992–5997, San Diego, CA, USA, December 13-15,
2006.

Revues nationales à comité de lecture

JN2. L. Ménard, S. Achille-Fauveau, M. Babel, R. Khemmar, L. Lecrosnier, F. Morbidi,
D. Laval-Quesney, P. Gallien, É. Leblong, “Mieux connaı̂tre les nouvelles technologies:
la formation des professionnels de santé par le projet ADAPT”, ergOThérapies, Tome 2,
Editorial n. 87, pp. 35-45, October 2022 (dossier spécial: “Les aides techniques et
l’ergothérapie: enjeux et perspectives”), https://revue.anfe.fr

JN1. E. Mouaddib, G. Caron, D. Leclet-Groux, F. Morbidi, “Le patrimoine in silico. Ex-
emple de la cathédrale d’Amiens”, In Situ. Revue des patrimoines, n. 39, numéro
spécial intitulé “Imagerie numérique et patrimoine culturel : enjeux scientifiques
et opérationnels”, P. Liévaux, L. De Luca (eds.), May 2019.

Conférences nationales avec actes et comité de lecture

CN2. F. Morbidi, E. Mouaddib, “E-Cathédrale: numérisation de la cathédrale d’Amiens et
reconstruction des trajectoires balistiques de l’artillerie allemande en avril 1918”, actes
du colloque “Cathédrales en Guerre: XVIe - XXe siècles”, Amiens, June 8-9, 2017,
Presses Universitaires du Septentrion, X. Boniface, L. Dessaivre (eds.), pp. 23–
44, 1re édition, January 31, 2020, www.septentrion.com/fr/livre/?GCOI=
27574100809690

CN1. G. Caron, F. Morbidi, “Gyroscope visuel sphérique basé mélange de potentiels pho-
tométriques”, in Reconnaissance des Formes, Image, Apprentissage et Perception
(RFIAP), Marne-la-Vallée, France, June 25-28, 2018.

Communications orales

O6. D. Rodrigues da Costa, P. Vasseur, F. Morbidi, “Vision Événementielle Omnidirection-
nelle : Théorie et Applications”, in Journées Francophones des Jeunes Chercheurs en
Vision par Ordinateur (ORASIS), Carqueiranne, France, May 22-26, 2023.
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O5. A. El Moudni, S. Kramm, F. Morbidi, R. Boutteau, “Suivi et estimation de profondeur
avec un banc stéréo événementiel embarqué sur un véhicule autonome”, in Journées
Francophones des Jeunes Chercheurs en Vision par Ordinateur (ORASIS), Car-
queiranne, France, May 22-26, 2023.

O4. J. Caracotte, F. Morbidi, E. Mouaddib, “Photometric Stereo with Twin-Fisheye Cam-
eras”, in Journées Francophones des Jeunes Chercheurs en Vision par Ordinateur
(ORASIS), Lac de Saint-Ferréol, France, September 13-17, 2021.

O3. J. Caracotte, F. Morbidi, E. Mouaddib, “Photometric Stereo with Twin-Fisheye Cam-
eras”, in Journées Francophones des Jeunes Chercheurs en Vision par Ordinateur
(ORASIS), Lac de Saint-Ferréol, France, September 13-17, 2021.

O2. G. Hardouin, F. Morbidi, J. Moras, J. Marzat, E. Mouaddib, “Surface-driven Next-
Best-View planning for exploration of large-scale 3D environments”, in Reconnaissance
des Formes, Image, Apprentissage et Perception et Conférence sur l’Apprentissage
automatique (CAp), Vannes, France, June 23-26, 2020.

O1. S. Scheggi, F. Morbidi, D. Prattichizzo, “Mixed human-robot formation control with
vibrotactile haptic feedback” in IEEE International Conference on Robotics and Au-
tomation Workshop “Haptic Teleoperation of Mobile Robots: Theory, Applica-
tions and Perspectives”, St. Paul, MN, USA, May 14-18, 2012.

Soumis

• D. Rodrigues da Costa, P. Vasseur, F. Morbidi, “Gyrevento: Event-based Omnidirec-
tional Visual Gyroscope in a Manhattan World”, submitted to the International Jour-
nal of Robotics Research, January 30, 2024.

• A.N. André, F. Morbidi, G. Caron, “UniSphorM: A New Uniform Spherical Image
Representation with Application to Direct Attitude Estimation”, submitted to the IEEE
Transactions on Robotics, December 8, 2023.

N.B. Mes articles ont été cités 2990 fois ([J2] a été cité 760 fois) et mon h-index est 27
(février 2024). Pour plus de détails, veuillez consulter mon profil Google Scholar :
http://scholar.google.it/citations?user=THZ3Y7MAAAAJ&hl=en.
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1.1.3 Encadrement de jeunes chercheurs

� Post-doctorants :

• Houssem-Eddine Benseddik, “Omnidirectional Vision for Orientation Estima-
tion and Localization of a Semi-Autonomous Wheelchair”, post-doc financé par
le conseil régional des Hauts-de-France en support du projet Interreg VA
ADAPT (1er janvier 2018 - 4 décembre 2019). Co-encadrement à 50% avec
G. Caron. Une publication a été réalisée : [J19].

� Doctorants :

• Djessy Rossi, “Event-based detection for intelligent transportation systems: Con-
volutional vs Spiking Neural Networks”, thèse financée par le projet ANR PRCE
CERBERE (janvier 2022 - janvier 2026). Directeur de thèse : Prof. P. Vasseur
(taux d’encadrement 50%). Co-encadrant : F. Morbidi (taux d’encadrement
50%).

• Anass El Moudni, “Reconstruction 3D par vision événementielle stéréoscopique
pour le véhicule”, thèse financée par le projet ANR PRCE CERBERE (janvier
2022 - janvier 2026). Directeur de thèse: Prof. R. Boutteau (taux d’encadrement
50%). Co-encadrants : F. Morbidi (taux d’encadrement 25%) et S. Kramm
(taux d’encadrement 25%). Une publication a été réalisée : [C42].

• Daniel Rodrigues da Costa, “Evento : Caméras évènementielles omnidirection-
nelles pour les robots à très haute dynamique”, thèse cofinancée par l’AID (Agence
de l’Innovation de Défense - Ministère des Armées) et par l’UPJV (octobre
2021 - octobre 2024). Directeur de thèse : Prof. P. Vasseur (taux d’encadrement
50%). Co-encadrant : F. Morbidi (taux d’encadrement 50%). Une présentation
orale a été réalisée : [O6].

• Guillaume Hardouin, “ScanBot : Scanners Robotisés pour la Numérisation Au-
tomatique du Patrimoine”, thèse cofinancée par la région Hauts-de-France et
l’ONERA DTIS, Palaiseau (octobre 2018 - décembre 2021). Directeur de thèse:
Prof. E. Mouaddib (taux d’encadrement 33%). Co-encadrants : F. Morbidi
(taux d’encadrement 33%), J. Moras (taux d’encadrement 33%). La thèse a été
soutenue le 22 mars 2022 à l’ONERA, Palaiseau. Trois publications ont été
réalisées : [C36], [C38] et [J24].

• Devesh Adlakha, “Robust Globally Optimal Optimization in Computer Vision:
Geometric Transformations Estimation with Semantic Cues and Vague Motion Knowl-
edge”, thèse cofinancée par le projet ANR SUMUM et l’Université de Stras-
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bourg (janvier 2018 - janvier 2021). Directeur de thèse : M. de Mathelin
(iCube, Université de Strasbourg). Co-encadrant : A. Habed (Université de
Strasbourg). J’ai suivi le doctorant et j’ai participé au co-encadrement tout
au long de sa thèse (une réunion tous les 15 jours en moyenne). La thèse a
été soutenue le 12 décembre 2022 à Strasbourg. Deux publications ont été
réalisées : [C34] et [C39].

• Jordan Caracotte, “Reconstruction 3D par stéréophotométrie pour la vision om-
nidirectionnelle”, thèse ministérielle (octobre 2016 - juillet 2021). La thèse a
été soutenue le 6 juillet 2021. Directeur de thèse : Prof. E. Mouaddib (taux
d’encadrement 30%). Co-encadrant : F. Morbidi (taux d’encadrement 70%).
Deux publications ont été réalisées : [J20] et [C37].

N.B. Tous les co-encadrements de thèse ont été autorisés par la CR (Commission
recherche) du conseil académique de l’UPJV.

� Ingénieurs de recherche :

• Sarah Delmas, “SpheriCol: Augmented reality for driving assistance of an elec-
tric wheelchair”, ingénieur de recherche financée par le projet Interreg VA
ADAPT (15 octobre 2019 - 15 octobre 2021). Trois publications ont été réalisées :
[C40], [J22] et [J23].

� Étudiants en Master :

• Anass El Moudni (Master 2/ingénieur, Université de Franche-Comté) : Stage
intitulé “Reconstruction 3D par vision évènementielle stéréoscopique pour le véhicule
autonome”, 21 février 2022 - 31 août 2022. Co-encadrement avec S. Framm et
R. Boutteau, laboratoire LITIS, Université de Rouen. Stage financé par le pro-
jet ANR CERBERE.

• Daniel Rodrigues da Costa (Master 2, Dépt. EEA, UPJV) : Stage intitulé
“EVENTO : Caméras évènementielles omnidirectionnelles pour les robots à très
haute dynamique”, 8 février 2021 - 31 août 2021. Co-encadrement (à 50%) avec
P. Vasseur.

• Julien Albrand (Master 2, Dépt. EEA, UPJV) : Stage intitulé “Estimation
d’angle de cap d’un véhicule par vision”, 17 février - 31 août 2020. Co-encadrement
avec A. Rabhi et G. Caron.
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• Méven Jeanne-Rose (Master 2, Dépt. EEA, UPJV) : Stage intitulé “Concep-
tion d’un système twin-fisheye stéréo pour l’aide à la conduite d’un fauteuil roulant
électrique”, 17 février - 31 août 2020. Co-encadrement (à 50%) avec S. Delmas.

• Julien Albrand et Méven Jeanne-Rose (Master 1, Dépt. EEA, UPJV) : Projet
intitulé “SpheriCol: Augmented reality for driving assistance of an electric wheelchair”
juillet 2019. Co-encadrement (à 50%) avec G. Caron. Une publication a été
réalisée : [C40].

• Mohamed Zerrouki (Master 2, Dépt. EEA, UPJV) : Stage intitulé “Commande
prédictive pour la stabilité du véhicule”, 16 avril 2018 - 17 septembre 2018. Co-
encadrement avec A. Rabhi et A. El Hajjaji.

• Jean Hoffmann (Master 1, Dépt. EEA, UPJV) : Stage intitulé “Reconnaissance
d’Endive par Vision et Pick-and-Place par Robot Industriel”, avril-août 2016 en
collaboration avec l’entreprise Godé.

• Roel Ramiro Cano Cisneros (Master 1, Universidad Autónoma de Tamauli-
pas, Mexico) : Stage intitulé “Energy-optimal path planning for a quadrotor UAV”,
mai-août 2015. Co-encadrant (Universidad Autónoma de Tamaulipas, Mex-
ico) : David Lara. Une publication a été réalisée : [C30].

• Maroua Selmi (Master 2, Dépt. EEA, UPJV) : Stage intitulé “Correlation de
phase pour l’odométrie visuelle omnidirectionnelle d’un robot mobile”, mai-août
2015. Ce travail a été valorisé, en partie, dans l’article [J18].

1.1.4 Rayonnement et visibilité

Distinctions scientifiques et primes

• Outstanding Reviewer de la revue IEEE Transactions on Robotics pour les annés
2013 et 2014.

• Bénéficiaire d’une PEDR, “Prime d’Encadrement Doctoral et de Recherche” en
octobre 2017, pour une durée de 4 ans.

• Bénéficiaire d’un CRCT, “Congé pour Recherches ou Conversions Thématiques”
au titre de l’établissement (UPJV) d’une durée d’un semestre (1er février 2021 −
1er septembre 2021). Titre du projet de recherche : “Optimal Energy Management for
Extended Flight Endurance of Battery-Powered Multi-rotor UAVs”.

Conférences et séminaires sur invitation

• “Event-based vision for robotics”, laboratoire CRIStAL, Université de Lille, 27 octo-
bre 2023.
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• “Event-based vision: A new sensing paradigm for agile drones and autonomous cars”,
CNRS-AIST Joint Robotics Laboratory, Tsukuba, Japan, 17 février 2023.

• “Minimum-Energy Trajectory Generation for Battery-Powered Multirotor UAVs”, Di-
partimento di Ingegneria e Architettura, Università di Parma, Italie, 5 novembre
2021 et GT-UAV (Véhicules Aériens), GdR Robotique, Webinar, 10 décember 2021.

• “Vision non conventionnelle pour la robotique mobile: caméras catadioptriques, plénoptiques
et event-based”, session Perception, Journées Nationales de la Recherche Robotique
(JNRR), Domaine de Françon, Biarritz, France, 9 novembre 2017.

• “E-Cathédrale : numérisation de la cathédrale d’Amiens et reconstruction des trajectoires
balistiques de l’artillerie allemande en avril 1918”, Colloquium “Les Cathédrales en
Guerre (XVIe-XXIe siècles)”, organisé par la Société des Amis de la Cathédrale
d’Amiens en partenariat avec l’Université de Picardie Jules Verne, Amiens, 8-9
juin 2017.

• “Feature-based and Dense Omnidirectional Visual Compass for Autonomous Robots”, In-
ternational Multidisciplinary Workshop on Sensing Reconstruction, and Recog-
nition of Environment, Optical Media Interface Lab, Nara Institute of Science
and Technology (NAIST), Japon, 16-17 mars 2017, http://omilab.naist.jp/
WS20170316.html

• “Minimum-Energy Path Generation for Battery-Powered Multirotor UAVs”, équipe
RIS, LAAS-CNRS, Toulouse, France, 12 décembre 2016.

• “Digital Modeling of Cultural Heritage: Toward Cloud-based Robotic Solutions”, Keynote
talk, International Conference on Cloud and Robotics (ICCR16), Saint Quentin,
France, 22 novembre 2016.

• “Cooperative Active Target Tracking for Multiple Aerial Vehicles”, équipe Lagadic, Inria
Rennes - Bretagne Atlantique, France, 30 juin 2016.

• “Calibration précise et robuste de caméras RGB-D basée sur les objets sphériques”, Journée
GdR ISIS-Robotique “Analyse des données RGB-Depth pour l’analyse de scènes”,
Telecom Paris, France, 31 mai 2016.

• “Robust traffic estimation over graphs”, EU HYCON2 WP5 meeting - Traffic Show-
case, Seville, Spain, 17 mai 2013.

• “The Deformed Consensus Protocol”, GIPSA-lab, CNRS, Université Grenoble Alpes,
France, 19 septembre 2012.
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• “Distributed Estimation and control of UAV Swarms for Environmental monitoring”,
Dept. of Mechanical Engineering, Northwestern University, USA, 11 mai 2010.

Comités de rédaction

� Revues internationales

• Editeur Associé des “IEEE Transactions on Robotics” depuis mars 2022.

• Editeur Associé des “IEEE Robotics and Automation Letters” depuis mars 2022.

• Membre de l’Editorial Board (comme Review Editor) de “Frontiers in Robotics and AI”
spécialité “Robotic Control Systems”, depuis juin 2015.

• Membre de l’Editorial Board de “International Journal of Advanced Robotic Systems”,
depuis le 26 avril 2013.

� Conférences internationales

• Editeur Associé pour le Conference Editorial Board (CEB) de l’IEEE Robotics and
Automation Society pour ICRA 2017-2024.

• Editeur Associé du IROS Conference Paper Review Board (CPRB) en 2020, 2021,
2022 et 2024.

• Program Co-Chair of the 3rd International Conference on Robotics, Computer Vision
and Intelligent Systems, ROBOVIS 2022, 26-27 octobre 2022, Valletta, Malta

• Member of the Program Committee of the “10th European Conference on Mobile
Robots”, ECMR 2021, 31 août - 3 septembre 2021, Bonn, Germany
https://ecmr2021.org

• Member of the International Program Committee of the “2nd International Con-
ference on Robotics, Computer Vision and Intelligent Systems”, ROBOVIS 2021, 27-29
octobre 2021, Valletta, Malta

• Member of the Program Committee of the “9th European Conference on Mobile Robots”
ECMR 2019, 4-6 septembre 2019, Prague, Czech Republic, www.ecmr2019.eu

• Member of the Program Committee of the “International Symposium on Multi-robot
and Multi-Agent Systems”, MRS 2017, 4-5 décembre 2017, University of Southern
California, Los Angeles, USA.

• Member of the International Program Committee of the “14th International Confer-
ence on Informatics in Control, Automation and Robotics”, ICINCO 2017, 29-31 juillet
2017, Madrid, Spain.
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Appartenance à des sociétés savantes

• IEEE Membership (IEEE Robotics & Automation Society - IEEE RAS) :

– IEEE Student Member depuis janvier 2007

– IEEE Associate Member depuis octobre 2009

– IEEE Member depuis mai 2012

– IEEE Senior Member depuis avril 2019

• Membre du IEEE RAS Technical Committee on Multi-Robot Systems, depuis
septembre 2014.

• Secrétaire du Chapitre Italien de l’IEEE RAS : octobre 2006 - octobre 2010.

• Membre nommé suppléant du CNU, collège B, section 61, mandature 2023-2027.

• Membre du GdR MACS (“Groupement de Recherche Modélisation, Analyse et Conduite
des Systèmes dynamiques”), depuis janvier 2018, http://gdr-macs.cnrs.fr.

Activités de reviewer

• Expertise de projets de recherche nationaux et internationaux :

– Expertise pour une bourse de doctorat, Région Normandie, 10 mars 2023.

– Expertise d’un dossier scientifique dans le cadre de l’AAP IRS 2020 de l’IDEX
Communauté Université Grenoble Alpes, 21 mars 2021.

– Expertise d’un projet ANR générique (2e phase, comité d’évaluation “CE33 -
Interaction, Robotique”), 10 mai 2019.

– Expertise d’un projet pour le “Research Grants Council” (RGC) de Hong
Kong, Chine, 16 février 2018.

• Membre du comité pour l’Annual European Systems & Control PhD Thesis Award,
mai 2023, www.eeci-igsc.eu/eeciphdaward

• Reviewer pour les revues les plus importantes dans le domaine de la Robotique et
de l’Automatique, notamment : IEEE Transactions on Robotics (environ 40 soumis-
sions évaluées), International Journal of Robotics Research, Robotics and Autonomous
Systems, Autonomous Robots, IEEE Robotics and Automation Letters, IEEE Transac-
tions on Automatic Control, Automatica, Systems & Control letters, IEEE Transactions
on Control Systems Technology, IEEE Transactions on Control of Network Systems.
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• Reviewer pour les conférences internationales de Robotique et d’Automatique les
plus importantes, notamment : IEEE Int. Conf. Robotics and Automation, IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, Robotics: Science and Systems, IEEE Conf.
on Decision and Control, American Control Conf., European Control Conf., IFAC World
Congress.

Collaborations externes

• Visite de l’Institute of Fundamental Technological Research of the Polish Academy
of Sciences (IPPT PAN), Varsovie, Pologne, 3-7 février 2020 et 20-24 juillet 2021.
La visite a permis de lancer une collaboration de recherche avec le Dr. Dominik
Pisarski. Une publication commune, [C41], a été réalisée.

• Optical Media Interface Lab (Mukaigawa Lab), Nara Institute of Science and Tech-
nology (NAIST), Japon, 7-15 avril 2019. Réunions de travail avec les collaborateurs
du NAIST, du CNRS-AIST JRL (Tsukuba) et de l’Université de Tokyo, pour le
montage d’un projet Franco-Japonais JST-ANR (CREST). Les doctorants J. Cara-
cotte et D. Rodrigues da Costa ont effectué un séjour de recherche de deux mois
au Optical Media Interface Lab en 2019 et 2023, respectivement.

• Institute of Computer Graphics and Vision, Graz University of Technology, Autriche.
Collaboration de recherche avec le Prof. Friedrich Fraundorfer dans le cadre du
projet ANR-FWF EVELOC (2024-2028), voir la Sect. 1.1.5 pour plus de détails.

Jurys de thèse

• “Generation of Reactive Trajectories for Multi-Drone Systems”, Nicola De Carli, Uni-
versité de Rennes 1, IRISA, INRIA Rennes-Bretagne Atlantique, 18 avril 2024.

Directeur de thèse : P. Robuffo Giordano
Co-directeur de thèse : P. Salaris (Università di Pisa, Italie)
Examinateur : F. Morbidi

• “Robust Trajectory Planning Algorithms for Robotic Tasks with Parametric Uncertain-
ties”, Pascal Brault, Université de Rennes 1, IRISA, INRIA Rennes - Bretagne At-
lantique, 27 avril 2023.

Directeur de thèse : P. Robuffo Giordano
Examinateur : F. Morbidi

• “Segmentation dimages omnidirectionnelles de scènes routières”, Ahmed Rida Sekkat,
Université de Rouen Normandie, 8 décembre 2022.
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Directeurs de thèse : P. Honeine et P. Vasseur
Co-directeur de thèse : Y. Dupuis
Examinateur : F. Morbidi

• “Perception embarquée/débarquée pour la navigation autonome”, Antoine Caillot, Uni-
versité de Rouen, 22 novembre 2022.

Directeurs de thèse : Y. Dupuis et R. Boutteau
Co-directeurs de thèse : S. Ouerghi et P. Vasseur
Examinateur : F. Morbidi

• “Planar Pushing: a study of non-prehensile manipulation with single and multiple mobile
robots”, Filippo Bertoncelli, Università degli studi di Modena e Reggio Emilia,
Italie, mai 2022.

Directeur de thèse : L. Sabattini
Examinateur externe : F. Morbidi

• “Algorithmes d’estimation et de commande pour des quadrirotors en intéraction physique
avec l’environnement”, Quentin Delamare, Université de Rennes 1, IRISA, INRIA
Rennes-Bretagne Atlantique, 9 décembre 2019.

Directeur de thèse : P. Robuffo Giordano
Co-directeur de thèse : A. Franchi
Examinateur : F. Morbidi

• “The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on
Bilateral Telemanipulation”, Olmo Alonso Moreno Franco, Università degli studi di
Genova et Istituto Italiano di Tecnologia (IIT), Italie, 14 février 2019.

Directeur de thèse : D. Prattichizzo
Membre du jury : L. Pallottino
Rapporteurs externes : F. Chinello, F. Morbidi

• “Synthesis and Analysis of Virtual Holonomic Constraints for Lagrangian Mechanical
Systems”, Alessandro Costalunga, Università di Parma, Italie, mars 2017.

Directeur de thèse : M. Locatelli
Co-directeur de thèse : L. Consolini
Membre du jury : A. Visioli
Rapporteurs externes : M. Maggiore, F. Morbidi

• “Distributed Methods for Finite-time Average Consensus Protocol Design and Network
Robustness Assessment”, Thi-Minh Dung Tran, Université Grenoble Alpes, 26 mars
2015.
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26 1. Activités scientifiques et pédagogiques

Directeur de thèse : C. Canudas-de-Wit
Co-encadrant : A. Kibangou
Examinateur : F. Morbidi

Comités de suivi individuel (CSI)

• “Conduite assistée d’un fauteuil roulant : navigation par intervalles à l’aide de bea-
cons Ultra Large Bande”, Julien Albrand, IRISA/INSA de Rennes (octobre 2020).
Encadrants : V. Drevelle, E. Marchand, M. Babel.

Comités de sélection

• Poste de Maı̂tre de Conférences (Section CNU 61), Université de Technologie de
Compiègne, laboratoire Heudiasyc, 24 avril et 22 mai 2024. Rôle : rapporteur.

• Poste de Maı̂tre de Conférences (Section CNU 61), Université Grenoble Alpes, lab-
oratoire GIPSA, 2 et 16 mai 2023. Rôle : rapporteur. Présidente du comité de
recrutement : Marie-Laure Espinouse.

• Poste de Maı̂tre de Conférences (Section CNU 61), INSA de Rouen, laboratoire
LITIS, 9 avril 2021. Rôle : rapporteur. Présidente du comité de recrutement : Ouid-
dad Labbani-Igbida.

1.1.5 Responsabilités scientifiques

Projets et contrats de recherche

• Université de Picardie Jules Verne (UPJV) :

− EVELOC [janvier 2024-janvier 2028] “Event-based Visual Localization”, ANR-
FWF (projet collaboratif franco-autrichien). Coordinateurs : P. Vasseur (UPJV,
France), F. Fraundorfer (Graz University of Technology, Autriche). Trois labo-
ratoires sont impliqués dans le projet. Budget total : 705 ke. Rôle : Participant
dans l’équipe de l’UPJV.

− M2SV [janvier 2024-janvier 2026] “Mobile Manipulator control based on Spheri-
cal Vision”. Projet exploratoire du GdR 720 ISIS. Porteur : Dr. Nathan Crombez
(Université de Technologie de Belfort-Montbéliard). Trois laboratoires sont
impliqués dans le projet. Budget : 7 ke. Rôle : Participant dans l’équipe de
l’UPJV.
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− DEVIN [janvier 2024-janvier 2028] “Drones with Omni-Event Vision for Drone
Neutralization”, ANR PRC, AAP TSIA (Thématiques Spécifiques en Intelli-
gence Artificielle), Thématique 2 : Flottes intelligentes de robots. Porteur :
Dr. Guillaume Allibert (I3S, Université Côte d’Azur). Trois laboratoires sont
impliqués dans le projet. Rôle : Participant dans l’équipe de l’UPJV.

− HaDROs [janvier 2022-janvier 2024] “Vision Omni-HDR pour la localisation et
cartographie visuelles en environnement à large gamme de radiance”. Projet de
recherche exploratoire 2021 du GdR 720 ISIS. Porteur : Dr. Guillaume Caron
(CNRS-AIST JRL). Trois laboratoires sont impliqués dans le projet. Budget :
7 ke. Rôle : Responsable de l’équipe de l’UPJV.

− CERBERE [janvier 2021-décembre 2025] “Caméra évènementielle pour la pER-
ception d’oBjEts Rapides autour du véhicule autonomE”, ANR PRCE. Porteur :
R. Boutteau (LITIS, Université de Rouen). Le consortium est constitué de trois
laboratoires et d’une entreprise. Budget total : 656 ke. Rôle : Responsable de
l’équipe de l’UPJV, https://litis-cerbere.univ-rouen.fr

− ScanBot [octobre 2018-octobre 2021] “Scanners RoBotisés pour la Numérisation
Automatique du Patrimoine” : Projet de recherche cofinancé par la Région Hauts-
de-France et par ONERA DTIS (Palaiseau). Budget : 100 ke. Rôle : Porteur.

− FullScan [décembre 2018-décembre 2019] “Combining Complementary Sensors
on a Mobile Robotic System to Fully and Autonomously Digitize Complex Heritage
Buildings with Ultra High Definition”, projet PHC (Partenariat Hubert Curien)
Sakura. Porteurs : G. Caron (UPJV, France) et T. Funatomi (NAIST, Japon).
Budget : 15 ke. Rôle : Participant dans l’équipe de l’UPJV.

− SUMUM [septembre 2017-mars 2021] “Le numérique au service de la conservation-
restauration du patrimoine artistique”, ANR PRC, Challenge 7 : Information and
Communication Society. Porteur : Prof. A. Mansouri (Le2I, Université Bour-
gogne Franche-Comté). Quatre laboratoires partenaires : Le2I, GREYC, CI-
CRP/LABCOM, MIS. Budget total : 687 ke. Rôle : Participant dans l’équipe
de l’UPJV, https://anr-sumum.fr

− ADAPT [janvier 2017-juin 2022] “Assistive Devices for empowering disAbled Peo-
ple through robotic Technologies”, Interreg VA France (Channel) England pro-
gramme, 16 partenaires : 8 français et 8 anglais. Porteur : Dr. N. Ragot (ESIG-
ELEC Rouen, France). Budget total du European Region Development Fund
(ERDF) : 5.944 Me. Rôle : Participant et depuis septembre 2019 responsable
local (l’UPJV était le leader du WP2), http://adapt-project.com

• Inria, Grenoble Rhône-Alpes, France :
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− Entre novembre et décembre 2012, j’ai participé à la rédaction du projet EU
STREP - FP7 ICT intitulé “Systems-of-Systems control management of hetero-
geneous traffic networks” (SoSmart). Partenaires du projet : Inria Grenoble
Rhône-Alpes (porteur), EPFL (Suisse), KTH (Suède) et l’entreprise Karrus.

− J’ai été impliqué dans le projet national “MOCoPo: Measuring and mOdelling
traffic COngestion and POllution”. Ce projet de trois ans a débuté en janvier
2011 et il a été financé par le Ministrère chargé des Transports via le PREDIT
(Programme de Recherche et d’Innovation dans les Transports Terrestres).

− J’ai été impliqué dans le projet HYCON2 NoE, WP5 “Benchmarks: traffic show-
case”. Ce projet européen de quatre ans, coordonné par le CNRS (F. Lamnabhi-
Lagarrigue) a débuté en septembre 2010.

− J’ai rédigé le projet intitulé “Mobile Devices for Intelligent Road Traffic Predic-
tion” pour l’AAP iC LSI (Appel à projet, fonds de l’Institut Carnot, Logiciel
et Systemés Intelligents). Ce projet de 9 mois, accepté le 29 novembre 2013,
a démarré en janvier 2014.

• Johannes Kepler University (JKU), Autriche :

− J’ai été impliqué pendant 9 mois dans le projet intitulé “DVKUP: Demonstra-
tion und Validierung eines Kollisionsvermeidungssystems zur Unterstützung von
Piloten” (“DVKUP: Demonstration and Validation of a Collision Avoidance Sys-
tem for the Support of Pilots”) financé par la FFG, l’agence autrichienne pour
la recherche appliquée (janvier 2012 - janvier 2014). Partenaires du projet :
AeroSpy Sense & Avoid Technology GmbH (porteur), JKU, Austrian Insti-
tute of Technology (AIT), HB Flugtechnik GmbH, Austro Control.

− À l’automne 2011, j’ai participé à l’écriture du projet intitulé “A RObotic SEr-
vice System (ROSES) for the Science Park of Johannes Kepler University”. Le projet
(2013-2017) a été rédigé dans le cadre du ACCM “Austrian Center of Com-
petence in Mechatronics” (extension K2). Partenaires du projet (JKU): H. Bre-
mer, L. del Re, A. Stelzer.

• University of Texas at Arlington (UTA), USA :

− En mars 2011, j’ai participé à la rédaction du projet intitulé “Mobile Multi-
Agent Human-Capturing System for Monitoring Human Motion”, National Sci-
ence Foundation (NSF), Cyber-Physical Systems (CPS) Program. PI : G.L.
Mariottini (CSE Dept., UTA). Co-Pis : C. Ray, M. Ricard (Kinesiology Dept.,
UTA), F. Kamangar, V. Athitsos (CSE Dept., UTA).

• Northwestern University (NU), USA :
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− J’ai été impliqué dans le projet financé par l’Office of Naval Research, intitulé :
“Automatic Compilation of Global Objectives into Local Controllers for Cooperative
Mobile Agents” (1 octobre 2008 - 30 novembre 2012). Porteurs du projet : K.M.
Lynch (Dept. of Mechanical Engineering, NU) et R.A. Freeman (Dept. of
Electrical Engineering, NU).

Financements pour la mobilité et la recherche

• AAP S2R (juillet 2022) de l’UPJV, Action 4.5 (“Aide aux mobilités sortantes des
doctorants”) : financement de 1.3 ke pour une visite de deux mois du doctorant
D. Rodrigues da Costa au NAIST (Nara Institute of Technology), Japon.

• AAP S2R (juillet 2021) de l’UPJV, Action 4.3 (“Aide aux mobilités sortantes des
enseignants-chercheurs - recherche”) : financement de 375e pour une visite d’une
semaine (20-24 juillet 2021) de l’IPPT PAN (Polish Academy of Sciences) Varsovie,
Pologne.

• AAP S2R (février 2020) de l’UPJV, Action 4.3 (“Aide aux mobilités sortantes des
enseignants-chercheurs - recherche”) : financement de 800e pour une visite d’une
semaine (2-7 février 2020) de l’IPPT PAN (Polish Academy of Sciences), Varsovie,
Pologne.

• AAP S2R (avril 2018) de l’UPJV, Action 4.5 (“Aide aux mobilités sortantes des
doctorants”) : financement de 1.3 ke pour la visite de deux mois du doctorant
J. Caracotte au NAIST (Nara Institute of Technology), Japon.

Organisation de workshops et activité de Chair

• European robotic projects, H2020 program showcase at ICRA’20, 31 mai - 31 août
2020, Paris, France. Présentation du projet ADAPT (avec M. Babel).

• Organisateur local de la Journée Régionale des Doctorants en Automatique (JRDA
2018), 3 juillet 2018, Amiens, France.

• IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid,
Spain, 1er octobre 2018. Co-organisateur avec M. Babel, D. Daney, S. Mohammed,
F. Colas et Y. Amirat du workshop intitulé “Assistance and Service Robotics in a Hu-
man Environment: From Personal Mobility Aids to Rehabilitation-Oriented Robotics”,
www.iros-ar2018.lissi.fr/doku.php

• IEEE International Conference on Robotics and Automation, Singapore, 31 mai
2017. Chair of the regular session “Semantic Understanding”.
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• “Journée des Jeunes Chercheurs en Robotique” (JJCR) et “Journées Nationales de
la Recherche en Robotique” (JNRR), 20-23 octobre 2015. Membre du comité local
d’organisation.

• European Control Conference, Strasbourg, France, juin 2014. Organisateur et
Chair (avec A. Ferrara) de l’invited session intitulée “Traffic Control and Estimation:
New Trends and Opportunities”.

• European Control Conference, Zurich, Switzerland, juillet 2013. Chair of the reg-
ular session “Vehicle Formation Control”.

• IEEE International Conference on Decision and Control, Maui, HI, USA, décembre
2012. Co-Chair of the regular session “Agents and Autonomous Systems II”.

• American Control Conference, San Francisco, CA, USA, juin 2011. Co-Chair of the
regular session “Cooperative Control II”.

• Judge for the FIRST LEGO League, Grades 4-8. Museum of Nature & Science,
Dallas, TX, USA, 12 novembre 2010. Department of Computer Science and Engi-
neering, University of Texas at Arlington, USA, 4 décembre 2010,
www.firstlegoleague.org

• Co-organisateur (avec G. Marro, L. Ntogramatzidis et D. Prattichizzo) du mini-
cours (8 exposés, 4 heures) intitulé “The Geometric Approach to Systems & Control
Theory”, 19th Int. Symposium on Mathematical Theory of Networks and Systems
(MTNS), Budapest, Hongrie, 8 juillet 2010.

• IEEE International Conference on Robotics and Automation, Anchorage, USA,
mai 2010. Co-Chair of the regular session “Software Tools for Robotics”.

Responsabilités au laboratoire MIS

• Responsable de l’équipe Perception Robotique (PR) du laboratoire MIS depuis le
1er mars 2022.

• Membre du conseil du laboratoire MIS depuis le 19 janvier 2017.

• Membre du comité des finances du laboratoire MIS entre mars 2017 et janvier 2022.

• Responsable (avec Corinne Lucet) des séminaires du laboratoire MIS depuis mai
2018. Responsable des séminaires de l’équipe PR depuis 2019.
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Remarque : Le laboratoire MIS compte environ 90 membres (permanents, post-docs
et doctorants) pour une dotation annuelle de l’UPJV d’environ 90 ke. Le conseil du
laboratoire MIS et le comité des finances comptent entre 5 et 15 personnes. L’équipe
PR a entre 15 et 20 membres (9 permanents) et un budget annuel de l’établissement
d’environ 9 ke.

Activités de valorisation et vulgarisation

• “L’œil de Terminator : Vision événementielle pour la robotique”, Conférence Flash pour
les étudiants de Licence 2, UFR des Sciences, Université de Picardie Jules Verne, 7
novembre 2023, https://webtv.u-picardie.fr

• “Introduction au Traitement du Signal sur Graphe”, Laboratoire MIS, Université de
Picardie Jules Verne, 20 mars 2023.

• “Handicap. Un fauteuil électrique intelligent conçu à Rennes”, interview de M. Babel,
E. Leblong et F. Morbidi dans le cadre du projet ADAPT, par la journaliste du
quotidien régional Ouest France, Nathalie Flochlay. L’interview a été publiée le
4 novembre 2020, www.ouest-france.fr/bretagne/rennes-35000

1.2 Enseignement

1.2.1 Cours dispensés

� À l’Université de Picardie Jules Verne, département EEA, j’ai dispensé des cours
de niveau Licence et Master (parcours ViRob et RoVA : “Robotique et Vision Ar-
tificielle”) pour des étudiants en alternance (contrat d’apprentissage ou de pro-
fessionnalisation). L’effectif se situait entre 10 et 25 étudiants (en moyenne 15
étudiants). Tous mes cours sont disponibles en libre accès sur Internet à l’adresse
suivante :
https://home.mis.u-picardie.fr/˜fabio/Teaching.html

• Année universitaire 2023-2024 : 192.75 UC (Prévisionnel)

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours RoVA,
semestre 9, hiver 2023-2024. CM, TD, TP.

– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2023-2024. CM, TP.

– Module de Master 2 “Localisation et Navigation de Robots”, parcours RoVA,
semestre 9, hiver 2023-2024. CM, TD, TP.
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– Module de Master 2 “Systèmes Robotiques Hétérogènes et Coopératifs”, parcours
RoVA, semestre 9, hiver 2023-2024. CM, TD, TP.

– Module de Master 2 “Projet Transversal - L’Usine du Futur : Industrie 4.0”, par-
cours RoVA, semestre 9, hiver 2023-2024. TP.

– Module de Master 1 “Robotique Industrielle”, parcours RoVA, semestre 8, print-
emps 2024. CM, TD.

• Année universitaire 2022-2023 : 229.62 UC

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours RoVA,
semestre 9, hiver 2022-2023. CM, TD, TP.

– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2022-2023. CM.

– Module de Master 2 “Localisation et Navigation de Robots”, parcours RoVA,
semestre 9, hiver 2022-2023. CM, TD, TP.

– Module de Master 2 “Surveillance Distribuée de Systèmes Multi-Agents”, par-
cours RoVA, semestre 10, printemps 2023. CM, TD, TP.

– Module de Master 2 “Systèmes Robotiques Hétérogènes et Coopératifs”, parcours
RoVA, semestre 9, hiver 2022-2023. CM, TD, TP (mutualisé avec le parcours
“SDD : Systèmes Distribués et Dynamiques” du Master mention Informa-
tique de l’UPJV).

– Module de Master 2 “Projet Transversal - L’Usine du Futur : Industrie 4.0”, par-
cours RoVA, semestre 9, hiver 2022-2023. TP.

– Module de Master 1 “Robotique Industrielle”, parcours RoVA, semestre 8, print-
emps 2023. CM, TD.

• Année universitaire 2021-2022 : 216.75 UC

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours RoVA,
semestre 9, hiver 2021-2022. CM, TD, TP.

– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2021-2022. CM/

– Module de Master 2 “Localisation et Navigation de Robots”, parcours RoVA,
semestre 9, hiver 2021-2022. CM, TD, TP.

– Module de Master 2 “Surveillance Distribuée de Systèmes Multi-Agents”, par-
cours RoVA, semestre 9, hiver 2021-2022. CM, TD, TP.
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– Module de Master 2 “Systèmes Robotiques Hétérogènes et Coopératifs”, parcours
RoVA, semestre 9, hiver 2021-2022. CM, TD, TP.

– Module de Master 2 “Projet Transversal - L’Usine du Futur : Industrie 4.0”, par-
cours RoVA, semestre 9, hiver 2021-2022. TP

– Module de Master 1 “Robotique Industrielle”, parcours RoVA, semestre 8, print-
emps 2022. CM, TD.

• Année universitaire 2020-2021 : 95.25 UC (CRCT de 6 mois à partir du 1er février 2021)

– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2020-2021. CM.

– Module de Master 2 “Localisation et Navigation de Robots”, parcours RoVA,
semestre 10, hiver 2020-2021. CM, TD, TP.

– Module de Master 2 “Systèmes Robotiques Hétérogènes et Coopératifs”, parcours
RoVA, semestre 10, hiver 2020-2021. CM, TD, TP.

– Module de Master 2 “Projet Transversal - L’Usine du Futur : Industrie 4.0”, par-
cours RoVA, semestre 9 et 10, hiver 2020 - printemps 2021. TP

• Année universitaire 2019-2020 : 226.25 UC

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours RoVA,
semestre 9, hiver 2019-2020. CM, TD, TP.

– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2019-2020. CM.

– Module de Master 2 “Localisation et Navigation de Robots”, parcours RoVA,
semestre 10, hiver 2019-2020. CM, TD.

– Module de Master 2 “Surveillance Distribuée de Systèmes Multi-Agents”, par-
cours RoVA, semestre 10, hiver 2019-2020. CM, TD, TP.

– Module de Master 2 “Systèmes Robotiques Hétérogènes et Coopératifs”, parcours
RoVA, semestre 9, hiver 2019-2020. CM, TD, TP.

– Module de Master 2 “Projet Transversal - L’Usine du Futur : Industrie 4.0”, par-
cours RoVA, semestre 9 et 10, hiver 2019 - printemps 2020. TP

– Module de Master 1 “Robotique Industrielle”, parcours RoVA, semestre 8, print-
emps 2020. CM, TD.

• Année universitaire 2018-2019 : 215.25 UC

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours RoVA,
semestre 1, hiver 2018-2019. CM, TD, TP.
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– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2018-2019. CM.

– Module de Master 2 “Localisation et Navigation de Robots”, parcours RoVA,
semestre 1, hiver 2018-2019. CM, TD.

– Module de Master 2 “Surveillance Distribuée de Systèmes Multi-Agents”, par-
cours RoVA, semestre 1, hiver 2018-2019. CM, TD, TP. À 50% avec M. Chadli.

– Module de Master 2 “Systèmes Robotiques Hétérogènes et Coopératifs”, parcours
RoVA, semestre 1, hiver 2018-2019. CM, TD, TP. À 50% avec M. Chadli.

– Module de Master 2 “Projet Transversal - L’Usine du Futur : Industrie 4.0”, par-
cours RoVA, semestre 1 et 2, 2018-2019. TP

– Module de Master 1 “Robotique Industrielle”, parcours RoVA, semestre 2, print-
emps 2019. CM, TD.

• Année universitaire 2017-2018 : 201.5 UC

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours ViRob,
semestre 9, hiver 2017-2018. CM, TD, TP.

– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2017-2018. CM.

– Module de Master 2 “Localisation et Navigation de Robots”, parcours ViRob,
semestre 8, printemps 2018. CM, TD, TP.

– Module de Master 1 “Découverte de la Recherche”, parcours ViRob, semestre 8,
printemps 2018. CM, TD.

– Module de Master 1 “Robotique Industrielle”, parcours ViRob, semestre 9, print-
emps 2018. CM.

• Année universitaire 2016-2017 : 194.5 UC

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours ViRob,
semestre 9, hiver 2016-2017. CM, TD, TP. À 50% avec D. Kachi.

– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2016-2017. CM.

– Module de Master 2 “Localisation et Navigation de Robots”, parcours ViRob,
semestre 8, printemps 2017. CM, TD, TP.

– Module de Master 1 “Découverte de la Recherche”, parcours ViRob, semestre 8,
printemps 2017. CM, TD.
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– Module de Master 1 “Robotique Industrielle”, parcours ViRob, semestre 9, print-
emps 2017. CM, TD, TP.

• Année universitaire 2015-2016 : 220 UC

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours ViRob,
semestre 9, hiver 2015-2016. CM, TD, TP. À 50% avec D. Kachi.

– Module de Licence Pro “Initiation à la Robotique”, ME 1.1, parcours Robotique
et Automatisme, avec Promeo, semestre 1, hiver 2015-2016. CM.

– Module de Licence Pro “Phénomènes Dynamiques Engendrés par les Mouvements
des Robots”, ME 4.2, parcours Robotique et Automatisme, en association avec
Promeo, semestre 1, hiver 2015-2016. CM, TD, TP.

– Module de Master 2 “Localisation et Navigation de Robots”,
parcours ViRob, semestre 8, printemps 2016. CM, TD, TP.

– Module de Master 1 “Découverte de la Recherche”, intitulé “Introduction aux
Systémes Collaboratifs Multi-Agent”, parcours ViRob, semestre 8, printemps
2016. CM, TD.

– Module de Master 1 “Robotique Industrielle”, parcours ViRob, semestre 9, print-
emps 2016. CM, TD, TP.

• Année universitaire 2014-2015 : 144 UC, décharge de 25% du service (48 UC)

– Module de Master 2 “Localisation et Navigation de Robots”, parcours ViRob,
semestre 9, hiver 2014-2015. CM, TD, TP.

– Module de Master 2 “Perception Avancée et Robotique Mobile”, parcours ViRob,
semestre 9, hiver 2014-2015. CM, TD, TP. À 50% avec D. Kachi.

– Module de Master 1 “Robotique Industrielle”, parcours ViRob, semestre 9, print-
emps 2015. CM, TD, TP.

� À la Johannes Kepler University, Institute for Design and Control of Mechatron-
ical Systems, Linz, Autriche, j’ai dispensé des cours de niveau Licence et Master
en anglais, pour un effectif de 10-15 étudiants :

− Module de Master “Distributed and Cooperative Control for Multi-agent Sys-
tems”, mars-juin 2012. Total : 30 heures.

− Module de Licence “Regelsysteme I” (Control systems I), mars-juin 2012. Total :
15 heures.

− Module de Licence “Rechnerbasierter Entwurf von Regelkreisen” (Computer-based
design of control systems), octobre 2011-janvier 2012. Total : 15 heures.
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1.2.2 Encadrement d’étudiants en Licence et Master

• Étudiants en alternance (Départment EEA, UPJV) :

– A.U. 2023-2024 : Un étudiant en Master 1, un étudiant en Master 2 et un
étudiant en Licence Pro AutoRobo (Promeo-UPJV).

– A.U. 2022-2023 : Deux étudiants en Master 2 et un étudiant en Licence Pro
AutoRobo (Promeo-UPJV).

– A.U. 2020-2021 : Un étudiant en Master 2 et un étudiant en Licence Pro Au-
toRobo (Promeo-UPJV).

– A.U. 2019-2020 : Un étudiant en Master 1, un étudiant en Master 2 et un
étudiant en Licence Pro AutoRobo (Promeo-UPJV).

– A.U. 2018-2019 : Deux étudiants en Master 2.

– A.U. 2017-2018 : Deux étudiants en Master 1, un étudiant en Master 2 et un
étudiant en Licence Pro AutoRobo (Promeo-UPJV).

– A.U. 2016-2017 : Un étudiant en Master 1, un étudiant en Master 2.

– A.U. 2015-2016 : Deux étudiants en Master 1.

– A.U. 2014-2015 : Un étudiant en Master 1.

• Stages au laboratoire MIS ou en entreprise :

– Juliette Grosset (stagiaire à Inria Rennes) : Stage intitulé “Caméra évènementielle
pour l’aide à la conduite d’un fauteuil roulant électrique”, 9-13 mars 2020 (projet
ADAPT). Encadrants à Inria : M. Babel, G. Vailland et V. Gouranton.

– Ibrahima Gory (Master 1, Dépt. EEA, UPJV) : Stage intitulé “Tracking vissage
au défilé”, Segula Matra Automotive, Trappes, 16 avril 2018 - 28 septembre
2018. Tuteur d’entreprise : D. Lautram.

– Pierrick Cédolin (DUT informatique, IUT Amiens) : 27 mars 2017 - 2 juin
2017. Co-encadrement (à 50%) avec E. Bretagne.

– Abdallah Aguenaou (Master 2, Dépt. EEA, UPJV) : Stage chez EnerSys Sarl,
Arras, avril-août 2016. Tuteur d’entreprise : L. Lucchini.

• Projets de Master (Département EEA, UPJV) :

– Amath Ba et Lylia Djellouli (Master 1): Projet intitulé “Planification probabiliste
pour l’évitement d’obstacles: mise en œuvre de PRM et de RRT”, novembre 2023-
juin 2024.
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– Thierry Huang (Master 1): Projet intitulé “Détection de mouvement avec une
caméra à événements”, novembre 2023-juin 2024.

– Dyhia Immoune et Romane Huet (Master 1) : Projet intitulé “Planification
probabiliste pour l’évitement d’obstacles : mise en œuvre de PRM et de RRT”, octo-
bre 2019-avril 2020.

– Maxime Vambre et Timothé Deherre (Master 1) : Projet intitulé “LumiBot : le
robot artiste”, octobre 2019-avril 2020.

– Julien Albrand et Méven Jeanne-Rose (Master 1) : Projet intitulé “SpheriCol :
réalité augmentée pour l’assistance à la conduite d’un fauteuil roulant électrique”,
octobre 2018-avril 2019. Co-encadrement (à 50%) avec G. Caron.

– Hakim Kadi et Ouardia Bourhala (Master 1) : Projet intitulé “LumiBot : le robot
artiste”, octobre 2018-avril 2019. Co-encadrement (à 50%) avec G. Caron.

– Soukaina Benchchaoui et Salima Elbrahmi (Master 1) : Projet intitulé “Con-
ception d’un robot joueur de Jungle Speed”, octobre 2017-mars 2018.

– Marwen Ben Hamada (Master 1) : Projet intitulé “Cropbot : le robot agro-
glyphique” octobre 2016-mars 2017. Co-encadrement (à 50%) avec G. Caron.

– Laura Bailly et Damien Alary (Master 1) : Projet intitulé “Robodoigts : Trans-
port Coopératif d’Objets par Robots Mobiles”, octobre 2016-mars 2017.

– Jean Hoffmann et Raphaël Plouard (Master 2) : Projet intitulé “Lumidrone
: le drone peintre”, octobre 2016-mars 2017. Co-encadrement (à 50%) avec
G. Caron.

– Jean Hoffmann et Chater Kawtar (Master 1) : Projet intitulé “Système de local-
isation globale de robots mobiles basé vision”, octobre 2015-mars 2016.

– Abdallah Aguenaou (Master 2) : Projet intitulé “Odométrie assistée par centrale
inertielle pour la localisation d’un robot mobile”, octobre 2015-mars 2016.

• Projets de fin d’études :

– Zouhair Alaoui (Université Cadi Ayyad, Marrakesh, Maroc) : Projet intitulé
“Recalage dense de nuages de points 3D pour l’analyse comparative d’œuvres sculp-
turales”, janvier 2016-mars 2016.
Co-encadrement avec le Prof. Hassan Ayad.

• Projets d’innovation pédagogique :
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– En 2017-2018, j’ai participé au projet d’innovation pédagogique du parcours
ViRob (“Vision Robotique”) du Master 2 du département EEA de l’UPJV
(2 UC). Le projet, intitulé “L’Usine du Futur : Industrie 4.0”, a été coordonné
par G. Caron. Sept membres du département EEA ont été impliqués dans ce
projet, pour un budget total de 10.4 ke.

1.2.3 Responsabilités pédagogiques

• Responsable du parcours RoVA (“Robotique et Vision Artificielle”) du Master 3EA,
département EEA, UPJV, octobre 2018 - octobre 2020.

• Contact académique pour le programme Erasmus+ (“Mobility for Learners and Staff ”)
entre l’UPJV et l’Università di Catania, Italie, 2020-aujourd’hui.

• J’ai fait partie du comité de recrutement de 10 ATER (section CNU 61) et d’un
enseignant contractuel (LRU) au département EEA de l’UPJV : 19 juin 2019, 11
septembre 2019, 23 juin 2020, 14 juin 2021, 12 juillet 2021, 2 juin 2022, 4 juillet 2022,
23 septembre 2022.
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Chapter 2

Introduction

The most exciting phrase to hear in science, the one that
heralds new discoveries, is not “Eureka!” but “That’s funny”.

Isaac Asimov

Abstract

This introductory chapter presents the context and related work, and describes the general
organization of this HDR thesis.

2.1 General context

C
ooperative control of multi-agent systems is a popular research topic today, and
it occupies a prominent place in robotics and systems theory (Parker et al. 2016,

Cortés and Egerstedt 2017). The research in this area has been stimulated by major ad-
vances in sensing, control and wireless communications, and by the observation that
multiple collaborative agents can perform tasks far beyond the capabilities of a sin-
gle robot. A major effort has also been undertaken towards mimicking natural organ-
isms, such as flocks of birds, schools of fish or swarms of insects (see Fig. 2.1), where
self-organizing or emergent behaviors arise from agents which appear to act indepen-
dently (Reynolds 1987, Jadbabaie et al. 2003, Vicsek and Zafeiris 2012, Strogatz 2012).

(a) (b) (c) (d)

Figure 2.1: Examples of biological systems exhibiting a cooperative behavior: (a) flock of geese,
(b) school of fish, (c) swarm of bees, and (d) ant colony.
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Figure 2.2: Books and monographs on multi-agent systems, published between 2009 and 2016.

In the last two decades, several books and monographs dedicated to multi-agent sys-
tems have appeared in the literature (see Fig. 2.2). They have the great merit of having
collected, systematized and consolidated a large body of research scattered in multi-
ple domains: control systems, robotics, computer and network science, telecommu-
nications, among others. These books cover different but complementary topics: the
theoretical foundations (Shamma 2008, Bullo et al. 2009, Mesbahi and Egerstedt 2010,
Fuhrmann and Helmke 2015, Fagnani and Frasca 2018, Hadjicostis et al. 2018, Bullo
2022), passivity-based estimation and control (Bai et al. 2011, Hatanaka et al. 2015), dis-
tributed optimization (Zhu and Martı́nez 2015), and optimal and adaptive control (Lewis
et al. 2014). In (Francis and Maggiore 2016), the authors focused on the rendezvous and
flocking problems, while (Queiroz et al. 2019, Ahn 2020, Roza et al. 2022) are devoted to
the formation control problem (see also (Oh et al. 2015), for a recent authoritative survey
on formation control). These prototypal problems have played an important role in the
development of multi-agent systems theory, and they frequently serve, today, as bench-
marks for testing new (distributed) coordination strategies.

In the recent past, mobile robot networks have found their way into numerous ap-
plications in the real world, as for example (see Fig. 2.3): terrain and utility inspection,
disaster monitoring (Ghassemi and Chowdhury 2022), environmental surveillance and
modeling (Casbeer et al. 2006, Susca et al. 2008, Salam and Hsieh 2023), ocean sam-
pling (Leonard et al. 2007), traffic control, structures moving and assembling (Pereira
et al. 2004, Alonso-Mora et al. 2017, Koung et al. 2021, Li, Ge and Loianno 2021, Hu
et al. 2021), warehouse management (Wurman et al. 2008, Farinelli et al. 2017, Sabattini
et al. 2017, Li and Ma 2023), military espionage and reconnaissance, mapping of un-
known and hazardous environments (Hardouin et al. 2023, Simonin 2023–2027), plan-
etary exploration, entertainment (e.g. drone-based light shows, robotic soccer (Parker
et al. 2016)).

Research in multi-agent systems is not restricted to wheeled mobile robots (WMR),
but deals with different typologies of vehicles at sea, in the air, and on land (see Fig. 2.4):
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Utilization of multi-robot systems: (a) Wildfire management with aerial robots (image
courtesy of Drone Amplified); (b) drone-based light show2; (c) cooperative manipulation and
assembly (image courtesy of Autonomous Multi-Robots Lab, Delft University of Technology);
(d) automatic warehouse management (image courtesy of Exotec); (e) planetary exploration
with a marsupial robotic system (Perseverance rover and Ingenuity helicopter, image courtesy
of NASA Jet Propulsion Laboratory); (f) robotic soccer (RoboCup, Humanoid League, 2022).
In each case, individual robots must decide on control actions that are conducive to accomplish-
ing a collective task.

autonomous underwater vehicles (AUVs) (Edwards et al. 2004, McConnell et al. 2022),
unmanned aerial vehicles (UAVs, see Fig. 2.4(b)) (Hou and Fantoni 2017, McGuire et al.
2019, Yao et al. 2023), satellites (Massioni et al. 2010, Zhang and Gurfil 2016), humanoid
robots (Gerndt et al. 2015), and micro robots (Seyfried et al. 2005, Ongaro et al. 2019).
The latest trend goes towards larger and larger groups (from hundreds to thousands)
of small, simple and expendable agents, so that the loss of a bunch of them during
a mission does not have a critical impact on its achievement (Rubenstein et al. 2014,
Saravanos et al. 2023).

Besides rendezvous, flocking and formation control mentioned above, other prob-
lems which have received special attention in the multi-agent systems literature are:
cyclic pursuit (Marshall et al. 2004, Sinha and Ghose 2006, Pavone and Frazzoli 2007,
Marshall and Broucke 2008, Morbidi et al. 2009), containment control and herding (Ji
et al. 2008, Pierson and Schwager 2018, Chipade and Panagou 2023), target encirclement,

2www.electricsky.io
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(a) (b)

Figure 2.4: Team of (a) ground robots with colored markers, and (b) quadrotors transporting an
L-shaped payload (images courtesy of GRASP lab, University of Pennsylvania).

tracking or entrapment (Antonelli et al. 2008, Robin and Lacroix 2016, Franchi et al. 2016,
López-Nicolás et al. 2020), coverage and deployment (Howard et al. 2002, Cortés et al.
2004, Santos et al. 2018, Mansouri et al. 2018), and connectivity and visibility mainte-
nance (Meng and Egerstedt 2007, Dimarogonas and Kyriakopoulos 2008, Zavlanos et al.
2011, Gasparri et al. 2017).
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Figure 2.5: Leader-follower formation control (Morbidi et al. 2007): Five unicycle robots achieve
the desired wedge formation starting from a random initial configuration. In (a), the trajectory
of the leader (solid black) is rectilinear, while in (b), is circular.
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For its wide range of applications, the formation control problem stands out in multi-
agent systems research (Das et al. 2002, Tabuada et al. 2005, Dong and Farrell 2008,
Mariottini et al. 2009, Consolini et al. 2012), and recent years have seen a growing effort
towards the design of (consensus-based) distributed control strategies (Antonelli et al.
2014, Garcı́a de Marina et al. 2016, Sun et al. 2018, Alonso-Mora et al. 2019, Stamouli
et al. 2020, Fathian et al. 2021, Aranda et al. 2021, Nuño et al. 2022, Lin et al. 2022).
Generally speaking, the formation control problem is the problem of controlling the
relative pose (position and orientation) of the robots in a group while allowing the group
to move as a whole to form a predefined pattern.

Classical approaches to formation control can be divided into three major categories:
behavior based, virtual structure and leader following.

In the behavior based approach (Matarić 1992, Balch and Arkin 1998, Lawton et al.
2003, Antonelli et al. 2008) several desired behaviors (e.g. collision avoidance, forma-
tion keeping, target seeking) are prescribed to each robot. The final action of each robot
is derived by weighting the relative importance of each behavior. The theoretical for-
malization and mathematical analysis of this approach is difficult and it is not easy to
guarantee the convergence of the formation to a desired configuration, in general.

The virtual structure approach (Tan and Lewis 1997, Ren and Beard 2004, Belta and
Kumar 2004) considers the robot formation as a single virtual rigid structure so that
the behavior of the robotic system corresponds to that of a physical object. Desired tra-
jectories are not assigned to each single robot but to the entire formation as a whole.
In this case, the behavior of the robot formation is predictable and consequently the sta-
bility analysis can be easily performed. Nonetheless, a large inter-robot communication
bandwidth is required.

1 1

2 2

3 3

(a) (b) (c)

d12 d23

d13 α23

α13

α12

β1

β2

β3

Figure 2.6: Triangular formation of mobile robots (gray disks) defined by constraints on: (a) rela-
tive distance dij , (b) relative orientation αij , and (c) bearing angles βj . A combination of distance
and angular constraints is possible as well.
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Figure 2.7: Communication/sensory limitations and motion constraints: (a) Robot R1 can communi-
cate only with the robots which lie within a disk of radius r; (c) R1 is equipped with a 2D Lidar
with a limited field of view, and it can only sense the robots which lie within a narrow circular
sector (line-of-sight constraint). In both cases, the robots (unicycles) cannot freely move around,
but they are subject to kinematic constraints, that impose zero lateral velocity. In (b) and (d), the
corresponding abstractions, in terms of undirected (G) and directed (D) graphs, are shown.

In the leader-follower approach (see Fig. 2.5), a robot of the formation, designed as
the leader, moves along a predefined trajectory while the others, the followers, are to
maintain a desired pose (distance and orientation) to the leader (Das et al. 2002, Tanner
et al. 2004, Léchevin et al. 2006, Gustavi and Hu 2008, Hou and Fantoni 2017, Zhao 2018,

44



2.1. General context 45

Chen et al. 2020). A drawback of leader following is that the formation does not toler-
ate leader faults and exhibits poor disturbance rejection performances (this promoted
the emergence of leaderless approaches: see for example (Aranda et al. 2023) and the
references therein). In spite of these limitations, the leader-follower approach is highly
valued by researchers, since it is simple and easy to implement. To show the idea be-
hind leader following, two illustrative examples are reported in Fig. 2.5. Five unicycle
robots, a leader and four followers, achieve a desired wedge formation (defined by pairs
of distance and bearing constraints), starting from a random initial pose: in Fig. 2.5(a),
the trajectory of the leader is rectilinear, while in Fig. 2.5(b), it is circular.

The type of geometric constraints to be enforced in a multi-robot system (e.g. relative
distances, relative positions, relative orientations, bearing angles, a combination thereof,
see Fig. 2.6), the physical quantities to be preserved during the desired collective maneu-
vers (e.g. position of the centroid, orientation, scale), and the mobility of the robots
(linear robots such as single and double integrators versus vehicles with nonholonomic
constraints (Kolmanovsky and McClamroch 1995), such as unicycle and car-like robots),
obviously play an important role in the classification of formation control strategies.

When it comes to real environments and real robots, a cooperative control strat-
egy operates in degraded conditions and contends with a number of practical issues.
So far, we have not made any specific assumption on the capabilities of the robots:

Action

Environment

.

.Communication

Perception

Figure 2.8: “Perception-Action-Communication” (PAC) loop. The robots must perceive their
local environment, communicate with the other robots, and take actions in real time.
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however, real robots de have communication and sensing limitations. For example, two
robots can communicate only if the first lies within a circular region (representing the
approximate extent of the electromagnetic field used for data exchange), centered on the
second (see Fig. 2.7(a)). Moreover, communication is not instantaneous, and the chan-
nel might be noisy. Analogously, a robot can only detect an obstacle or another vehicle
which lie within a circular sector corresponding to the footprint of a range sensor with
limited field of view (e.g. a 2D Lidar or an RGB-D camera, see Fig. 2.7(c)). Graph theory
is a useful means of abstracting these constraints: in fact, a robot can be associated with
a node of a graph, and an edge will be present between two nodes if a communication
link (or visual contact) has been established among them. More specifically, undirected
(directed) edges can be used to model bidirectional (unidirectional) interactions or infor-
mation exchanges among the robots (see Fig. 2.7(b) and Sect. 3.1). Kinematic constraints,
dynamic constraints and actuation noise also limit the set of (instantaneous) feasible mo-
tions of a robot, and they cannot be ignored since they have a critical impact on the
achievement and accuracy of a given mission.

The link between perception and action in a multi-robot system is not trivial, especially
in unstructured or unknown environments (see Fig. 2.8). This calls for a deep under-
standing of the interplay between perception, communication and action, in order to
endow robots with effective and robust (distributed) control laws. This challenging
problem will take central stage in this manuscript, and several original solutions, mo-
tivated by different application scenarios, will be proposed, as detailed in Sect. 2.2.

2.2 Organization

The remainder of this manuscript is organized as follows (see the plan in Table 2.1):

• Chapter 3 introduces some basic notions of algebraic graph theory, and presents
the continuous- and discrete-time consensus protocols, and the most popular lin-
ear and nonlinear models of a mobile robot, for later use in Chapters 4 and 5.

• Chapter 4 is devoted to the formation control problem and three different incarna-
tions are studied. The chapter starts with a new characterization of mobility for
distance-bearing formations of unicycle robots, and it then introduces new decen-
tralized optimal strategies for cooperative adaptive cruise control of a car platoon,
under string-stability constraints. The chapter concludes with a description of
functions of Laplacian matrix, and their application, for the first time, to shape-
based distributed formation control.
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Chapter 3:

Background

• 3.1: Graph theory

• 3.2: Consensus protocol

• 3.3: Mobile robot models

Chapter 4:

Formation control

• 4.1: Mobility of unicycle formations

• 4.2: Cooperative adaptive cruise control

• 4.3: Functions of Laplacian matrix

Chapter 5: Part I

Cooperative tasks
with UAVs

• 5.1: Environmental monitoring

• 5.2: Active target tracking

• 5.3: 3D reconstruction

Chapter 5: Part II

Extensions of the
consensus protocol

• 5.4: Deformed consensus

• 5.5: State-constrained consensus

Table 2.1: Plan of the core of the HDR thesis and dependencies between Chapters 4 and 5
(in boldface).

• Chapter 5 presents several original contributions pertaining to the coordination of
multiple collaborative robots. Compared to Chapter 4, we are interested here in
designing distributed control laws based on the consensus protocol, to perform a va-
riety of cooperative tasks: environmental monitoring, active target tracking, and
3D reconstruction of unknown environments. These tasks are performed by aerial
robots and require interaction with the surrounding environment. In the second
half of the chapter, two original extensions of the standard consensus protocol are
presented: we introduce a generalization of combinatorial Laplacian which pro-
vides more flexibility in the execution of coordinated tasks (e.g. rendezvous in the
2D space). Finally, a geometric formulation which allows to naturally handle state
constraints in the discrete-time consensus protocol while preserving the consensus
value, is introduced and its pros and cons are discussed.
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• Chapter 6 closes the manuscript with a critical account of original contributions
and with a discussion of promising directions for future work.

In order to keep the exposition simple, the proofs in Chapters 3, 4 and 5 are omitted:
they can be found in the references listed in the bibliography.
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tisés pour la Numérisation Automatique du Patrimoine” (2018-2021), cf. Sect. 1.1.5.
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2.4 Glossary

Symbols and abbreviations

a, α, x Scalars

a, α, x Column vectors

A, X Matrices or linear transformations

A, X Sets, subspaces or manifolds

G, D Undirected, directed graph

N Set of natural numbers

Z Set of integers

Z>0, Z≥0 Set of positive (non-negative) integers

R Set of real numbers

R>0, R≥0 Set of positive (non-negative) real numbers

C Set of complex numbers

Nn Set of n-tuples of natural numbers

Sn Unit n-sphere

Rn Set of n-tuples of real numbers

Rm×n Set of m× n matrices with real entries

SO(n) Special orthogonal group in dimension n

SE(n) Special Euclidean group in dimension n

[a, b] Closed interval with endpoints a and b

(a, b) Open interval with endpoints a and b

f ∈ Cm Function f is of differentiability class Cm

Re(z), Im(z), arg(z) Real part, imaginary part, argument of complex number z

sgn(x) Sign function of real number x

|A| Cardinality of set A (i.e. number of elements of A)

〈x, y〉 = ∑n
k=1 xi yi Scalar or dot product of vectors x, y ∈ Rn

‖x‖2 =
√

〈x, x〉 Euclidean norm of vector x

A× B Cartesian product of sets A and B
1, 1n Vector of n ones

k Vector of n ones with alternating sign, [−1, 1, . . . , (−1)n−1, (−1)n]T

In×n, In Identity matrix of size n× n

0m×n, 0n Matrix of zeros of size m× n and of size n× n
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diag(a1, . . . , an) Diagonal matrix with entries a1, . . . , an on the main diagonal

blkdiag(A1, . . . ,An) Block diagonal matrix with square matrices A1, . . . ,An

on the main diagonal

[A]ij Entry (i, j) of matrix A

AT Transpose of matrix A

AH = A
T

Conjugate (or Hermitian) transpose of matrix A

A−1 Inverse of matrix A (square and invertible)

A† Pseudo-inverse of matrix A

A+ Moore-Penrose inverse of matrix A

A# Group generalized inverse of matrix A

‖A‖2 Spectral norm of matrix A

‖A‖F Frobenius norm of matrix A

logA Principal logarithm of matrix A

ImA Image of matrix A

kerA Kernel of matrix A

nulA Nullity of matrix A (i.e. dimension of kernel of A)

trA Trace of matrix A

detA Determinant of matrix A

spec(A) Spectrum of matrix A (ignoring algebraic multiplicity)

pA(λ) Characteristic polynomial of matrix A

λk(A), λmin(A), λmax(A) k-th, minimum, maximum eigenvalue of matrix A

span{x1, . . . ,xm} Linear span of vectors x1, . . . ,xm

x ⊥ y Vectors x, y are orthogonal (i.e. 〈x, y〉 = 0)

Rx(γ), Ry(β), Rz(α) Elementary 3× 3 rotation matrices about

the x-, y- and z-axis of an angle γ, β and α

A⊗B Kronecker product of matrices A and B

V⊥ Orthogonal complement of linear subspace V ⊂ Rn

U ⊕ V Direct sum of linear subspaces U , V ⊂ Rn

�, � Matrix inequality in the positive definite,

positive semidefinite sense

 · �, � · � Floor, ceiling function

� Equality by definition

� , � End of discussion
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Acronyms

AUV Autonomous Underwater Vehicle

CACC Cooperative Adaptive Cruise Control

DoF Degree of Freedom

EKF Extended Kalman Filter

ESDF Euclidean Signed Distance Field

FoV Field of View

GNN Graph Neural Network

GPU Graphics Processing Unit

GSO Graph Shift Operator

GVLD Generalized Vehicle Longitudinal Dynamic

ICR Instantaneous Center of Rotation

IMU Inertial Measurement Unit

LQR Linear Quadratic Regulation

MCTS Monte-Carlo Tree Search

MPC Model Predictive Control

NBV Next Best View

PAC Perception Action Communication

PRM Probabilistic Roadmap

QEP Quadratic Eigenvalue Problem

RDE Riccati Differential Equation

RGB-D Red Green Blue - Depth

ROS Robot Operating System

RRT Rapidly exploring Random Tree

SLAM Simultaneous Localization and Map Building

SVD Singular Value Decomposition

SWaP Size Weight and Power

SWC Singular Wheels Configuration

TSDF Truncated Signed Distance Function

TSP Traveling Salesman Problem

UAV Unmanned Aerial Vehicle

WMR Wheeled Mobile Robot
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Chapter 3

Background material

The purpose of abstraction is not to be vague but to create
a new semantic level in which one can be absolutely precise.

Edsger W. Dijkstra

Abstract

This chapter provides relevant background material on graph theory, distributed control and
mobile robotics for later use in Chapters 4 and 5.

I
n this chapter, we first recall some notions of algebraic and spectral graph theory
(Sect. 3.1), and then review the classical continuous-time and discrete-time consensus

protocols for undirected communication graphs (Sect. 3.2), which are instrumental in
designing distributed control and estimation algorithms. Finally, in Sect. 3.3, we briefly
review the most popular linear and nonlinear models of a mobile robot.

3.1 Graph theory

3.1.1 Undirected and directed graphs

L
et G = (V, E) be an undirected graph without self-loops and multiple edges, where
V = {1, 2, . . . , n} is the set of nodes or vertices and E ⊆ V × V is the set of edges

or arcs1, where the cardinality of E is m. This definition applies to simple (or schlicht)
graphs and it is not valid for multi-graphs, e.g. graphs which are permitted to have
multiple edges (edges that have the same end nodes) or loops (Godsil and Royle 2001).
In the following, we will assume that G is unweighted and connected, i.e. there is a path
from any node to any other node in the graph. Two categories of graphs of interest are
bipartite and regular graphs.

1The terms, node, vertex, and edge, arc, will be used interchangeably throughout the manuscript.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Special families of undirected graphs: (a) Path graph P4, (b) cycle graph C4, (c) star
graph S4, (d) wheel graph W4, (e) complete graph K4, and (f) complete bipartite graph K2,3.
Graph C4 is 2-regular and graphs W4 and K4 are 3-regular.

3.1. DEFINITION (BIPARTITE GRAPH). A graph G is called bipartite if its set of nodes V can
be divided into two disjoint sets V1 and V2, such that every edge connects a node in V1 to one in V2.
If G is connected, its bipartition {V1, V2} is unique. �

Equivalently, a graph is bipartite if and only if it does not contain cycles of odd
length. A complete bipartite graph is a special kind of bipartite graph where every node
of V1 is connected to every node of V2.

3.2. DEFINITION (κ-REGULAR GRAPH). A graph G is called κ-regular, when every node has
precisely κ ≤ n− 1 neighbors. �

The following families of graphs will recur throughout this HDR thesis.

3.3. DEFINITION (SPECIAL FAMILIES OF UNDIRECTED GRAPHS). The following symbols
are conventionally used to denote special families of undirected graphs (see Fig. 3.1):

• Pn : Path graph with n nodes

• Cn : Cycle graph with n nodes

• Sn ≡ K1,n−1 : Star graph with n nodes

• Wn : Wheel graph with n nodes

• Kn : Complete graph with n nodes
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(a) (b) (c)

Figure 3.2: Special families of graphs: (a) Hypercube graph Q3, (b) Petersen graph, and (c)
directed cycle graph D4. The hypercube and Petersen graphs are 3-regular.

• Kp,n : Complete bipartite graph with p+ n nodes

• Qn : n-cube (or hypercube graph). �

The Petersen graph, J(5, 2, 0), is a small graph that serves as a useful example and coun-
terexample in many problems in graph theory2. It is a 3-regular graph with 10 vertices
and 15 edges (Godsil and Royle 2001, Sect. 1.6), see Fig. 3.2(b).

Similarly to an undirected graph, a directed graph (or digraph, for short) D = (V, E)

consists of a set of nodes V = {1, . . . , n} and a set of edges E ⊆ V × V . Each edge
is associated with a pair of nodes according to a direction represented by an arrow.
We recall here the following important definition (Mesbahi and Egerstedt 2010):

3.4. DEFINITION (ROOTED OUT-BRANCHING). A directed graph D = (V, E) is a rooted
out-branching (or a directed rooted tree) if:

1. It does not contain a directed cycle.

2. It has a node vR (root) such that for every other note v ∈ V , there is a directed path from
vR to v. �

The directed counterpart of the cycle graph Cn is the directed cycle with n nodes, which
we shall denote by Dn (see Fig. 3.2(c) and cf. Sect. 5.4).

3.1.2 Matrices associated with a graph

A graph G can be uniquely defined by using the list of its nodes and edges, but also by
means of matrices of appropriate size. We will review here a few well-known matrices
in graph theory (adjacency, incidence, degree and Laplacian matrices) and others that

2The Petersen graph belongs to the family of Kneser graphs, J(i, k, 0), where i, k ∈ Z>0 and i ≥ k.
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have been recently introduced in the literature. By borrowing a term used in graph sig-
nal processing (Sandryhaila and Moura 2014, Gama et al. 2020), we can collectively refer
to them as Graph Shift Operators (GSOs). More specifically, a GSO is a matrix H ∈ Rn×n

that encodes the sparsity pattern of G, whose entry [H]ij can be nonzero only if i = j or
if {i, j} ∈ E.

To keep our presentation succinct, henceforth we focus on undirected graphs: the ex-
tension to directed graphs is straightforward as long as the orientation of the edges is
taken into account.

3.5. DEFINITION (ADJACENCY MATRIX A). The adjacency matrix A of graph G is an n× n

matrix defined as

[A]ij =

{
1 if {i, j} ∈ E,

0 otherwise.
�

3.6. DEFINITION (INCIDENCE MATRIX B). Let Go the directed graph obtained by associating
an arbitrary orientation with the edges of G. The incidence matrix B(Go) is an n ×m matrix,
where n is the number of nodes of G and m is the number of edges of G. The entry of the incidence
matrix in row i and column j is defined as follows

[B(Go)]ij =

⎧⎪⎪⎨⎪⎪⎩
−1 if vi is the tail of edge ej ,

1 if vi is the head of edge ej,

0 otherwise. �

We can notice that B(Go) captures not only the adjacency relationships in the graph,
but also the orientation that the graph now enjoys.

3.7. DEFINITION (LAPLACIAN MATRIX L). The Laplacian matrix of graph G is an n × n

symmetric positive semidefinite matrix defined as

L = D−A,

where D = diag(A1) is the degree matrix of G and 1 = [1, 1, . . . , 1]T ∈ Rn. �

From the previous definition, we deduce that for any graph G, the row-sums of
the Laplacian matrix are equal to zero (or in compact form, L1 = 0), and that the
off-diagonal entries of L are non-positive. Since L is a symmetric matrix, we have
Lvi = λivi, i ∈ {1, 2, . . . , n}, where the eigenvalues {λ1, λ2, . . . , λn} of L are arranged
in increasing order, i.e. 0 = λ1 < λ2 ≤ . . . ≤ λn and {v1, v2, . . . ,vn} are the associated
orthonormal eigenvectors, with v1 = 1/

√
n.
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Given an arbitrary orientation of the set of edges E, the Laplacian matrix of the
graph G can be alternatively defined by multiplying the incidence matrix B with its
transpose

L(G) = B(Go)BT (Go).

3.8. DEFINITION (REDUCED LAPLACIAN MATRIX L�). Let Orth(1) denote the collection of
n×(n−1) matrices S such that STS = In−1, where In−1 is the (n−1)×(n−1) identity matrix
and ST1 = 0(n−1)×1. Select a matrix S ∈ Orth(1). The reduced Laplacian matrix of graph G is
the (n− 1)× (n− 1) symmetric matrix

L� = ST LS.

�
It is easy to verify that if the graph G is connected, then L� is positive definite and

the spectrum of L� is strictly included in that of L, i.e. spec(L�) ⊂ spec(L).
Depending on the application, several variants of the Laplacian matrix L (a.k.a. com-

binatorial Laplacian) have appeared in the literature. We will not touch here on the
popular symmetric normalized Laplacian Lsym = D−1/2 LD−1/2 and random-walk normal-
ized Laplacian, Lrw = D−1L (Brouwer and Haemers 2012, Sect. 3.13), but we will focus
on three variants that have received far less attention by the research community: the
signless Laplacian Q, the parametric Laplacian Lp(s), and the deformed Laplacian Δ(s).

3.9. DEFINITION (SIGNLESS LAPLACIAN MATRIX Q (CVETKOVIĆ ET AL. 2007)). The
signless Laplacian matrix of graph G is an n× n matrix defined as

Q = D + A.
�

As L, the signless Laplacian Q is a symmetric positive semidefinite matrix, but it is
not necessarily singular.

3.1. PROPERTY (SPECTRAL PROPERTIES OF Q (GOLDBERG AND KIRKLAND 2014)).

1. Let G be a κ-regular graph. Then pL(λ) = (−1)n pQ(2κ − λ) where pL(λ) denotes
the characteristic polynomial of Laplacian L. If G is a bipartite graph, then we have
pL(λ) = pQ(λ).

2. The least eigenvalue of Q of a connected graph is equal to 0 if and only if the graph is
bipartite. In this case, 0 is a simple eigenvalue and the corresponding eigenvector is
v = [v1, v2, . . . , vn]

T where vi = 1, i ∈ V1 and vj = −1, j ∈ V2, being {V1, V2} the
bipartition of G.

3. In any graph, the multiplicity of the eigenvalue 0 of Q is equal to the number of bipartite
connected components of G. �
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In a sense, the least eigenvalue of Q can be interpreted as a measure of how close
G is to being a bipartite graph. A similar idea has been utilized for the second-smallest
eigenvalue of L, λ2(L), which is known as the algebraic connectivity (or Fiedler value) of G
(Brouwer and Haemers 2012): the associated eigenvector, v2, is referred to as Fiedler
vector of G. For this reason, in (Fallat and Fan 2012), the least eigenvalue of Q, is called
the algebraic bipartiteness of G.

In certain applications, it is desirable to smoothly change the structure of a GSO,
by acting on a single parameter. To the best of our knowledge, the simplest example of
such a GSO is the so-called parametric Laplacian

3.10. DEFINITION (PARAMETRIC LAPLACIAN Lp(s) (MORBIDI 2014)). The parametric
Laplacian matrix of graph G with parameter s ∈ R, is an n× n matrix defined as

Lp(s) = D − sA.
�

According to Definition 3.10, it is clear that Lp(1) = L and Lp(−1) = Q. For the
interpretation of parametric Laplacian, as a matrix pencil (Demmel 1997, Gantmacher
2000), see (Morbidi 2014). The interested reader is also referred to (Nikiforov 2017),
where a convex linear combination of matrices D and A, is considered.

The deformed Laplacian is more involved than the parametric Laplacian, but it also
depends on a single real parameter s.

3.11. DEFINITION (DEFORMED LAPLACIAN MATRIX Δ(s) (MORBIDI 2013A)). The
deformed Laplacian matrix of graph G with parameter s ∈ R, is an n× n matrix defined as

Δ(s) = In − sA + s2(D− In).

�
Note that Δ(s) is a symmetric matrix (but not necessarily positive semidefinite for

all s), and that Δ(−1) = Q, Δ(0) = In and Δ(1) = L. The main properties of this self-
adjoint quadratic matrix polynomial in the variable s, have been studied in (Morbidi
2013a, Grindrod et al. 2018). We complement the existing results with a few additional
properties:

1. Additivity: For s1, s2 ∈ R,

Δ(s1 + s2) = Δ(s1) + Δ(s2) + 2s1s2(D− In) − In.

2. Convexity:
d2Δ(s)

ds2
= 2(D− In) � 0,

where “�” denotes the matrix inequality in the positive semidefinite sense. There-
fore, if the domain of Δ(s) is convex (e.g. an interval U ⊂ R), matrix-valued func-
tion Δ(s) is convex (Boyd and Vandenberghe 2004, Sect. 3.1.4).
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3. Spectrum: If G is κ-regular,

Δ(s)1 = (s− 1)
[
(κ− 1)s− 1

]
1, (3.1)

i.e. the row-sums of Δ(s) are all equal to (s− 1)[(κ− 1)s− 1]. Equation (3.1) also
implies that (s− 1)[(κ− 1)s− 1] is the eigenvalue associated with the eigenvector
1 of Δ(s). For G = Cn, this eigenvalue is simply (s− 1)2.

4. Factorization: If (D − In) � 0 (i.e. if the degree of the nodes of G is strictly greater
than 1), then Δ(s) can always be factorized into a pair of linear factors (Tisseur
and Meerbergen 2001, Sect. 3.8.3) as follows

Δ(s) = (D− In)(sIn −U1)(sIn −U2),

where matrices U1, U2 ∈ Rn×n satisfy

U1 +U2 = (D− In)
−1A, U1U2 = (D− In)

−1.

An interesting link can be established between the deformed Laplacian and the
Parametrised Graph Shift Operator (PGSO), based on the adjacency matrix, recently pro-
posed in (Dasoulas et al. 2021).

3.12. DEFINITION (PARAMETRISED GRAPH SHIFT OPERATOR). The parametrised graph
shift operator of graph G is defined as

γ(A, S) = m1D
e1
a + m2D

e2
a AaD

e3
a + m3 In, (3.2)

where Aa = A+aIn , Da = D+aIn and S = {m1, m2, m3, e1, e2, e3, a} is a 7-uple of scalar
parameters (3 multiplicative parameters, 3 exponential parameters and 1 additive parameter). �

The parametrised form in equation (3.2) spans the space of commonly-used GSOs
and message-passing operators in Graph Neural Networks (GNNs) (Wu et al. 2021).
It is easy to verify that

γ(A, S) = Δ(s) if S = {s2, −s, 1− s, 1, 0, 0, −1} or S = {s2, −s, 1− s2, 1, 0, 0, 0}.

The case of directed graphs asks for extra care and caution. We can define the adja-
cency matrix A as

[A]ij =

{
1 if (j, i) ∈ E,

0 otherwise,

and the degree matrix D = diag(din(1), . . . , din(n)), where din(i) denotes the in-degree
of node i with i ∈ {1, . . . , n} (i.e., the number of directed edges pointing at node i).

59



60 3. Background material

With these definitions in hand, the in-degree Laplacian L(D), in-degree signless Lapla-
cian Q(D) and in-degree signless parametric Laplacian Lp(D) of D, can be defined as in
the undirected case. A directed version of the deformed Laplacian has been considered
in (Morbidi 2013a), and more recently in (Noferini and Quintana 2023, equ. 3) for study-
ing the radius of convergence of the generating function of non-backtracking walks on
directed graphs. Finally, taking inspiration from Lsym and Lrw, normalized versions of
signless, parametric and deformed Laplacian, can be defined as well.

3.2 Consensus protocol

3.2.1 Continuous time

For robots modeled as single integrators (see Sect. 3.3.1)

ẋi(t) = ui(t), i ∈ {1, . . . , n}, (3.3)

where xi(t) ∈ R is the state of agent i, and ui(t) ∈ R its input at time t, the continuous-time
consensus protocol is defined as (Olfati-Saber and Murray 2004)

ui(t) =
∑

j ∈N (i)

(xj(t)− xi(t)), i ∈ {1, . . . , n}, (3.4)

where N (i) ⊂ V denotes the set of nodes adjacent to node i in the fixed undirected
communication graph G. By applying control (3.4), equation (3.3) can be rewritten in
matrix form as

ẋ(t) = −Lx(t), (3.5)

where x = [x1, . . . , xn]
T ∈ Rn and L is the Laplacian matrix of graph G. If G is connected,

it is well known that

lim
t→∞

x(t) =
1

n
11Tx0 =

(
1

n

n∑
i=1

xi(0)

)
1,

where x0 = [x1(0), . . . , xn(0)]
T is the vector of initial states, i.e. average consensus is

achieved. The convergence factor to average consensus is the second smallest eigen-
value of L, i.e. λ2(L), (Bullo 2022). It easy to verify that 2(1 − cos(π/n)) = λ2(L(Pn)) ≤
λ2(L(G)) ≤ λ2(L(Kn)) = n. By omitting the time dependence to unburden the notation,
system (3.5) can be equivalently written as

ẋ = −∇ΦG(x),

where ∇ΦG(x) denotes the gradient of the Laplacian potential

ΦG(x) =
1

2
xTLx ≥ 0,
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Figure 3.3: Rendezvous problem: (a) Trajectories of the ten single-integrator robots (the ini-
tial positions are marked with disks); (b) Time-evolution of the x- and y-coordinates of the
ten robots. The communication graph is G = C10 and the algebraic connectivity λ2(L(C10)) =

2(1− cos(π/5)) = 0.3820.

associated with graph G (if G is connected, ΦG(x) = 0 if and only if xi = xj , ∀ i, j). As an
illustration, Fig. 3.3 shows the evolution of dynamical system

ẋ(t) = (−L ⊗ I2)x(t),

for a cycle graph with ten nodes (G = C10), where “⊗” denotes the Kronecker product
and the state vector x ∈ R20 stacks the x- and y-coordinates of the ten robots. In particu-
lar, Fig. 3.3(a) reports the trajectory of the ten robots converging towards the rendezvous
point rv = (0.5113, 0.4757) from a random initial position, and Fig. 3.3(b) shows the
time-evolution of the x- and y-coordinates of the robots.

3.2.2 Discrete time

Similarly to equation (3.5), in discrete-time, we obtain the system (Olfati-Saber et al. 2007,
Sect. IIC)

x(k + 1) = Px(k), k ∈ {0, 1, 2, . . .}, (3.6)

where
P = In − εL,
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is the Perron matrix of graph G with parameter ε, x = [x1, . . . , xn]
T ∈ Rn is the state

vector, and 0 < ε < 1/dmax(G) is the step-size, with dmax(G) = max(A1) the maximum
degree of G. System (3.6) is the one-step Euler discretization of the continuous-time
Laplacian flow (3.5). The Perron matrix is a symmetric, nonnegative matrix (i.e. all its
entries are nonnegative). Moreover, it is row stochastic, i.e. it satisfies P1 = 1, which
means that 1 is the eigenvector of P associated with the eigenvalue 1.

As in the continuos-time case, under the previous assumptions, if the graph G is con-
nected, the state x of system (3.6) asymptotically converges to 1

n
11Tx0. In the discrete-

time case, the convergence factor to average consensus is the second largest eigenvalue
of P, i.e. λn−1(P), (Bullo 2022). Obviously, 1 − nε = λn−1(P(Kn)) ≤ λn−1(P(G)) ≤
λn−1(P(Pn)) = 1− 2ε(1− cos(π/n)).

3.3 Modeling of a mobile robot

3.3.1 Linear models

The simplest possible model that we can use to describe a mobile robot is the single
integrator

ẋ = u, (3.7)

where x ∈ Rm denotes the position of the robot in the fixed (world) reference frame
FW and u ∈ Rm its control input, with m = 2, if the robot moves in a 2D environment
(e.g. a wheeled robot) and m = 3, if the robot moves in a 3D environment (e.g. an aerial
vehicle). In (3.7), the control input is the velocity vector u, and the vehicle can instan-
taneously move in any possible direction. Equation (3.7) can thus be used to model
omnidirectional robots, in which we can independently act on the m entries of vector ẋ.

As an alternative to a velocity input, an acceleration input u can be contemplated, as
in the so-called double integrator model

ẍ = u. (3.8)

This model describes the motion of a unit-mass particle subject to a linear accelera-
tion a = ẍ. If we introduce the auxiliary vector v = ẋ, we can equivalently rewrite (3.8)
as a system of two 1st-order ODEs (in state-space form):{

ẋ = v,

v̇ = u,

with state vector q = [xT ,vT ]T ∈ R2m. A drawback of models (3.7) and (3.8), is that the
robot is considered as a point without dimensions, and body orientation is not taken
into account. The kinematic models that we will present in the next section are more
involved but more realistic, and they will allow to overcome this second limitation.
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3.3. Modeling of a mobile robot 63

3.3.2 Nonlinear models

In Sect. 3.3.1, we have presented two simple linear models for mobile robots. A third,
widely-used (posture) kinematic model, which can be used to describe the behavior of
a wheeled robot or a fixed-wing aircraft flying at constant altitude (see Sect. 5.1), for
which instantaneous lateral motions are forbidden, is⎧⎪⎪⎨⎪⎪⎩

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(3.9)

where q = [x, y, θ]T ∈ R2 × S1 denotes the pose (position and orientation) or configu-
ration of the robot in the fixed reference frame FW , and u = [v, ω]T is the control input
of the robot (its linear velocity and its angular velocity, respectively), see Fig. 3.4(a).
The driftless nonlinear system (3.9) can be equivalently rewritten in matrix form as

q̇ = f (q)u =

⎡⎣ cos θ 0

sin θ 0

0 1

⎤⎦u.
Depending on the interval of definition of inputs v and ω, four different robot mod-
els (Bullo et al. 2009, Sect. 3.1) can be identified:

• Unicycle robot: v ∈ [−1, 1], ω ∈ [−1, 1].

• Differential-drive robot: We set v = 1
2
(ωr + ωl), ω = 1

2
(ωr − ωl) and we assume that

ωr, ωl ∈ [−1, 1], where ωr, ωl are the angular velocities of the right, left wheel of the
robot, respectively.

• Reeds-Sheep vehicle (Reeds and Shepp 1990): v ∈ {−1, 0, 1}, ω ∈ [−1, 1].

• Dubins vehicle (Dubins 1957): v = 1, ω ∈ [−1, 1].

The unicycle and differential-drive models are well-suited to describe wheeled robots,
while the Dubins vehicle captures the (simplified) dynamics of a fixed-wing aircraft.
In fact, since the linear velocity is constant (v = 1), the vehicle can only move forward
and it can never stop. On the contrary, the unicycle robot, the differential-drive robot
and the Reeds-Sheep vehicle can stop and they can move forward and backward.

At each time instant, the motion of a vehicle can be viewed as an instantaneous
rotation about the ICR (Instantaneous Center of Rotation), whose position with respect to
the robot can be time varying (Chung and Iagnemma 2016). Each point of the vehicle
body moves instantaneously along a circle of arc with center at ICR. It is easy to verify
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Figure 3.4: (a) Unicycle robot with generalized coordinates q = [x, y, θ]T and control input
u = [v, ω]T ; (b) Instantaneous Center of Rotation (ICR) of the unicycle robot. Two time instants
(t and t+ 1) are shown in the figure.

that the ICR of the robot described by system (3.9), lies along the common axle of the
two wheels (see Fig. 3.4(b)).

Finally, a four-wheel planar vehicle with front and rear axles separated by a distance �,
can also be described by system (3.9) with the following differences: [x, y]T ∈ R2 is the
position of the midpoint of the rear axle, θ ∈ S1 is the orientation of the longitudinal
axis of the vehicle, the input v is the linear velocity of the midpoint of the rear axle and
it satisfies

ω =
v

�
tanφ,

where φ ∈ S1 is the steering angle of the vehicle. The control input of this rear-wheel
drive robot is u = [v, φ̇]T . In robotics, it is generally referred to as car-like, see (Siciliano
et al. 2009, Ch. 11) for more details.

3.4 Conclusion

In this chapter, we have briefly reviewed some basic notions of graph theory, distributed
control and mobile robotics, for later use in Chapters 4 and 5, which form the core of this
HDR thesis. We also established the notation used throughout the manuscript (see the
Glossary in Sect. 2.4, for the full list of symbols and abbreviations).
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Chapter 4

Formation control of mobile robots

Reality is that which, when you stop believing in it, doesn’t go away.

“I Hope I Shall Arrive Soon” – Philip K. Dick, 1980

Abstract

This chapter deals with the formation control problem for multiple autonomous robots,
a “leitmotif” of my research in the last fifteen years. Different aspects of this problem will be
studied. We will start with a new characterization of mobility for distance-bearing forma-
tions of unicycle robots, we will proceed with cooperative adaptive cruise control (an example
of distance-based leader-follower formation control problem in one dimension) under string-
stability constraints, and we will conclude with a presentation of functions of Laplacian
matrix and their application to shape-based distributed formation control.

The material of this chapter is adapted from (Morbidi and Bretagne 2018, Morbidi et al.
2013, Morbidi 2022) (cf. [C33], [C24], [J21] in Sect. 1.1.2).

This chapter, entirely dedicated to the formation control problem, is organized as
follows. In Sect. 4.1, we study distance-bearing formations of unicycle robots and

extend the well-known classification of wheeled robots, by type. Sect. 4.2 presents new
decentralized optimal strategies for cooperative adaptive cruise control of a car platoon
under string-stability constraints. Sect. 4.3 introduces the notion of function of com-
binatorial Laplacian and investigates its possible application to distributed formation
control of single-integrator robots. Finally, in Sect. 4.4, the main contributions of Chap-
ter 4 are briefly summarized.

The work in Sect. 4.2 was carried out during my stay at Johannes Kepler University,
Austria (2011-2012), while the results in Sect. 4.1 and Sect. 4.3, were obtained at the
University of Picardie Jules Verne.
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66 4. Formation control of mobile robots

4.1 Mobility of formations of unicycle robots

In this section, we present a new characterization of mobility for formations of uni-
cycle robots defined by distance-bearing constraints. In fact, by introducing a simple
reduction procedure which associates a prescribed formation with a “macro-robot”, we
extend the classification by type proposed by (Campion et al. 1996), to multi-agent sys-
tems. To simplify the classification task, which only leverages the nonslip condition
for a conventional centered wheel, we assume that the robots are disposed at the ver-
tices of a regular convex polygon. We demonstrate the practical utility of the notion of
macro-robot in a trajectory-tracking control problem for a formation of unicycles.

4.1.1 Introduction

Teams of cooperating robots are being increasingly deployed in the real world for com-
plex tasks, such as object transport (Alonso-Mora et al. 2017), warehouse management
(Farinelli et al. 2017), and inspection of industrial infrastructures (Caprari et al. 2012),
to name but a few relevant examples. However, while considerable efforts have gone
into the design of (distributed) algorithms for controlling the geometric shape of multi-
robot formations (Belta and Kumar 2004, Oh et al. 2015), relatively few works (Tabuada
et al. 2005, Sun and Anderson 2016), so far, have dealt with their structural properties.
Notably, a general and comprehensive theory which explains how the formation con-
straints affect the mobility of the resulting multi-robot system is, to the best of our knowl-
edge, still missing. A vast literature on distance rigidity (Anderson et al. 2008, Krick
et al. 2009) and more recently on bearing and SE(2) rigidity (Zelazo, Robuffo Giordano
and Franchi 2015, Zhao and Zelazo 2016, Stacey and Mahony 2018, Sun et al. 2018) of
robot formations has emerged, but it has only provided a partial answer to the motion
feasibility problem. In fact, simplistic mathematical models (single or double integra-
tors) have been considered for the vehicles therein, and the constraints resulting from
wheel-ground interaction have been overlooked.

The characterization of mobility of wheeled mobile robots (WMRs) described by kine-
matic and dynamic models, and their elegant classification into five types according to
their degrees of mobility and steerability, traces back to the seminal work of Campion et
al. (Campion et al. 1996) in the 90’s. The nonslip condition, i.e. the fact that the kinematic
constraints imply that the velocity of the center of a conventional wheel is parallel to
the wheel plane, plays a crucial role in (Campion et al. 1996).

Our goal here is to revisit and extend the classification by type in (Campion et al.
1996) to formations of unicycle robots specified by relative distance and bearing con-
straints. To simplify our analysis, we decided to turn our attention to robots with con-
ventional centered orientable wheels disposed at the vertices of regular convex poly-
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4.1. Mobility of formations of unicycle robots 67

gons. While this might seem a serious restriction, this class of formations is extremely
rich and diverse, since a large variety of distance-bearing constraints can be imposed.
Moreover, the members of this class fall into few generic categories inherited from the
single-vehicle case and independent of robots’ number. We avail ourselves of a simple
reduction procedure, leading to the definition of a “macro-robot” (or m-robot, in short):
the “wheels” of the m-robot correspond to the original vehicles in the formation, and
the geometry of its “chassis” depends on the nature of the distance-bearing constraints
imposed on the robots. The nonslip condition can be defined for each “wheel” of the m-
robot, from which the degree of mobility and steerability, and thus the formation type can
be deduced using the tools developed in (Campion et al. 1996). The taxonomy proposed
here is not merely of theoretical interest. In fact, it may inform the design of more effi-
cient formation control strategies for multiple nonholonomic robots and shed some light
on the intrinsic limitations of the existing ones (see (Egerstedt and Hu 2001, Dong and
Farrell 2008, Consolini et al. 2009, Zhao et al. 2018) and the references therein). In par-
ticular, thanks to our reduction procedure, we could easily adapt the trajectory-tracking
controller via dynamic feedback originally proposed in (Thuilot et al. 1996) for mobile
robots with multiple steering wheels, to distance-bearing formations of unicycles.

It is finally worth pointing out here that an early attempt towards a characterization
of the mobility of leader-follower formations of unicycles was made in (Consolini et al.
2012). However, the analysis in (Consolini et al. 2012) is tangential to this work, since
it does not leverage the nonslip condition for centered wheels, but the more abstract,
system-theoretic notion of internal dynamics.

The rest of this section is organized as follows. In Sect. 4.1.2, we briefly review the
classification of WMRs by type proposed in (Campion et al. 1996). In Sect. 4.1.3, this clas-
sification is extended to distance-bearing formations of unicycle robots. In Sect. 4.1.4,
we discuss the results of numerical simulations featuring a multi-robot formation track-
ing a reference trajectory, and in Sect. 4.1.5 some possible directions for future research
are outlined.

4.1.2 Mobility of wheeled robots

In this section, we will briefly review the standard classification of WMRs by type
(Campion et al. 1996, Chung and Iagnemma 2016). We will start by introducing the
nonslip condition for a conventional centered wheel, and proceed to define the de-
gree of mobility and steerability of a robot. Let {OI ; xI , yI} be an inertial frame, and
{OR; xR, yR} the moving frame rigidly attached to a robot (see Fig. 4.1). The pose of the
robot with respect to the inertial frame, is described by the posture vector q = [x, y, θ]T ,
where x and y are the coordinates of point OR and θ describes the orientation of the
moving frame with respect to the inertial frame. The position of the center of wheelA is
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Figure 4.1: Notation for a conventional centered wheel of a mobile robot.

expressed in polar coordinates by the distance � and angle α. Finally, the angle between
the segment ORA and the axle of the wheel (a.k.a. propulsion axis) is denoted by β. For
a conventional wheel, the kinematic constraints imply that the velocity of the center of
the wheel is parallel to the wheel plane (nonslip condition) and proportional to the wheel
spinning velocity (pure rolling condition). For a centered (passive or active) wheel, the
nonslip condition at the contact point between the wheel and the ground reads,[

cos(α+ β), sin(α + β), � sin β
]
RT (θ) q̇ = 0, (4.1)

where

R(θ) =

⎡⎢⎣ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤⎥⎦,
is the elementary rotation matrix of an angle θ about the z-axis and RT (θ)q̇ is used

to transform the motion parameters q̇ expressed in the inertial reference frame, into
motion parameters in the local reference frame of the robot. For a fixed wheel, β in
(4.1) is constant, while for a steering wheel, β = β(t), i.e. it varies as a function of time
(being the wheel actuated or non-actuated). Let us now consider a robot equipped with
n centered wheels. It is expedient to introduce the subscripts “f” and “s” to identify
quantities related to fixed and steering wheels, respectively. The number of wheels of
each type are denoted by nf and ns, with n = nf + ns. The nonslip conditions for
centered fixed or steering wheels can be rewritten in a compact form as,

C∗
1(βs)R

T (θ) q̇ = 0,

where C∗
1(βs) = [CT

1f , C
T
1s(βs)]

T , C1f ∈ Rnf× 3, C1s(βs) ∈ Rns× 3 and βs = [β1, β2, . . . , βns]
T

∈ Rns is the vector of the angles of the steering wheels of the robot. The mobility of a
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4.1. Mobility of formations of unicycle robots 69

robot is directly related to the rank of C∗
1(βs) which depends on the robot design (Chung

and Iagnemma 2016). The degree of mobility δm of a robot is defined as:

δm = nul(C∗
1(βs)) = 3− rank(C∗

1(βs)),

which is equal to the number of degrees of freedom that can be directly manipulated
from the robot’s inputs without reorientation of the steering wheels. On the other hand,
the degree of steerability δs of a robot is defined as:

δs = rank(C1s(βs)),

which corresponds to the number of steering wheels that can be oriented independently
in order to steer the robot. If a robot is equipped with more than δs steering wheels, the
motion of the extra ones must be coordinated in order to guarantee the existence of
the Instantaneous Center of Rotation (ICR) at all times (Clavien et al. 2018). Finally,
the degree of maneuverability δM of a robot is defined as δM = δm + δs. For WMRs of
practical interest, the indices δm and δs must comply with a set of constraints (Chung and
Iagnemma 2016). Therefore, only four structures are relevant in practice, corresponding
to the following four pairs:

δm 2 2 1 1
δs 0 1 1 2

(4.2)

Each structure is referred to as a type (δm, δs) robot. Note that in (4.2), we omitted type
(3, 0) robots, since they do not have fixed or centered steering wheels (in fact, “omn-
imobiles”, which have full mobility in the plane, are only equipped with Swedish or
off-centered orientable wheels).

4.1. REMARK. Type (2, 0) robots have no steering wheels, but either one or several fixed wheels
with a common axle: a typical example is the unicycle robot (Chung and Iagnemma 2016).
Type (2, 1) robots have no fixed wheels and at least one steering wheel: if there is more than one
steering wheel, their orientation must be coordinated in such a way that δs = 1. Type (1, 1)

robots have one or several fixed wheels on a single common axle, and also one or several steering
wheels, under the condition that their centers are not located on the common axle of the fixed
wheels and that their orientation is coordinated. Car-like robots belong to this class. Finally,
type (1, 2) robots have no fixed wheels, but at least two steering wheels: if there are more than
two steering wheels, then their orientation must be coordinated in order to satisfy the condition
δs = 2. A typical example is the two-steer robot (Siegwart et al. 2011, Sect. 3.3). �

4.1.3 Mobility of distance-bearing formations of unicycles

In this section, we extend the classification by type presented in Sect. 4.1.2, to forma-
tions of unicycle robots defined by relative distance and bearing constraints. A generic
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n-robot formation can be encoded in terms of the weighted undirected graph Gd =

(V, Ed, D) and the weighted directed graph Gφ = (V, Eφ, Φ), whose set of vertices
V = {1, 2, . . . , n} is indexed by the robots in the team, and whose set of edges Ed (Eφ)
contains unordered (ordered) pairs of vertices that represent inter-robot formation spec-
ifications. D = [dij], Φ = [φij ] are the n× n weighted adjacency matrices of distance and
bearing constraints, respectively, where,{

dij > 0, if {i, j} ∈ Ed,

dij = 0, otherwise,

{
φij > 0, if (i, j) ∈ Eφ,

φij = 0, otherwise.

For the sake of exposition, in the following we will make the following assumption:

4.1. ASSUMPTION. The n ≥ 2 robots are disposed at the vertices of a regular convex polygon
of side d, and the origin OF of the reference frame {OF ; xF , yF} of the formation is placed at the
circumcenter of the polygon, with the xF -axis pointing towards robot 1. �

Note that while the last choice is arbitrary, it will allow us to easily draw a parallel
between the single-robot case studied in Sect. 4.1.2 and the multi-robot case, via the
notion of “macro-robot”. We also observe that, by definition, the formations studied
here are rigid (Anderson et al. 2008). In what follows, we shall proceed in stages and
analyze formations with an increasing number of robots. We will use the terms “m-
robot” and “m-wheel” as shorthands for macro-robot and for a macro-robot’s wheel,
respectively.

Formation of two unicycles

Fig. 4.2(a) shows a formation of two unicycle robots defined by a single distance con-
straint (the distance d between their centers OR1 and OR2). In this case, V = {1, 2},
Ed = {{1, 2}}, Eφ = ∅ (the empty set), and nf + ns = 0 + 2. The mobility analysis for
this formation reduces to that of the m-robot reported in Fig. 4.2(b), whose m-wheels
are separated by the distance d. By denoting the orientation of the front (rear) steering
m-wheel with respect to the “chassis” of the m-robot by β1 (β2), and by noticing that for
the front m-wheel α1 = 0 and for the rear m-wheel α2 = π (cf. Fig. 4.1), we have that:

C∗
1(β1, β2) =

[
cos β1 sin β1

1
2
d sin β1

− cos β2 − sin β2
1
2
d sin β2

]
.

Therefore, (δm, δs) = (1, 2), δM = 3, and the formation behaves as a two-steer robot.
Fig. 4.2(c) reports a formation of two unicycles defined by a distance and a bearing

constraint. On par with the previous case, V = {1, 2} and Ed = {{1, 2}}, but now
Eφ = {(2, 1)}. By applying the same formation reduction procedure as above, we have
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Figure 4.2: Two unicycles. (a) Formation defined by a single distance constraint, d, and (b)
corresponding m-robot after the application of the reduction procedure. The formation in (c) is
defined by a distance constraint, d, and a bearing constraint, φ21. The formation in (d) is defined
by a distance constraint, d, and two bearing constraints, φ12, φ21 with φ12 �= φ21. The symbol �
indicates that a robot can freely rotate about its vertical axis.

that the front m-wheel of the associated m-robot is steerable with an angle β1 and that
α1 = 0. On the other hand, the rear m-wheel of the m-robot is now fixed with constant
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angle β2 = φ21 + π/2 and α2 = π. This entails that (nf + ns = 1 + 1):

C∗
1(β1) =

[
sin φ21 − cosφ21

1
2
d cosφ21

cos β1 sin β1
1
2
d sin β1

]
,

and thus (δm, δs) = (1, 1), meaning that the formation is equivalent to a car-like robot.
Finally, Fig. 4.2(d) shows the case of Ed = {{1, 2}} and Eφ = {(1, 2), (2, 1)}. The m-

wheels of the corresponding m-robot are both fixed, thus δs = 0. Note that if φ12 �= φ21,
this formation is not of practical interest, since the only possible motion is about the
fixed ICR of the m-robot. However, if φ12 = φ21 �= 0, the m-wheels of the m-robot are
parallel and (δm, δs) = (2, 0), i.e. the formation behaves as a unicycle robot.

Formation of three unicycles

Fig. 4.3(a) shows a formation defined by three distance constraints: V = {1, 2, 3} and
Ed = {{1, 2}, {2, 3}, {3, 1}}. The reduction procedure described in the previous sub-
section can be applied to this formation as well. By noticing that α1 = 0, α2 = 2π/3,
α3 = −2π/3, and that the circumradius of the equilateral triangle in Fig. 4.3(a) is

√
3 d/3,

we obtain:

C∗
1(β1, β2, β3) =

⎡⎢⎢⎣
cos β1 sin β1

√
3
3
d sin β1

cos(β2 +
2π
3
) sin(β2 +

2π
3
)

√
3
3
d sin β2

cos(β3 − 2π
3
) sin(β3 − 2π

3
)

√
3
3
d sin β3

⎤⎥⎥⎦ .
In order to gain some insight into the mobility properties of the formation, let us study
the determinant of C∗

1(β1, β2, β3). By elementary trigonometry, we find that:

det(C∗
1(β1, β2, β3)) =

d

2

[
sin(−β1 + β2 + β3) + sin(β1 − β2 + β3) + sin(β1 + β2 − β3)

]
.

Although it is not trivial to provide an exhaustive characterization of the zeros of this
transcendental function of β1, β2 and β3, we can easily identify the following special
configurations of the m-wheels:

1. Let β1 = β1(t) (free), β2 = β1 ± π/3, β3 = β1 ∓ π/3. The orientation of the three
m-wheels of the m-robot is coupled (red and green, respectively, in Fig. 4.3(b)),
and the formation behaves as a three-wheel synchro-drive robot (Clavien et al. 2018).
It is well-known that the kinematic model of a synchro-drive robot is equivalent to
that of a type (1, 1) robot (Chung and Iagnemma 2016),(Siegwart et al. 2011, Sect.
3.3.3). In fact, a synchro-drive robot can only manipulate, in total, two degrees of
freedom (the orientation of the chassis cannot be changed).
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Figure 4.3: Three unicycles. (a) Formation defined by three distance constraints; (b), (c) Special
orientations of the m-wheels of the m-robot (for illustration, we set β1 = 0 in both cases).
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2. Let β1 = β1(t) (free), β2 = −π/6, β3 = π/6 (cyan in Fig. 4.3(c)). The m-wheels 2
and 3 are fixed and parallel to the xF -axis, hence the formation type is (1, 1).

3. Let β1 = β1(t) (free), β2 = π/6 and β3 = −π/6 (yellow in Fig. 4.3(c)). The axles
of m-wheels 2 and 3 concur at the center of m-wheel 1 (the ICR), and the only
possible motion of the formation is about this fixed point. This arrangement is
called singular wheels configuration (SWC) in (Thuilot et al. 1996, Def. 2).

4. Let β1 = β2 = β3 = 0. The three m-wheels are tangent to the circle circumscribing
the triangular “chassis” of the m-robot (gray in Fig. 4.3(b) or Fig. 4.3(c)). In this
degenerate configuration, the only possible motion is a rotation about the center
OF (the ICR) of the formation.

Formation of n unicycles

Fig. 4.4 reports a formation of n ≥ 3 unicycles defined by n distance constraints: V =

{1, 2, . . . , n} and Ed = {{1, 2}, {2, 3}, . . . , {n, 1}}. Recall that the central angle of a reg-
ular convex polygon with n vertices is γ = 2π/n and that the circumradius is rc =

d/(2 sin(π/n)). Hence, αi = γ(i − 1), i ∈ {1, 2, . . . , n}. By applying the reduction proce-
dure seen in the previous sections, we obtain:

Robot 1

Robot 2

Robot i

Robot n

yF

xF

xI

yI
OF

d
rc

OI

γ

Figure 4.4: n unicycles. The formation is specified by n distance constraints. The regular convex
polygon has side d and circumradius rc.
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C∗
1(β1, . . . , βn) =

⎡⎢⎢⎢⎣
cos β1 sin β1 rc sin β1

cos(β2 + γ) sin(β2 + γ) rc sin β2
...

...
...

cos(βn + γ(n− 1)) sin(βn + γ(n− 1)) rc sin βn

⎤⎥⎥⎥⎦.
The next result is instrumental in studying the rank deficiency of C∗

1(β1, . . . , βn) ∈ Rn×3.

4.1. PROPOSITION. The n+1 points OR1 , OR2, . . . , ORn, OF obey the classic Descartes’ prin-
ciple of instantaneous motion, i.e., at each instant, their motion coincides either with a pure
translation or with a pure rotation about the ICR.

Proof : The distance between any two given points in {OR1, OR2, . . . , ORn, OF} remains
constant over time in the horizontal plane defined by {OI ; xI , yI}. Hence, the proof is the same
as that traditionally used for a rigid body in mechanics. �

4.1. LEMMA. The following condition holds true:

1 < rank(C∗
1(β1, . . . , βn)) ≤ 3. (4.3)

Proof : See (Morbidi and Bretagne 2018). �

The following lemma provides an algebraic characterization of the full-rank case in
Lemma 4.1.

4.2. LEMMA. rank(C∗
1(β1, . . . , βn)) = 3 if and only if there exist i, j, k ∈ {1, 2, . . . , n}, i �=

j �= k, such that:

sin βi sin(βk−βj+γ(k−j))−sin βj sin(βk−βi+γ(k− i))+sin βk sin(βj−βi+γ(j− i)) �= 0.

(4.4)
Proof : See (Morbidi and Bretagne 2018). �

In the next proposition, we use geometric arguments to show that, actually, only two
types are admissible for nontrivial n-robot formations.

4.2. PROPOSITION. Under the previous assumptions, a formation of n ≥ 3 unicycles defined
by n distance constraints is either of type (1, 1) or (1, 2).

Proof : See (Morbidi and Bretagne 2018) �

To make the link with the special configurations studied in Sect. 4.1.3, we list below
their n-robot counterparts.

1. Let β1 = β1(t) (free), βk = β1 + 2 γ (k − 1), k ∈ {2, 3, . . . , n}. The orientation of the
n m-wheels is coupled and the formation behaves as an n-wheel synchro-drive robot
(cf. Case 1 in Sect. 4.1.3, “Formation of three unicycles”).
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2. Let β1 = β1(t) (free), βk = β1 − γ (k − 1), k ∈ {2, 3, . . . , n}. As in the previous case,
the orientation of the n m-wheels of the m-robot is coupled (cf. Case 1 and 2 in
Sect. 4.1.3, “Formation of three unicycles”).

3. For n even, let β1 = β1(t) (free), β2 = γ(n − 2)/4, . . . , β(n/2)−1 = γ, βn/2 = γ/2,
β(n/2)+1 = π, β(n/2)+2 = π− γ/2, β(n/2)+3 = π− γ, . . . , βn = π− γ(n− 2)/4, and for n
odd, let β1 = β1(t) (free), β2 = γ(n− 2)/4, . . . , β(n+1)/2−2 = 5 γ/4, β(n+1)/2−1 = 3 γ/4,
β(n+1)/2 = γ/4, β(n+1)/2+1 = π − γ/4, β(n+1)/2+2 = π − 3 γ/4, . . . , βn = π − γ(n −
2)/4. The axles of m-wheels 2, 3, . . . , n concur at the center of m-wheel 1 (the ICR),
and the formation can only rotate about this fixed point (cf. Case 3 in Sect. 4.1.3,
“Formation of three unicycles”).

4. Let β1 = β2 = . . . = βn = 0. The m-wheels are tangent to the circle circumscribing
the polygonal “chassis” of the m-robot. The only possible motion is a rotation
about the center OF of the formation (cf. Case 4 in Sect. 4.1.3, “Formation of three
unicycles”).

4.2. REMARK (RECONFIGURABLE FORMATIONS). With reference to Fig. 4.1, if the polar co-
ordinates (�, α) used to express the position of the center A of the wheel with respect to OR are
time-varying, condition (4.1) becomes:[

cos(α + β), sin(α + β), � sinβ
]
RT (θ)q̇ +

[
cos β, � sin β

]
τ̇ = 0, (4.5)

where τ = [�, α]T . Eq. (4.5) can be obtained by plugging the coordinates of point A, (xA, yA) =
(x + � cos(θ + α), yA = y + � sin(θ + α)), into the nonslip condition ẏA cos(θ + α + β +

π/2) − ẋA sin(θ + α + β + π/2) = 0. The generalized nonslip condition (4.5) can be used to
study the mobility of reconfigurable formations, i.e. formations whose shape can vary over time.
While formations able to contract/expand are relevant in the applications, the extension of our
taxonomy to these structures goes beyond the scope of this study, and it is left to future work. �

4.1.4 Trajectory tracking of a formation of unicycles

In this section, we adapt the trajectory-tracking control law via dynamic feedback origi-
nally introduced in (Thuilot et al. 1996, Sect. III) for mobile robots equipped with multi-
ple steering wheels, to distance-bearing formations of unicycles. This task is made easy
by the proposed notion of macro-robot. Note that we are not interested here in a sta-
bilization problem, i.e. we assume that the unicycles satisfy the formation constraints
initially, and such constraints should be respected at all times.

Following (Thuilot et al. 1996), let us describe the position of the ICR of the forma-
tion using the polar coordinates (1/σ, ζ) expressed in the frame centered at m-wheel 1
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4.1. Mobility of formations of unicycle robots 77

(whose axes are parallel to the longitudinal and lateral axes of the “chassis” of the m-
robot, respectively). In particular, 1/σ is the (signed) instantaneous radius of curvature
of the m-robot viewed from the frame of m-wheel 1 and ζ is the angle between the x-axis
of the reference frame of m-wheel 1 and its axle r = [cos ζ, sin ζ ]T , namely,

σ =

⎧⎪⎨⎪⎩
0, if the ICR is at infinity,
sgn(〈r, w1,ICR〉)

‖w1,ICR‖ , otherwise,

where w1,ICR is the vector from the center of m-wheel 1 to the ICR, and sgn(·) denotes
the sign function (see Fig. 4 in (Thuilot et al. 1996)). Let us introduce the state vector
x = [x, y, θ, ζ, σ]T and the input vector u = [η1, η2, η3]

T , where [x, y, θ]T now denotes
the pose of the frame of m-wheel 1 with respect to {OI ; xI , yI}, η1 is the linear velocity
of m-wheel 1, η2 = ζ̇ and η3 = σ̇. We can then write the following state-space model for
the m-robot:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎣
sin(θ + ζ) 0 0

− cos(θ + ζ) 0 0

σ 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦u . (4.6)

Note that this model is completely independent of the number of m-wheels and of their
disposition in the “chassis” of the m-robot. As shown in (Thuilot et al. 1996, Th. 1), sys-
tem (4.6) can be fully dynamically linearized if SWCs (system’s intrinsic singularities)
and rest configurations (singularities of the linearizing control law) are not met. A can-
didate output vector which provides such a linearization is ϕ = [x, y, θ/σF ]

T where
σF � min{σ2, σ3, . . . , σn}, being (1/σj , ζj), j ∈ {2, 3, . . . , n}, the polar coordinates of
m-wheel j expressed in the frame of m-wheel 1. Note that σF > 0 is a characteristic con-
stant of the formation considered. Using the dynamic extension algorithm, the input η1
can be delayed. This leads to the following extended model for the m-robot (cf. eq. (4.6)),

ẋe =

⎡⎢⎢⎢⎢⎣
η1 sin(θ + ζ)

−η1 cos(θ + ζ)

σ η1/σF

03×1

⎤⎥⎥⎥⎥⎦+

[
03×3

I3×3

]
ue, (4.7)

where xe = [x, y, θ/σF , ζ, σ, η1]
T and ue = [η2, η3, η4]

T are the extended state and in-
put vectors, respectively. Let now ϕref(t) = [xref(t), yref(t), θref(t)/σF ]

T ∈ C2 be the refe-
rence trajectory that the output vector ϕ(t) should follow, and let H1,H2 ∈ R3×3 be two
diagonal positive-definite gain matrices. Then, as long as η1 �= 0 (i.e. with the pro-
viso that singular rest configurations are avoided), trajectory tracking for system (4.7)
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Figure 4.5: (a) Trajectory of robot 1 of the hexagonal formation of unicycles (blue, actual; red, re-
ference): to provide a time reference, the type (1, 1) formation is depicted every second; (b) Time
evolution of the trajectory-tracking error ϕ(t)−ϕref(t); (c) Time history of η1(t) and ue(t).

is achieved via:

ue = Δ−1(xe)
(
ua −

⎡⎢⎢⎣
σ η21 cos(θ + ζ)

σ η21 sin(θ + ζ)

0

⎤⎥⎥⎦), (4.8)
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where

Δ(xe) =

⎡⎢⎣ η1 cos(θ + ζ) 0 sin(θ + ζ)

η1 sin(θ + ζ) 0 − cos(θ + ζ)

0 η1/σF σ/σF

⎤⎥⎦,
and the auxiliary control input ua is designed as,

ua = −H1(ϕ− ϕref) − H2(ϕ̇− ϕ̇ref) + ϕ̈ref .

Note that the control law (4.8) is invariant to the number of robots in the formation,
and given σ2, σ3, . . . , σn, no communication exchange between the robots is needed at
runtime (in this sense, it can thus be regarded as decentralized).

Case study: hexagonal formation of unicycles

We evaluated the effectiveness of the trajectory tracking control law (4.8) on a type (1, 1)

formation of six unicycles disposed at the vertices of a regular hexagon of side d = 3

m. Since n = 6, then γ = π/3 and rc = d = 3 m. Moreover, [σ2, σ3, σ4, σ5, σ6]T =

[1/d, 1/(
√
3 d), 1/(2d), 1/(

√
3 d), 1/d]T and thus σF = 1/(2d) = 1/6 m−1. We chose the

initial condition xe(0) = [0, 36, 0, 0, 1/2, 1]T and selected the following proportional
and derivative diagonal gain matrices: H1 = diag(16, 6, 2) and H2 = diag(14, 8, 4). Fi-
nally, we defined the following elliptical reference trajectory for ϕ(t),

ϕref(t) =
[
μM cos(t), μm sin(t),

π

4 σF

]T
, t ∈ [0, 15] s,

where μM = 28 m, μm = 14 m are the lengths of the semi-major and semi-minor axes
of the ellipse, respectively. Note that ϕref(0) = [28, 0, 3π/2]T (see the green star in
Fig. 4.5(a)). Fig. 4.5(a) reports the trajectory of robot 1 (i.e. m-wheel 1) of the formation,
Fig. 4.5(b) the time evolution of the trajectory-tracking error ϕ(t)−ϕref(t), and Fig. 4.5(c)
the time history of η1(t) and ue(t). Note that η1(t) ≥ 1, ∀ t ∈ [0, 15] s, hence no singu-
lar rest configuration is crossed by the formation. A video illustrating the simulation
results is available at the address reported below1.

4.1.5 Conclusions and future work

In this section, we have studied the mobility of distance-bearing formations of unicy-
cle robots and introduced a new classification, corresponding to two indices (δm, δs),
inspired by the taxonomy in (Campion et al. 1996).

1https://home.mis.u-picardie.fr/˜fabio/Eng/Video/MoBr_IROS18.m4v
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In future works, more general formations lacking dihedral symmetry and other
inter-robot constraints (e.g. relative positions and heading angles) will be investigated.
More involved wheel’s and robot’s models will be studied as well: in this respect, con-
ventional off-centered orientable wheels and car-like robots, seem the most natural can-
didates. Finally, we would like to establish a link between the type of a formation and
the (rigidity (Anderson et al. 2008)) properties of the weighted graph which defines the
constraints between the robots.
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4.2 Cooperative adaptive cruise control

This section presents new decentralized optimal strategies for Cooperative Adaptive Cruise
Control (CACC) of a car platoon under string-stability constraints. Two related sce-
narios are explored: in the first one, a linear-quadratic regulator in the presence of
measurable disturbances is synthesized, and the string-stability of the platoon is en-
forced over the controller’s feedback and feedforward gains. In the second scenario,
H2- and H∞-performance criteria, respectively accounting for the desired group be-
havior and the string-stability of the platoon, are simultaneously achieved using the
recently-proposed compensator blending method. An analytical study of the impact of
actuation/communication delays and uncertain model parameters on the stability of
the multi-vehicle system, is also conducted. The theory is illustrated via numerical sim-
ulations.

4.2.1 Introduction

Motivation and related work

Traffic congestion has become a serious issue in modern cities’ life. In 2010, congestion
caused urban Americans to travel 4.8 billion hours more and to purchase an extra 1.9 bil-
lion gallons of fuel, for a congestion cost of $101 billion (Schrank et al. 2011). In 2017, the
average commuter wasted nearly seven full working days in extra traffic delay, which
translated to over $1000 in personal costs (Schrank et al. 2019). Because of such a big
impact on productivity, pollution and human welfare, a considerable effort has been de-
voted in the last decades toward devising innovative systems which may reduce traffic
jams and improve driver’s safety and comfort. This research activity, together with nu-
merous “intelligent highway” initiatives in the U.S. (e.g., California PATH research pro-
gram), Japan and Europe, has led to the development of Adaptive Cruise Control (ACC)
systems, currently available in numerous sedans, and lately to the design of Cooperative
Adaptive Cruise Control (CACC) systems which extend the functionality of ACC by lever-
aging the information exchanged via vehicle-to-vehicle and/or vehicle-to-infrastructure
wireless communication.

The idea of using optimization-based policies for CACC is not new and dates back at
least to the end of 90s. In (Sheikholeslam and Desoer 1993) the longitudinal control of
each car is computed using a gradient-based descent algorithm, and no communication
with the leading vehicle of the platoon is needed. In (Stanković et al. 2000) a decen-
tralized overlapping controller is developed using the inclusion principle: possible ex-
tensions to the basic scenario are also discussed, comprising the use of reduced-order
observers for estimating the state of the preceding vehicle and the identification of suit-
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able stability-preserving conditions. A similar control framework is adopted in (Guo
and Yue 2012), where the authors analyze the impact of range-limited sensing, assuming
that the lead car broadcasts its state information, i.e. its speed and acceleration informa-
tion, to all platoon members. Recently, we have witnessed a growing interest in CACC
based on Model Predictive Control (MPC). In (Naus et al. 2008) an explicit MPC controller
for “Stop-&-Go” ACC is synthesized, and its performance is evaluated by distinguish-
ing between comfort of the resulting longitudinal vehicle behavior and behavior due to
the traffic constraints. A similar MPC approach is considered in (Naus, Ploeg, de Molen-
graft, Heemels and Steinbuch 2010), where the tuning of the cruise controller is made
simple by the parameterization of multiple performance indices. In (Li et al. 2011), a
multi-objective MPC-based CACC strategy is developed for multiple trucks and tested
in realistic traffic conditions. An analogous setup is considered in (Marzbanrad and
Karimian 2011), where the performance of MPC is compared with that of a PD and a
sliding-mode controller, in a real driving cycle. Finally, in (Stanger and del Re 2013), the
authors use linear MPC for fuel-efficient CACC.

A significant body of research in the CACC literature has also focused on robust-
ness and stability issues, and notably on the so-called string stability of a car platoon.
A platoon is said string stable under an assigned control policy, if oscillations are atten-
uated upstream the traffic flow. In (Liu et al. 2001, Swaroop and Rajagopal 2001), early
studies were conducted concerning the effect of communication delays on the string
stability. A similar analysis has been recently carried out in (Naus, Vugts, Ploeg, van de
Molengraft and Steinbuch 2010) in the frequency domain with heterogeneous vehicles,
under a simple PD control. In (Middleton and Braslavsky 2010), sufficient conditions
are given that imply a lower bound on the peak of the frequency-response magnitude
of the transfer function mapping a disturbance to the leading vehicle to a vehicle in
the chain. This bound quantifies the effect of spacing policy, inter-vehicle communi-
cation policy, and vehicle settling response performance. Finally, in (Öncü et al. 2011),
the problem of regulating inter-vehicle distances in a car platoon is approached from
a networked-system perspective. Tradeoffs between CACC performance and network
specifications are pointed out, and a study of the impact of network-induced effects on
string stability is conducted.

Original contributions

After an introductory section devoted to the modeling of a car platoon adapted from
(Li et al. 2011), Sect. 4.2.3 presents original results concerning the decentralized optimal
CACC of a team of n vehicles under string-stability constraints and a constant-time
headway spacing policy. The CACC problem is approached here from two different
perspectives. In the first scenario, an infinite-time linear-quadratic regulator in the pres-
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ence of measurable disturbances is synthesized and the string-stability of the platoon is
enforced over the regulator’s feedback and feedforward gains. In the second scenario,
we simultaneously achieve H2- and H∞-performance criteria, which respectively dic-
tate the desired group behavior and string-stable behavior of the platoon, by using the
compensator blending method recently proposed in (Blanchini et al. 2008). This method
is more intuitive and simpler to implement than the classical recursive approaches to
mixed H2

/
H∞ optimal control (Colaneri et al. 1997), lately used in (Maschuw et al. 2011)

to design a constant-spacing CACC strategy for a chain of trucks.
As an aside, it is worth pointing out here that unlike the MPC methods described

in Sect. 4.2.1, state and input constraints cannot be handled by the strategies described
below. However, differently from those methods, the relative simplicity of our control
design procedures allowed us to establish insightful analytical conditions for the solvabil-
ity of the optimal CACC problem with string stability, both in the “nominal case” and
in the presence of actuation/communication delays and, for the first time, uncertain
model parameters. In Sect. 4.2.4, the proposed theoretical results are illustrated via nu-
merical simulations, and finally, in Sect. 4.2.5, the original contributions are summarized
and possible avenues for future research are outlined.

4.2.2 Modeling of the platoon

Compensation of nonlinear longitudinal dynamics

Consider a platoon of n identical cars moving in one dimension, where vehicle 1 is the
leader of the platoon and v1, a1, . . . , vn, an denote the velocity and acceleration of the
n cars, respectively. In the following, we will assume that a1 is an assigned accelera-
tion profile.

As it is known, the longitudinal dynamics of a car is nonlinear and its main features
include the static nonlinearity of engine torque maps, time-varying gear position and
aerodynamic drag force. Following (Li et al. 2011), we will avail ourselves of a hierar-
chical controller for each vehicle, consisting of a lower-level and an upper-level controller,
as illustrated in Fig. 4.6. The lower-level controller determines the value of the acceler-
ator pedal position (ai, accl) and brake pressure (Pi, brk) of i-th car, i ∈ {2, . . . , n}, so that
the desired acceleration ai,des is tracked by the actual acceleration ai. On the other end,
the upper level controller determines the desired longitudinal acceleration according
to the inter-vehicle and vehicle i’s internal variables, which include the engine speed,
gear ratio and car’s speed and acceleration. We assume that the internal variables are
all measured by the on-board car sensors (cf. Fig. 4.6).

The inter-vehicle variables are the relative distance di between vehicle i − 1 and ve-
hicle i and the speed error Δvi = vi−1 − vi, which are measured by a radar mounted
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Inverse longitudinal
dynamics
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ai, accl Pi,brk

ai

i

i

Figure 4.6: Hierarchical control architecture of vehicle i. In the lower-level controller, a switch-
ing logic is adopted to avoid simultaneous actions from the drive train and braking system
(see (Li et al. 2011) for more details).

in front of the car. When designing the lower-level controller, one of the challenges is
the presence of several nonlinearities coming from engine, transmission, and aerody-
namic drag. To compensate for them, following (Li et al. 2011), the inverse-dynamics
control design method is used here. The lower-level controller together with vehicle i,
then yield a new plant with input ai, des and output ai, called Generalized Vehicle Longitu-
dinal Dynamic (GVLD) system, described by,

ai(s) =
KL

TL s + 1
ai, des(s), i ∈ {2, . . . , n}, (4.9)

where KL > 0 is the system gain (ideally equal to 1), and TL is the time constant
of GVLD.

Car-following model

In order to design the upper-level controller, a car-following model is built by combin-
ing the GVLD system and the inter-vehicular longitudinal dynamics. For the inter-
vehicular dynamics, two state variables are of interest: the clearance error Δ di(t) =

di(t) − di,des(t) and the speed error Δvi, where di,des(t) denotes driver’s desired inter-
vehicle distance, cf. (Li et al. 2011). Various models for di, des have been proposed in the
literature: we adopt here the popular constant-time headway spacing policy

di,des(t) = τh vi(t) + d0,
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�id0

�′i = �i + d0

Vehicle i− 1 Vehicle i

Figure 4.7: Two vehicles in the platoon: �i is the actual length of vehicle i, d0 is the desired
distance at standstill, and �′i = �i + d0 is the “extended length” of vehicle i, cf. Sect. 4.2.3.

where τh is the nominal time headway and d0 is the desired distance at standstill (Naus,
Vugts, Ploeg, van de Molengraft and Steinbuch 2010).

Note that d0 can be regarded as an extension of the length �i of vehicle i (cf. (Naus,
Vugts, Ploeg, van de Molengraft and Steinbuch 2010) and see Fig. 4.7), and we can
redefine the vehicle’s length as �′i = �i+d0. Hence, in the following, d0 will be neglected.
By collecting the inter-vehicular dynamics and equation (4.9) together, we end up with
the following linear time-invariant system (Li et al. 2011),

ẋi = Axi +B ui +G zi, i ∈ {2, . . . , n}, (4.10)

where

A =

⎡⎢⎣ 0 1 −τh
0 0 −1

0 0 −1/TL

⎤⎥⎦, B =

⎡⎢⎣ 0

0

KL/TL

⎤⎥⎦, G =

⎡⎢⎣ 0

1

0

⎤⎥⎦, (4.11)

xi = [Δ di, Δ vi, ai]
T ∈ R3 is the state of the system, ui = ai,des ∈ R is the control input,

and zi = ai−1 ∈ R is a measurable disturbance. In the following, we will assume the
transmission of the acceleration ai−1 from vehicle i− 1 to vehicle i.

4.2.3 String-stable optimal cooperative adaptive cruise control

In this section, we present two decentralized optimal CACC strategies, which preserve
the string stability of the car platoon.
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LQ regulation with guaranteed string stability

In order to specify the desired behavior of the platoon, let us introduce the following
optimal control problem,

min
ui

∫ ∞

0

(
xT
i Qxi + r u2i

)
dt,

s.t. ẋi = Axi +B ui +G zi,

i ∈ {2, . . . , n}, (4.12)

where Q � 0 and r > 0 are suitable weights on the state xi and input ui of system (4.10).
This is an infinite-time linear-quadratic (LQ) regulation problem in the presence of the
measurable disturbance zi. If we assume that zi is constant (cf. (Stanković et al. 2000)),
this problem admits the following closed-form solution (Anderson and Moore 1989,
Sect. 4.3),

u∗i = − r−1BT (Pxi + qi), (4.13)

where P � 0 is the solution of the algebraic Riccati equation,

PA + AT P − r−1PBBTP + Q = 0,

and qi = [(A − r−1BBTP)T ]−1PG zi. Note that the control law (4.13) can be rewritten
more compactly as,

u∗i = kTxi + kF zi, (4.14)
where

kT = [k1, k2, k3] � −r−1BT P,

kF � −r−1BT [(A− r−1BBT P)T ]−1PG.
(4.15)

By substituting equation (4.14) into system (4.10), we finally obtain the following closed-
loop dynamics,

ẋi = (A+BkT )xi + (B kF +G) zi, (4.16)

which is the basis for our forthcoming developments.
The following definition introduces the notion of string stability used in this sec-

tion (Naus, Vugts, Ploeg, van de Molengraft and Steinbuch 2010).

4.1. DEFINITION (STRING STABILITY). Consider the following transfer function,

Λi(s) =
ai(s)

ai−1(s)
, i ∈ {2, . . . , n}, (4.17)

where ai(s) and ai−1(s), denote the Laplace transforms of the acceleration signals ai(t) and
ai−1(t), respectively. A sufficient condition for the string stability of a platoon of n identical
cars is that,

‖Λi(j ω)‖∞ ≤ 1, i ∈ {2, . . . , n}, (4.18)

where ‖Λi(j ω)‖∞ � supω |Λi(j ω)| denotes the H∞ norm of the transfer function in (4.17). �
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In other words, the longitudinal dynamics of a platoon is string stable whether os-
cillations are not amplified upstream the traffic flow. The next proposition provides
sufficient conditions on the feedback and feedforward control gains in (4.15), for the
string stability of the car platoon. These conditions are successively extended to the case
of constant communication delays among the vehicles and within the individual GVLD
systems.

4.3. PROPOSITION (STRING-STABILITY CONDITIONS). Consider system (4.16). The car pla-
toon is string stable if the following two inequalities are satisfied:

(KLk3 − 1)2 − 2 TL KL(τhk1 + k2)−K2
L k

2
F ≥ 0 ,

2k1(KLk3 − 1) + k1KL(τ
2
hk1 + 2 (τhk2 + kF )) ≥ 0 .

(4.19)

Proof : See (Morbidi et al. 2013). �

Note that it is generally possible to enforce the conditions in (4.19) by properly tun-
ing the weights Q and r in (4.12). Next, we will try to repeat the previous analysis in the
more challenging scenario in which the signal zi = ai−1 is transmitted between vehicle
i − 1 and vehicle i with a constant delay θ, and that a constant actuator’s communica-
tion delay φ is present in the GVLD system. It is immediate to verify that under these
conditions, equation (4.10), for i ∈ {2, . . . , n}, transforms into:

ẋi(t) = Axi(t) +B ui(t− φ) +G zi(t− θ). (4.20)

Let us now choose a control input of the form,

ui(t) = kTxi(t) + kF zi(t− θ). (4.21)

Following the same outline of the proof of Proposition 4.3, from (4.20) we obtain[
s− (KL k3 e

−φ s − 1

TL

)]
ai(s) =

KL

TL
e−φ s

[
k1Δ di(s) + k2Δ vi(s) + kF ai−1(s) e

−θ s
]
,

and the transfer function:

Λi(s) =
KL e

−φs(k1 + k2 s+ kF s
2 e−θs)

TLs3 + s2 +KL e−φs[−k3s2 + (k1τh + k2)s+ k1]
.

If we now impose |Λi(jω)| ≤ 1, ∀ω > 0, we obtain the following quasipolynomial
inequality in the variable ω:

T 2
L ω

4 + 2KL k3 TL sin(φω)ω3 + [1 + (k23 − k2F )K
2
L − 2KL cos(φω)(k3 + TL(k1τh + k2))]ω

2

− 2[k2 kFK
2
L sin(θ ω) +KL sin(φω)(k1(τh − TL) + k2)]ω + KL[−k22 KL + 2k1KL kF cos(θ ω)

+ 2KL k1k3 + KL(k1τh + k2)
2 − 2k1 cos(φω)] ≥ 0.

(4.22)
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The study of the feasibility of (4.22) is made complicated by the presence of the sinu-
soidal and cosinusoidal terms, and suitable approximations to these functions need to
be introduced in order to establish conditions on the gains of controller (4.21), similar to
those in (4.19). A simple option, consists of using the following Maclaurin series expan-
sions of the cosine and sine functions cos(αω) � 1− (αω)2/2!, sin(αω) � αω − (αω)3/3!,
α ∈ {θ, φ}, under the assumption of “small” αω. Inequality (4.22) can thus be rewrit-
ten as:

− 1
3
KLk3TLφ

3ω6 +
{
T 2

L + 2KL k3 TL φ+KL[k3 + TL(k1τh + k2)] θ
2

+ 1
3
[k2 kF K

2
L θ

3 +KL(k1(τh − TL) + k2)φ
3]
}
ω4

+
{
(KL k3 − 1)2 − 2 TL KL(τh k1 + k2)−K2

L k
2
F

−K2
L kF θ (2k2 + θk1)− 2KL [k2 + k1(τh − TL)]φ+KL k1 φ

2
}
ω2

+2KL k1(KLk3 − 1) + k1K
2
L [τ

2
h k1 + 2(τhk2 + kF )] ≥ 0.

(4.23)

A sufficient condition for the nonnegativity of the six-order polynomial on the left-hand
side of (4.23), is that all its coefficients are nonnegative, from which we deduce the
following four inequalities:

− k3 φ
3 ≥ 0,

T 2
L + 2KLk3TL φ+KL[k3 + TL(k1τh + k2)]θ

2+ 1
3
[k2 kF K

2
L θ

3 +KL(k1τh + k2 − k1TL)φ
3] ≥ 0,

(KL k3 − 1)2 − 2 TL KL(τh k1 + k2)−K2
L k

2
F −K2

L kF θ (2k2 + θk1)

− 2KL[k2 + k1(τh − TL)]φ +KL k1 φ
2 ≥ 0,

2k1(KLk3 − 1) + k1KL(τ
2
h k1 + 2(τhk2 + kF )) ≥ 0.

These inequalities are approximate sufficient conditions for the string stability of the car
platoon in the presence of the constant communication delays θ and φ.

Simultaneous H2- and H∞-performance achievement via compensator blending

In this section, we present a decentralized CACC strategy alternative to that considered
above. By relying on the compensator blending method proposed in (Blanchini et al. 2008),
we are interested in jointly solving two problems: minimize the H2-performance index
in (4.12) and achieve an H∞ criterion (cf. equation (4.18)) accounting for the string-stable
behavior of the platoon. We will separately design the H2 and H∞ control laws ui =

kT
2 xi, ui = kT

∞ xi, i ∈ {2, . . . , n}, and obtain a (dynamic) compensator of the form,

Ki :

{
żi =AK,i zi + BK,i xi,

ui=CK,i zi + DK,i xi,
(4.24)
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which simultaneously fulfills the H2 and H∞ criteria. To this end, let us introduce the
following system,

Gi :

⎧⎪⎨⎪⎩
ẋi = Axi + B ui + xi(0) zi,2 + G zi,∞,

yi,2 = C2 xi +D2 ui, i ∈ {2, . . . , n},
yi,∞ = C∞ xi,

where

zi, 2(t) = δ(t), C2 =

[
Q1/2

01×3

]
, D2 =

[
03×1

r1/2

]
, zi,∞(t) = zi(t), C∞ =

[
0 0 1

]
,

xi(0) is the initial state, δ(t) is the Dirac’s delta, 01×3 is an 1 × 3 vector of zeros, and the
subscripts “2” and “∞” refer to the H2- and H∞-performance indices, respectively.

Note that the compensator blending procedure in (Blanchini et al. 2008), is valid
under the assumption of a stabilizable pair (A, B) (in our specific case, (A, B) is in-
deed controllable, cf. equation (4.11)), and of full column-rank matrices [xi(0) G],
i ∈ {2, . . . , n}. An additional requirement is that k2 and k∞ are stabilizing.

Since the regulator k2 can be easily synthesized, in what follows we will limit our-
selves to the design of the more challenging k∞ = [k∞,1, k∞,2, k∞,3]

T (which we cannot
straightforwardly calculate using state-of-the-art methods owing to our peculiar choice
of the output matrix C∞). Note that the characteristic polynomial of matrix,

Â = A + BkT
∞ =

⎡⎢⎣ 0 1 −τh
0 0 −1

KLk∞,1

TL

KLk∞,2

TL

KLk∞,3−1

TL

⎤⎥⎦, (4.25)

is

det(λI3 − Â) = λ3 −
(
KLk∞,3 − 1

TL

)
λ2 +

KL

TL
(k∞,1τh + k∞,2)λ +

KL

TL
k∞,1. (4.26)

Hence, from the Routh-Hurwitz stability criterion, Â is Hurwitz (and thus k∞ is stabi-
lizing), if the following four inequalities are satisfied:

KL k∞,3 < 1, k∞,1 τh + k∞,2 > 0, k∞,1 > 0,

(KL k∞,3 − 1)(k∞,1 τh + k∞,2) + k∞,1 TL < 0.
(4.27)

Moreover, we have that:

Λi(s) = C∞(s I3 − Â)−1G =
KL(k∞,1 + k∞,2 s)

TLs3 − (KLk∞,3 − 1)s2 + (τhk∞,1 + k∞,2)KLs+KLk∞,1
.
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Figure 4.8: The set S of all feasible regulators k∞ in [−2, 2]3, for τh = 2.5, KL = 1 and TL = 0.45.
For this parameters’ selection, S (in the front lower corner of the figure) is completely defined
by the two inequalities in (4.28), depicted in cyan and red, respectively.

If, as in the proof of Proposition 4.3, we now impose that |Λi(jω)| ≤ 1, ∀ω > 0, for
string stability, we end up with the following two inequalities (which coincide with
those in (4.19) for kF = 0), which add to those in (4.27):

(KL k∞,3 − 1)2 − 2 TL KL(τhk∞,1 + k∞,2) ≥ 0,

2k∞,1(KL k∞,3 − 1) + k∞,1KLτh(τhk∞,1 + 2k∞,2) ≥ 0.
(4.28)

Note that (4.27)-(4.28) define the set S ⊂ R3 of all feasible regulators k∞: as illustrated
in the example of Fig. 4.8, S is a nonconvex set. Since S contains infinite gain vectors,
one needs an optimal criterion to select k∞, such as, e.g., minimizing any vector norm.
In the numerical simulations in Sect. 4.2.4, we chose the k∞ with minimum squared
2-norm.

Given the regulator k2 and a regulator k∞ ∈ S, by using Procedure 2.1 in (Blanchini
et al. 2008), the matrices AK,i, BK,i, CK,i, DK,i of the compensator in (4.24) can be simply
computed as, [

DK,i CK,i

BK,i AK,i

]
=

[
kT
2 kT

∞
V2,i V∞

][
I3 I3

Z2,i Z∞

]−1

, (4.29)

where
V2,i � Z2,i(A+BkT

2 ), V∞ � Z∞(A+BkT
∞), (4.30)
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and
Z2,i � [03×1 Z̃2] [xi(0) Ẽ2,i]

−1, Z∞ � [03×1 Z̃∞] [G Ẽ∞]−1. (4.31)

Ẽ2,i, Ẽ∞ ∈R3×2 in (4.31) are such that matrices [xi(0) Ẽ2,i], i ∈ {2, . . . , n}, [G Ẽ∞],
respectively, are invertible, and Z̃2, Z̃∞ ∈ R3×2 are such that matrix[

xi(0) G Ẽ2,i Ẽ∞

03×1 03×1 Z̃2 Z̃∞

]
∈ R6×6, i ∈ {2, . . . , n},

is invertible. We conclude this section with Proposition 4.4, which provides sufficient
conditions for k∞ to be stabilizing when the parametersKL and TL are not exactly known
(e.g., because of an inaccurate identification of the GVLD system).

4.4. PROPOSITION (STABILIZING k∞ WITH UNCERTAIN KL, TL). Let us suppose that the
parameters KL and TL of the GVLD system (4.9) are not exactly known, and lie within the
intervals KL,m ≤ KL ≤ KL,M , TL,m ≤ TL ≤ TL,M where KL,m, KL,M , TL,m and TL,M are
known positive constants. Then, matrix Â in (4.25) is Hurwitz if the following inequalities are
satisfied:

KL,M k∞,3 < 1, k∞,1 τh + k∞,2 > 0, k∞,1 > 0,

(KL,m k∞,3 − 1)(k∞,1 τh + k∞,2) + k∞,1 TL,M < 0,

(KL,M k∞,3 − 1)(k∞,1 τh + k∞,2) + k∞,1 TL,m < 0.

(4.32)

Proof : See (Morbidi et al. 2013). �

Note that the inequalities in (4.32) reduce to those in (4.27) for KL = KL,m = KL,M

and TL = TL,m = TL,M , as expected.

4.2.4 Numerical experiments

Simulation experiments have been carried out to study the performance of the control
strategies described in Sect. 4.2.3. The desired behavior of the platoon is specified in
both cases by the following three performance metrics for i ∈ {2, . . . , n}, cf. (Li et al.
2011):

1. Distance and velocity tracking: CT, i = rΔdΔ d2i + rΔv Δ v2i where rΔd, rΔv are positive
gains.

2. Driver’s comfort: CC, i = ru u
2
i where ru is a positive gain.

3. Driver’s car following: CD, i = ra (aref,i − ai)
2 where aref,i is the reference accelera-

tion calculated according to the linear driver’s car-following model aref,i = κD Δ di +

κV Δ vi, and ra, κD, κV are positive gains.
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Figure 4.9: First row, LQ regulation with guaranteed string stability; second row, compensator
blending method. (a),(d) Time evolution of Δdi(t), (b),(e) of Δvi(t), and (c),(f) of aref,i(t)− ai(t),
i ∈ {2, . . . , 5}.

The combination of CT, i, CC, i and CD, i yields the following weight matrices in the
quadratic cost function in (4.12):

Q =

⎡⎢⎣rΔd + κ2Dra κDκV ra −κDra
κDκV ra rΔv + κ2V ra −κV ra
−κDra −κV ra ra

⎤⎥⎦ , r = ru.

LQ regulation with guaranteed string stability

Figs. 4.9(a)-(c) show the simulation results relative to the approach described in the first
part of Sect. 4.2.3. A platoon of 5 vehicles was simulated for 50 seconds, with

a1(t) =

{
1.5 m

/
s2 for t ∈ [20, 22)s,

0 otherwise,
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4.2. Cooperative adaptive cruise control 93

and with initial conditions

x2(0) = [11, 1.5, 3.2]T , x3(0) = [10, −2, 3.5]T ,

x4(0) = [12, 1.5, 3.3]T , x5(0) = [10.5, −3, 3.5]T .

The other selected parameters, are τh = 1.8s, TL = 0.5s, KL = 1, kD = 0.02, kV =

0.25 and rΔd = rΔv = 4, ra = 0.1, ru = 18 (note that in CACC of cars, τh is typically
in the subsecond time scale in the literature (Naus, Vugts, Ploeg, van de Molengraft
and Steinbuch 2010): in our simulations, we selected a slightly larger τh for improving
the readability of our plots). Using (4.15), we obtained a feedback control gain k =

[0.4714, 0.7182, −0.6038]T and a feedforward control gain kF = −0.3110. Figs. 4.9(a)-(c)
show the time evolution of Δ di, Δ vi and aref,i−ai, and Fig. 4.10 (top) the time history of
ui for i ∈ {2, . . . , 5} and of a1. Note that with our parameters’ selection, the inequalities
in (4.19) are satisfied and the platoon is string stable. If, instead, we set rΔd = 1 and
keep all the other parameters unchanged, the second condition in (4.19) is not fulfilled
anymore, thus possibly leading to a string-unstable behavior.

Compensator blending method

Figs. 4.9(d)-(f) show the simulation results relative to the approach described in the sec-
ond part of Sect. 4.2.3. To compare the performance of the controller designed with the
compensator blending method and the LQ regulator, we repeated the simulation experi-
ment of the previous subsection with the same initial conditions and parameters. We set
k2 = k = [0.4714, 0.7182, −0.6038]T and determined the H∞ regulator by numerically
solving in Matlab with an interior-point algorithm (the barrier method), the optimiza-
tion problem min k∞ ∈ S ‖k∞‖22 (the initial condition is k∞(0) = [1, 0, 0]T ∈ S), which
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Figure 4.10: Time evolution of ui(t), i ∈ {2, . . . , 5}, for: (top) the LQ regulator, (bottom) the
regulator based on the compensator blending method.
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yielded k∞ = [0.2360, 0.2622, 0.1457]T . The application of the blending procedure to k2

and k∞, led us to

Z2,2 =

⎡⎢⎣0.1298 0.6483 −0.7502

0 0 0

0 0 0

⎤⎥⎦, Z2,3 =

⎡⎢⎣−0.1855 0.5255 0.8303

0 0 0

0 0 0

⎤⎥⎦,

Z2,4 =

⎡⎢⎣0.1197 0.6648 −0.7373

0 0 0

0 0 0

⎤⎥⎦, Z2,5 =

⎡⎢⎣−0.2616 0.1887 0.9466

0 0 0

0 0 0

⎤⎥⎦, Z∞ =

⎡⎢⎣0 0 0

1 0 0

0 0 1

⎤⎥⎦,
from which the dynamic compensators Ki, i∈{2, . . . , 5}, were computed using (4.29)
and (4.30). Figs. 4.9(d)-(f) show the time evolution of Δ di, Δ vi and aref,i−ai, and Fig. 4.10
(bottom) the time history of ui for i ∈ {2, . . . , 5} and of a1. From Fig. 4.9 we notice that
the two proposed controllers achieve comparable satisfactory performances: however,
from Fig. 4.10 (and consistently with our choice of k∞), we can notice that the compen-
sator blending method results in a smaller control effort.

4.2.5 Conclusions and future work

In this section, we have presented two novel decentralized optimal strategies for Cooper-
ative Adaptive Cruise Control (CACC) of a car platoon under string-stability constraints.
Some variations to the basic problem setup have also been explored and the results of
numerical simulations have been provided to support our theoretical findings.

Note that the feedforward part of controller (4.14) does not include anticipatory
characteristics for variable disturbances zi. Any adjustment to this controller to get im-
proved transient response usually involves lead-lag networks to replace the constant
gain kF (Anderson and Moore 1989): the design of such networks will be considered
in future works. In future research, we are also going to verify whether a static con-
troller which optimally switches between k2 and k∞ may possibly outperform the dy-
namic regulator based on the compensator blending method, we are going to study the
case of time-varying communication delays θ(t) and φ(t) (Gu et al. 2003), and to test
the developed control strategies in more advanced car simulators, e.g. in IPG’s Car-
Maker (CarMaker, IPG Automotive 2023).
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4.3 Functions of Laplacian matrix: Application to forma-
tion control

In this third and last section, we study a class of matrix functions of the combinato-
rial Laplacian that preserve its structure, i.e. that define matrices which are positive
semidefinite, and which have zero row-sum and non-positive off-diagonal entries. This
formulation has the merit of presenting different incarnations of the Laplacian matrix
appeared in the recent literature, in a unified framework. For the first time, we apply
this family of Laplacian functions to consensus theory, and we show that they leave
the agreement value unchanged and offer distinctive advantages in terms of perfor-
mance and design flexibility. The theory is illustrated via worked examples and nu-
merical experiments featuring four representative Laplacian functions in a shape-based
distributed formation control strategy for single-integrator robots.

4.3.1 Introduction

The combinatorial Laplacian is ubiquitous in network science (Newman 2018), and over
the last decade we have witnessed the emergence of several variants to describe dis-
tributed dynamic processes. In particular, the recent advent of graph signal process-
ing (Shuman et al. 2016, Ortega et al. 2018), graph neural networks (Gama et al. 2020, Wu
et al. 2021), and the growing popularity of network systems (Mesbahi and Egerstedt
2010, Bullo 2022), has had a catalytic effect on the research in this field.

An interesting variant of combinatorial Laplacian is the deformed Laplacian, which
has found applications in multi-agent systems theory (Morbidi 2013a), semi-supervised
learning (Gong et al. 2015), and in the design of new centrality measures for undirected
and directed networks (Grindrod et al. 2018, Arrigo et al. 2018, Arrigo et al. 2019, Arrigo
et al. 2020). Along the same lines as (Morbidi 2013a), the parametric Laplacian has been
introduced in (Morbidi 2014). The Bethe-Hessian matrix, the reversal of the deformed
Laplacian in the case of undirected graphs (Arrigo et al. 2018), has been used for spec-
tral clustering (Saade et al. 2014) and community detection in sparse heterogeneous
networks (Dall’Amico et al. 2019) (see also (Stoll 2020)). A different definition of de-
formed Laplacian, which encompasses several Laplacian-like matrices available in the
literature (connection, magnetic (Fanuel et al. 2018), signed and dilation), was proposed
in (Fanuel and Suykens 2019). Notably, the dilation Laplacian has been shown to be
useful for spectral ranking in directed graphs.

The p-Laplacian, a nonlinear generalization of the combinatorial Laplacian, has re-
cently attracted the attention of the machine learning community. The p-Laplacian re-
duces to the standard Laplacian for p = 2, and it has been successfully applied to solve
two-class (Bühler and Hein 2009) and multi-class (Luo et al. 2010) clustering problems.
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96 4. Formation control of mobile robots

The exponential of the negated Laplacian is common in the study of classical transport
on lattices and networks, and it is often referred to as the “heat kernel” because of its
interpretation as a diffusion process related to the heat equation (Michelitsch et al. 2019).
It also appears in discrete-time agreement protocols (Mesbahi and Egerstedt 2010).

Laplacian powers have been widely explored in the literature as well. In particular,
the bi-Laplacian (or Laplacian squared) has been considered in (Li and Ng 2019) for im-
age colorization. The bi-Laplacian corresponds to the discretization of the bi-harmonic
PDE equation with Neumann boundary condition, which together with its numerical
schemes is widely studied and applied in problems of linear elasticity (Henrot 2006,
Ch. 11), data interpolation, and computer vision (image inpainting). For non-integer
powers in the (0, 1] interval, we obtain the so-called fractional Laplacian, which has
been used to study random walks on networks, among other applications (Michelitsch
et al. 2019, Lischke et al. 2020). In (Bautista et al. 2019), the authors have proposed
a generalization of the PageRank algorithm for semi-supervised learning based on a
(non-necessary integer) power of the Laplacian matrix. Finally, it has been recently
shown that graph filters can be represented by matrix polynomials of the combinatorial
Laplacian (Segarra, Marques and Ribeiro 2017, Levie et al. 2019).

Original contributions

Following (Michelitsch et al. 2019), we study here matrix functions of the Laplacian of an
undirected graph, that preserve its main algebraic properties, i.e. that give rise to ma-
trices which are positive semidefinite and which have zero row-sum and non-positive
off-diagonal entries. These Laplacian functions promote the emergence of non-local
network correlations: in fact, thanks to their ability to reorganize the information ex-
changes between the nodes of a graph, long-range interactions are enabled. This general
formulation allows us to bring together a number of results scattered across different
areas and shed new light on them. We also revisit the classical continuous-time con-
sensus protocol by replacing the combinatorial Laplacian with our family of Laplacian
functions. These functions leave the agreement value unchanged and offer some prac-
tical advantages. In fact, in many situations, by simply tuning a scalar parameter, the
user can seamlessly modify the dynamic behavior of the multi-agent system, for exam-
ple, to guarantee faster convergence towards consensus or to adapt to variable external
conditions. This generalizes existing work in the literature, where integer powers of the
Laplacian have been considered for fast consensus seeking (by introducing a “multi-hop
relay” interpretation (Jin and Murray 2006)), and for dynamic consensus over wireless
sensor networks (Manfredi 2013). The price to pay for the increased design flexibil-
ity, is that the interaction graph associated with our Laplacian functions is generally
more dense than that of the original Laplacian. A simple yet effective approximation
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of the Laplacian functions is thus proposed to ensure a distributed implementation of
the new coordination protocols. The theoretical findings are illustrated via worked ex-
amples and validated via numerical simulations in which single-integrator robots run a
consensus-based formation control algorithm.

The rest of this section is organized as follows. In Sect. 4.3.2, we briefly recall the
definition of two matrix functions, and some basic notions of algebraic graph theory.
In Sect. 4.3.3, we study a family of functions of the combinatorial Laplacian that retain
its special structure, and in Sect. 4.3.4 we use them in a novel shape-based distributed
formation control protocol, which is validated via extensive numerical experiments. Fi-
nally, in Sect. 4.3.5, the original contributions are summarized and some possible av-
enues for future research are outlined.

4.3.2 Preliminaries

We briefly recall below the definitions of matrix logarithm and matrix pth root, for later
reference.

Matrix logarithm

A logarithm of A ∈ Cn×n is any matrix X such that eX = A. Any nonsingular matrix
A has infinitely many logarithms (Higham 2008a, Th. 1.27). Hereafter, we assume that
A ∈ Cn×n has no eigenvalues on the closed negative real axis, and log(·) always denotes
the principal logarithm, which is the unique logarithm all of whose eigenvalues lie in the
strip {z ∈ C : −π < Im(z) < π} (Higham 2008a, Th. 1.31). If A is real, then its principal
logarithm is real.

Matrix pth root

Let p ≥ 2 be an integer. Matrix X is a pth root of A ∈ Cn×n if Xp = A. We recall the
following result on existence of pth roots (Higham 2008a, Th. 7.2).

4.1. THEOREM (PRINCIPAL pTH ROOT). Let A ∈ Cn×n have no eigenvalues on the closed
negative real axis. There is a unique pth root X of A all of whose eigenvalues lie in the sector
{z ∈ C : −π/p < arg(z) < π/p}, and it is a primary matrix function2 of A. We refer to X as
the principal pth root of A and write X = A1/p. If A is real, then A1/p is real. �

For p = 2, we have the following extension of Theorem 4.1 which allows A to be
singular (see Problem 1.27 in (Higham 2008a)).

2For more details on primary and nonprimary matrix functions, see (Higham 2008a, Sect. 1.4).
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4.5. PROPOSITION (SQUARE ROOT OF A SINGULAR MATRIX). Let A ∈ Cn×n have no eigen-
values on the closed negative real axis, except possibly for a semisimple3 zero eigenvalue. There
is a unique square root X of A that is a primary matrix function of A and whose nonzero eigen-
values lie in the open right half-plane. If A is real, then X is real. �

There exist four main numerical algorithms for the computation of the matrix pth
root: Schur, Newton, and Schur-Newton algorithms, and matrix sign method (Higham
2008a, Sect. 7). The Schur algorithm assumes that A ∈ Rn×n is nonsingular, whereas the
other methods assume that A has no eigenvalues on the closed negative real axis.

4.3.3 Functions of Laplacian matrix

In what follows, we study matrix functions f(L) of the combinatorial Laplacian L.
These functions define matrices which incorporate the network topology information
and which promote non-local interactions between the nodes of graph G. We will exploit
them in Sect. 4.3.4, to design a new distributed formation control strategy for single-
integrator robots. Our exposition here follows the outline of (Michelitsch et al. 2019,
Ch. 1): however, several new examples and results are provided, and the notation has
been modified to conform to that conventionally used in systems theory. For the sake
of simplicity, we henceforth use fij(L) to denote the (i, j) entry of matrix f(L).

Given a well-defined function f(x) : R → R, the matrix f(L) can be obtained using
the series expansion f(x) =

∑∞
�=0 c� x

� where c� is the real coefficient of the �th term, or
using the spectral decomposition of L. The latter option gives

f(L) =

n∑
i=1

f(λi)viv
T
i . (4.33)

Hence, to find f(L), one should calculate the spectrum {λ1, λ2, . . . , λn} of L and then
compute {f(λ1), f(λ2), . . . , f(λn)}: the eigenvectors f(L) remain the same as those of L.
From (4.33), we also notice that matrix f(L) is symmetric by construction. For further
details on the theory of functions of matrices, see (Higham 2008a) and (Lancaster and
Tismenetsky 1985, Ch. 9).

Note that while equation (4.33) allows to calculate general functions of L, we are
interested here in functions which preserve the special structure of the Laplacian matrix
(as reported in Sect. 3.1). In order to retain these desirable properties, the matrix f(L)
should satisfy the following three conditions:

• Condition I: f(L) is positive semidefinite, i.e. the eigenvalues of f(L) are re-
stricted to be positive or zero.

3An eigenvalue is called semisimple if its algebraic multiplicity equals its geometric multiplicity.
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• Condition II: the entries fij(L) satisfy
∑n

j=1 fij(L) = 0 for i ∈ {1, 2, . . . , n}, or
equivalently f(L)1 = 0, i.e. each row-sum is equal to zero.

• Condition III: the off-diagonal entries of f(L) are non-positive and they are not
allowed to be all simultaneously zero. Hence, owing to Condition II, the diagonal
elements of f(L) are all strictly positive.

Condition I is guaranteed if f(x) ≥ 0 for x ≥ 0. Then f(λi) ≥ 0 for all i, and the eigen-
values of f(L) can be arranged in increasing order as those of L. On the other hand,
by using equation (4.33), it is easy to verify that Condition II is fulfilled if f(0) = 0.
However, these two conditions on the function f do not guarantee that the off-diagonal
entries of f(L) are non-positive, as required by Condition III. For example, if we take
G = Sn (the star graph with n nodes), we have that

L(G) =

⎡⎢⎢⎢⎢⎢⎣
n− 1 −1 −1 · · · −1

−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
... . . . ...

−1 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦ .

The function f(x) = x2 is non-negative for x ≥ 0 and f(0) = 0. Thereby, f(L) = L2, a.k.a.
bi-Laplacian (Li and Ng 2019), satisfies Conditions I and II, but the structure imposed
by Condition III is not preserved: in fact, L2 has strictly positive (unitary) off-diagonal
entries. On the contrary, the function f(x) = log(x + 1) is non-negative for x ≥ 0,
f(0) = 0, and f(L) = log(L+ In) has negative off-diagonal entries. Hence, log(L+ In) is
an admissible Laplacian function.

The following notion of completely monotonic function (Miller and Samko 2001) plays
an important role in the characterization of the admissible functions f(L).

4.2. DEFINITION (COMPLETELY MONOTONIC FUNCTION). A function g(x) defined on 0 <

x < ∞ is said to be completely monotonic, if it possesses derivatives g(m)(x) = dm

dxm g(x) for all
m ∈ Z≥0 and if (−1)m g(m)(x) ≥ 0 for all x > 0. �

In (Michelitsch et al. 2019, Sect. 1.4.2), the authors have proved that the functions
f(L) that satisfy the necessary Condition III, can be constructed via the scalar functions

f(x) = H(0) − H(−x), 0 ≤ x <∞, (4.34)

where H(x) denotes a primitive of the auxiliary scalar function h(x), i.e. h(x) = d
dx
H(x).

The function f(x) can be expressed in terms of a function g(x) = h(−x) defined on
0 ≤ x <∞, which satisfies the following conditions:

d

dx
f(x) = g(x) > 0, 0 ≤ x <∞, (4.35)
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and
(−1)m g(m)(x) ≥ 0, 0 ≤ x <∞, m ∈ Z>0. (4.36)

According to Definition 4.2, a function g(x) that fulfills conditions (4.35) and (4.36) is a
completely monotonic function. By (4.35), g(x) is strictly positive for x ≥ 0, including,
in particular, the entire spectral interval 0 ≤ x ≤ λn of the Laplacian L, and the function
f(x) monotonically increases on its interval of definition 0 ≤ x <∞. This monotonicity
property implies that the algebraic multiplicity of the eigenvalues of L is maintained in
f(L) (in fact, f(λi) > f(λj) for λi > λj). The function f(x) is also given by the following
integral

f(x) =

∫ x

0

g(y) dy, 0 ≤ x <∞, (4.37)

i.e. it is the primitive of g(x) with f(0) = 0 and with f(x) > 0 for x > 0. In (Michelitsch
et al. 2019, Sect. 1.4.3), the authors have shown that relations (4.34)-(4.37) are indeed suf-
ficient to generate scalar C∞ functions f(x) which define admissible Laplacian functions
f(L) satisfying Conditions I-III. Note that f(x) in (4.37) has the general structure given
in equation (4.34): hence, the admissible Laplacian functions can be represented as

f(L) = H(0)In −H(−L) =
n∑

i=2

(H(0)−H(−λi))viv
T
i .

There is no term v1v
T
1 since f(λ1) = 0 (recall equation (4.33)). The eigenvector of f(L)

associated with the zero eigenvalue is 1/
√
n, since L and f(L) have the same set of

eigenvectors.

Examples of f(L)

There exist several classes of completely monotonic functions which in conjunction
with equation (4.37) allow to construct admissible Laplacian functions satisfying Condi-
tions I-III. We focus here on six examples (half of which are not reported in (Michelitsch
et al. 2019)), that are of special interest.

1. The function g(x) = (λ− x)m for 0 ≤ x < λ with m ∈ Z≥0 and 0 < λn < λ, satisfies
conditions (4.35) and (4.36). From equation (4.37), we obtain

f(x) =

∫ x

0

(λ − y)m dy =
1

m+ 1

(
λm+1 − (λ − x)m+1

)
.

This yields the matrix function:

f(L) =
1

m+ 1

(
λm+1 In − (λIn − L)m+1

)
=

n∑
i=1

1

m+ 1

(
λm+1 − (λ− λi)

m+1
)
viv

T
i .
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Note that in the trivial case of m = 0, the function g(x) = 1, and f(x) is the identity
function, which yields f(L) = L.

2. Consider the function

g(x) =
a

(ax+ b)m
, a > 0, b ≥ 0, m ∈ Z>0.

Let us start with the case ofm = 1. From equation (4.37), we obtain f(x) = log(ax+

b) for x ≥ 0. However, the constraint f(0) = 0, requires f(x) = log(ax + b)− log b.
Hence, we have

f(L)= log(aL + bIn)− log(bIn).

Let us now consider the general case of m ∈ {2, 3, . . .}. Following the same proce-
dure as above, we obtain:

f(x) = − 1

(m− 1)(ax+ b)m−1
,

which we modify into

f(x) =
1

m− 1

[
− 1

(ax+ b)m−1
+

1

bm−1

]
,

to guarantee that f(0) = 0. Hence, we end up with

f(L) =
1

m− 1

[−(aL + bIn)
1−m + b1−m In

]
.

3. The exponential g(x) = ae−ax with a > 0, is a completely monotonic function. The
corresponding function that retains the Laplacian structure is f(x) = 1− e−ax and
thus f(L) = In − e−aL. Matrix e−aL is doubly stochastic and it has appeared under
different forms in consensus theory (Mesbahi and Egerstedt 2010). Functions like
e−aL and the regularized Laplacian (In + aL)−1, have been also used as kernels to
compute similarities between the nodes of an undirected graph (Fouss et al. 2016).

4. The function
g(x) =

1

b − ce−ax
, a > 0, b > c > 0,

defined on 0 < x < ∞, is completely monotonic (Miller and Samko 2001). From
(4.37), we obtain

f(x) =
1

ab

[
log(b− ce−ax) + ax

]
.

To guarantee f(0) = 0, we set

f(x) =
1

ab

[
log(b− ce−ax) + ax− log(b− c)

]
,
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yielding

f(L) =
1

ab

[
log(bIn − ce−aL) + aL− log(b− c)In

]
.

5. The function g(x) = (β + 1) xβ with β ≤ 0 is a completely monotonic function.
From equation (4.37), we obtain f(x) = xβ+1. The condition f(0) = 0, requires that
−1 < β ≤ 0. Therefore, the function f(x) = xγ with γ ∈ R such that 0 < γ ≤ 1,
preserves the Laplacian structure imposed by Conditions I-III. We thus obtain the
so-called fractional Laplacian, f(L) = Lγ , which has been studied in the theory of
random walks, and in diffusive and quantum transport on networks (Michelitsch
et al. 2019, Ch. 2). Note that integer powers γ ∈ {2, 3, . . .}, fail to satisfy Condi-
tion III.

6. Node-invariant graph filters are linear graph-signal operators of the form (Segarra,
Marques and Ribeiro 2017, Segarra, Marques, Mateos and Ribeiro 2017):

f(L) =
m−1∑
j =0

bjL
j , (4.38)

where b0, b1, . . . , bm−1 are real coefficients, i.e. graph filters are polynomials of the
Laplacian L (or of any other n× n matrix, such as the adjacency matrix A, whose
sparsity pattern captures the local structure of graph G). A graph filter can be
equivalently defined as

f(L) = a0

m−1∏
j=1

(L− ajIn),

where a0, a1, . . . , am−1 are real coefficients, which also gives rise to a polynomial
on L of degree m− 1. From (4.38), we can see that Conditions I and II are fulfilled
if b0 = 0 and bj ≥ 0 for j ∈ {1, 2, . . . , m− 1}, but Condition III is not satisfied,
in general. Graph filters based on Chebyshev and Cayley polynomials have also
been recently introduced to process graph-structured data (Levie et al. 2019, Wu
et al. 2021).

General properties of f(L)

In the previous section, we have identified the family of functions that preserve the
structure of the combinatorial Laplacian. We now briefly discuss some general proper-
ties of the matrix f(L), which will be used in Sect. 4.3.4.

Generalized degree: By construction, the diagonal entries of f(L) are positive, and
analogously to the Laplacian L, we can refer to di = fii(L), i ∈ {1, 2, . . . , n}, as the
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generalized degree associated with the function f (Michelitsch et al. 2019, Sect. 1.5.1). The
average of the generalized degree is defined as

1

n

n∑
i=1

di =
1

n
tr(f(L)) =

1

n

n∑
i=1

f(λi),

where tr(f(L)) denotes the trace of f(L). In the case of the fractional Laplacian, it is
called the average fractional degree. Note that di does not only capture the local informa-
tion (on its nearest neighbors) of node i, but also incorporates knowledge at the level of
the whole network. This “non-locality” property is further explored below.

Laplacian functions for regular graphs: To gain some insight into the structure of the
Laplacian functions f(L), it is worth focusing on the special case of regular graphs. In a
regular graph, each node has the same degree k, and the Laplacian takes the simple form
L = kIn − A. By using the series expansion presented at the beginning of Sect. 4.3.3,
we can express f(L) as follows (Michelitsch et al. 2019, Sect. 1.5.2):

f(L) =

∞∑
�=1

c�(kIn −A)� =

∞∑
�=1

�∑
h=0

c�

( �
h

)
k�−h(−1)hAh. (4.39)

Equation (4.39) unveils a connection between f(L) and the integer powers of the adja-
cency matrix A. Recall that the (i, j) entry of Ah for h ∈ Z>0, is the number of all the
possible paths connecting node i to node j with h edges, whereas the diagonal entry
(i, i) of Ah is the number of closed paths with h edges which start and end at the same
node i (Godsil and Royle 2001). Therefore, equation (4.39) shows how the function f

changes the local character of the Laplacian L and makes it a long-range operator: matrix
f(L) is thus well suited to define dynamical processes with non-local interactions on
networks.

Exponential decay of functions of banded matrices: A band matrix is a sparse matrix
whose nonzero entries are limited to a diagonal band, including the main diagonal and
(zero or) more diagonals on either side. Given a matrix B ∈ Cn×n, if all entries of B
are zero outside a diagonally bordered band whose range is determined by r1, r2 ∈ Z≥0

(i.e. [B]ij = 0 if j < i − r1 or i + r2 < j), then r1 and r2 are called the lower bandwidth
and upper bandwidth of B, respectively. The bandwidth of B is the maximum of r1 and r2,
i.e. it is the integer r such that [B]ij = 0 if |i − j| > r. For example, a band matrix with
r1 = r2 = 0 (r1 = r2 = 1) is a diagonal (tridiagonal) matrix.

For the entries of functions of Hermitian band matrices, we have the following ex-
ponentially decaying bound (further decay results applying to general matrices, are
available in (Benzi and Razouk 2007)):
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Figure 4.11: Graphs Br
5 for r ∈ {1, 2, 3}. Note that B4

5 (light gray) is the complete graph with
5 nodes.

4.2. THEOREM (BENZI & GOLUB (BENZI AND GOLUB 1999)). Let B ∈ Cn×n be Hermi-
tian and of bandwidth r, and let the function f be analytic in an ellipse containing the spectrum
of B. Then, f(B) satisfies |fij(B)| ≤ M�|i−j|, where M is a constant and � = μ1/r, where
μ ∈ (0, 1) depends only on f . �

Theorem 4.2 shows that the entries of f(B) are bounded in an exponential decay
manner away from the diagonal (the rate of decay depending on f ), with the bound
decreasing as the bandwidth r decreases. Note that this does not necessarily mean that
“decay to zero” is observed in practice (Higham 2008a, Sect. 14.2).

If we turn our attention again to the Laplacian functions f(L), it is easy to verify
that the following family of undirected graphs with n nodes, admits a Laplacian L of
bandwidth r ∈ {1, 2, . . . , n − 2}: Br

n = (V, E) where {i, j} ∈ E if and only if j = i + s

with i ∈ {1, 2, . . . , n − s} and s ∈ {1, 2, . . . , r}. Graph B1
n coincides with Pn (the path

graph with n nodes), whose Laplacian is a tridiagonal matrix. We excluded the case of
r = n − 1, since it corresponds to the complete graph with n nodes, whose Laplacian
has zero bandwidth (see the example in Fig. 4.11). Note that this family of graphs is not
unique. In fact, the entries on the diagonal band of L(Br

n) are all different from zero, but
the definition of band matrix does not preclude null values.

4.3.4 Application to shape-based formation control

In this section, we leverage the Laplacian functions f(L) studied in Sect. 4.3.3, to de-
sign a new class of continuous-time consensus protocols. In particular, we will focus
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on the following generalization of the shape-based formation control strategy presented
in (Mesbahi and Egerstedt 2010, Ch. 6.3):

ẋ(t) = (−f(L) ⊗ I2)(x(t) − ξ), x(0) = x0, (4.40)

where the state vector x(t) = [x1(t), y1(t), . . . , xn(t), yn(t)]
T ∈ R2n contains the x-and y-

coordinates of the positions of n single-integrator robots at time t ≥ 0, and “⊗” denotes
the Kronecker product. This strategy allows to drive the n robots to a translationally-
invariant formation encoded through the formation graph GF = (V, EF) and the associ-
ated constant vector of target locations ξ ∈ R2n. For the sake of simplicity, in the follow-
ing, we will assume that GF coincides with the interaction (or communication) graph
G = (V, E) of the robots (thus, the inclusion EF ⊆ E is trivially satisfied, cf. (Mesbahi
and Egerstedt 2010, Th. 6.12)).

4.3. REMARK (INVARIANCE OF THE AGREEMENT VALUE). By virtue of the spectral prop-
erties of the admissible Laplacian functions discussed in Sect. 4.3.3, it is easy to prove that the
state vector x(t) of system (4.40) asymptotically converges, for any initial condition x0 ∈ R2n, to
a constant vector whose value does not depend on the f(L) chosen (in other words, the agreement
value is f -invariant). �

4.4. REMARK (DISTRIBUTED IMPLEMENTATION OF SYSTEM (4.40)). While some admissi-
ble functions f conserve, at least in part, the sparsity pattern of the Laplacian L, the emergence
of long-range interactions between the nodes of the graph typically translates into dense matrix
functions of the Laplacian (i.e. the weighted interaction graph associated with f(L) tends to
be fully connected). This means that to implement (4.40), the robots should adopt an all-to-all
communication pattern, which is undesirable, in practice. However, in many instances (cf. Theo-
rem 4.2), a large percentage of the off-diagonal entries of f(L) is very close to zero, which corre-
spond to network connections which bring negligible information to the nodes. This calls for an
operator which most nearly transforms f(L) into a new matrix f q(L) which is sparser than
f(L). A simple solution is to define f q(L) as follows:

f q
ij(L) =

{
0 if |fij(L)| < q, i �= j,

fij(L) otherwise,

where q is a small positive constant (a threshold). This transformation does not break the symme-
try of f(L) and the off-diagonal entries f q(L) remain non-positive as required by Condition III.
Moreover, the Gershgorin circle theorem ensures that f q(L), as f(L), is positive semidefinite.
In conclusion, while f q(L) still remains less sparse than L in general, it makes protocol (4.40)
amenable to a distributed implementation (see Sect. 4.3.4 for more details). �
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Case studies

For later use in Sect. 4.3.4, we recall here some elementary properties of four of the
Laplacian functions examined in Sect. 4.3.3.

1. Logarithmic function: Let f(x) = log(ax+ 1) with a > 0. Note that

lim
a→ 0+

f(L) = log(aL+ In) = 0n.

Moreover, f(L) grows unbounded, as a→ ∞.

2. Exponential function: Let f(x) = 1−e−ax with a > 0. Matrix f(L) = In−e−aL ranges
between 0n (as a→ 0+) and In − 1

n
11T (as a→ ∞). In fact

lim
a→∞

e−aL = In − LL# =
1

n
11T ,

where L# denotes the group generalized inverse of L (Bernstein 2009, Prop. 11.8.2).
Finally, if we consider the Loewner ordering (i.e. the partial ordering “�” de-
fined by the convex cone of positive semidefinite matrices), the following property
holds true for f(L) = In − e−aL:

0n � f(L) � In − 1

n
11T .
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Figure 4.12: Mapping of the spectrum ofL(P10) via four admissible functions f(x). The 10 eigen-
values of L(P10) are represented as black dots on the horizontal axis and those of f(L(P10)) as
colored dots on the vertical axis.
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3. Quadratic function: Let g(x) = λ− x for 0 ≤ x < λ, which is positive over the spec-
trum of L, if λ > λn with 2 − 2 cos((n − 1)π/n) ≤ λn ≤ n. By choosing such a λ,
from (4.37), we have that f(x) = 1

2
[λ2 − (λ − x)2] = 1

2
x(2λ − x), which yields the

quadratic matrix function f(L) = −1
2
L2 + λL.

4. Fractional power: Let f(x) = xγ with 0 < γ ≤ 1. Matrix f(L) = Lγ ranges between
In (as γ → 0+) and L (for γ = 1).

For the sake of illustration, Fig. 4.12 shows how the functions f(x) = x (red), f(x) =

log(3x + 1) (green), f(x) = 1 − e−3x (blue), and f(x) = x1/3 (magenta), map the 10
eigenvalues 2 − 2 cos(kπ/10), k ∈ {0, 1, . . . , 9}, of the Laplacian L of the path graph P10.
Note that the exponential function maps the spectrum of L(P10) into the [0, 1) interval:
in fact 1− e−3λn = 1− 8× 10−6.

Numerical results

In our numerical experiments, we simulated system (4.40) for 10 robots, using differ-
ent Laplacian functions, interaction graphs and vectors of target locations. We ran 20-
second simulations using Matlab ode45 solver with a variable step (max step size 0.01 s).

We used Matlab built-in commands logm and expm for calculating the matrix loga-
rithm and matrix exponential, respectively. The computation of the fractional Laplacian
being more delicate, we opted for the rootpm real routine of The Matrix Function Tool-
box (Higham 2008b) (see also (Higham 2008a, Appendix D)). This routine computes the
pth root of a real matrix via the real Schur form: similar results were obtained with
rootpm sign which computes the pth root via the matrix sign function. Both routines
handle singular matrices (L has a zero eigenvalue), and return non-principal pth roots.

In our first example, the target formation is a regular decagon of unit radius centered
at the origin, i.e. ξ = [cos(0), sin(0), cos(2π/10), sin(2π/10), . . . , cos(9π/10), sin(9π/10)]T

∈ R20. The interaction graph is G = P10, and the Laplacian functions considered are
f(L) = L, f(L) = log(3L + I10) and f(L) = I10 − e−3L. The initial positions x0 of the
10 robots have been randomly generated by drawing the x- and y-coordinates from the
standard uniform distribution on the open interval (0, 1). The first row of Fig. 4.13
reports the trajectory of the robots for each of the three functions (the edges of the for-
mation graph are solid black, and the initial positions of the robots are marked with
stars). The second row of Fig. 4.13 shows the corresponding time-evolution of the for-
mation error eee(t) = x(t) − ξ (x-coordinates, top; y-coordinates, bottom). In the three
cases, eee(t) → [τx, τy, . . . , τx, τy]

T as t → ∞, where τx � 0.3451 and τy � 0.5841 are con-
stant offsets. The average of the generalized degree associated with the three Lapla-
cian functions is 1.8, 1.54 and 0.7833, respectively (recall Sect. 4.3.3), and their second
smallest eigenvalues are λ2 = 2 − 2 cos(π/10) � 0.0979, log(3λ2 + 1) � 0.2575 and
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(b) f(L) = log(3L+ I10)
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(c) f(L) = I10 − e−3L
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(d) f(L) = L
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(e) f(L) = log(3L+ I10)
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(f) f(L) = I10 − e−3L

Figure 4.13: First example, ξ is the regular decagon and G = P10: (1st row) Trajectory of the
10 robots. The initial and final positions are marked with a star “∗” and a hollow circle “◦”,
respectively, and the edges of the formation graph are solid black; (2nd row) Time evolution of
the formation error eee(t) = x(t) − ξ of the 10 robots (for color coding, see the legends in the 1st
row). (a),(d) f(L) = L, (b),(e) f(L) = log(3L+ I10), and (c),(f) f(L) = I10 − e−3L.

1 − e−3λ2 � 0.2545, respectively. Therefore, the logarithmic and exponential functions
accelerate convergence towards the desired formation, and the convergence speed can
be adjusted by tuning a single real parameter (the positive scalar a). However, both
functions keep the agreement value unchanged.

To study the impact of the approximation introduced in Remark 4.4, in Fig. 4.14 we
considered the same interaction graph, target formation, and initial conditions as in
Figs. 4.13(b),(e), but we replaced f(L) = log(3L + I10) with f q(L), where the thresh-
old q = 0.01. Note that the exponential decay property of Theorem 4.2 holds for
f(L) = log(3L+I10) with r = 1. Figs. 4.14(a),(b) report the trajectory of the 10 robots and
the time-evolution of the formation error eee(t), respectively, and they qualitatively show
that the proposed approximation has a negligible effect on the dynamic behavior of sys-
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Figure 4.14: First example, ξ is the regular decagon and G = P10: (a) Trajectory of the 10 robots
obtained by considering the approximation f q(L) of f(L) = log(3L+I10) with q = 0.01; (b) Time
evolution of the formation error eee(t) = x(t) − ξ of the 10 robots; (c) Sparsity pattern (white
squares, zero entries; black squares, nonzero entries) of the adjacency matrices associated with
f(L) (left) and f q(L) (right).

tem (4.40). More specifically, at the end-time, t = 20 s, we have that ‖eee(t)‖ � 2.1453 for
f(L) and ‖eee(t)‖ � 1.7851 for f q(L). However, the weighted interaction graph associated
with f q(L) is sparser than that associated with f(L).

This is evident in Fig. 4.14(c), which shows the sparsity pattern of adjacency matrices
diag(f1,1(L), . . . , f10,10(L)) − f(L) (left) and diag(f q

1,1(L), . . . , f
q
10,10(L)) − f q(L) (right),

where the zero entries are white and the nonzero entries are black.
In our second example, we chose the interaction graph G = C10, the cycle graph

with 10 nodes, and the desired formation is the pentagram (or five-pointed star). Let

R =

√
5−√

5

10
, ρ =

√
25− 11

√
5

10
,
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(a) f(L) = L
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(b) f(L) = − 1
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(c) f(L) = L1/5
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(d) f(L) = L
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(e) f(L) = − 1
2L
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(f) f(L) = L1/5

Figure 4.15: Second example, ξ is the pentagram and G = C10: (1st row) Trajectory of the
10 robots. The initial and final positions are marked with a star “∗” and a hollow circle “◦”,
respectively, and the edges of the formation graph are solid black; (2nd row) Time evolution
of the formation error eee(t) = x(t) − ξ of the 10 robots (for color coding, see the legends in the
1st row). (a),(d) f(L) = L, (b),(e) f(L) = −1

2L
2 + 5L, and (c),(f) f(L) = L1/5.

be the circumradius of the pentagram and the circumradius of its inner pentagon, re-
spectively. Then, the target locations of the 10 robots can be expressed in polar coordi-
nates as [

[ξ]j

[ξ]j+1

]
=

⎧⎨⎩ρ
[
cos( jπ

10
), sin( jπ

10
)
]T if j ∈ {1, 5, 9, . . .},

R
[
cos( jπ

10
), sin( jπ

10
)
]T if j ∈ {3, 7, 11, . . .},

where j ∈ {1, 3, 5, . . . , 19}. The Laplacian functions considered in this second example,
are f(L) = L, f(L) = −1

2
L2 + 5L and f(L) = L1/5. In the quadratic function, we set

λ = 5 > λ10 = 4, to satisfy the condition discussed in the “Case studies” section. The
vector of initial positions x0, is not random this time: the 10 robots are initially placed
at the vertices of the same regular decagon of unit radius considered as target forma-
tion in the first example. As in Fig. 4.13, the first row of Fig. 4.15 reports the trajectory
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of the 10 robots for the three Laplacian functions, and the second row, the correspond-
ing time-evolution of the formation error eee(t) = x(t) − ξ. Since the regular decagon
is centered at the origin, we have that eee(t) → 0 as t → ∞, in all cases. Finally, note
that the average fractional degree of L1/5 is 1.0115, and that the user can take advan-
tage of the non-integer power γ to modulate the convergence speed of the 10 robots
towards the desired formation. In fact, the second smallest eigenvalues of L and L1/5,
are λ2 = 2 − 2 cos(π/5) � 0.3820 and λ

1/5
2 � 0.8249, respectively, which explains the

faster convergence rate observed in Figs. 4.15(c),(f).

4.3.5 Conclusions and future work

In this last section of Chapter 4, we have explored a general class of matrix functions
of the combinatorial Laplacian, that retain its structural properties. This allowed us to
present under a common framework, several variants of the Laplacian scattered across
different domains. For the first time, this family of Laplacian functions has been uti-
lized in a consensus-based formation control protocol, revealing some attractive fea-
tures. In fact, the selected functions do not alter the agreement value, and offer greater
design flexibility. For example, our numerical experiments show that in many situa-
tions, a single scalar parameter is sufficient to adjust the convergence speed towards
consensus without drastically increasing the number of communication exchanges be-
tween the agents.

This work lays the ground for further research and experimentation. One line of
future research will be to relax Condition III and consider a broader class of admissible
Laplacian functions. As far as the consensus protocol is concerned, we see potential
for extension to weighted directed interaction graphs, and we plan to perform hard-
ware experiments with mobile robots. Finally, in (Michelitsch et al. 2019), the authors
have shown a connection between the fractional Laplacian of a graph and the operators
in fractional calculus. There might then exist a link between the agreement protocol
driven by the fractional Laplacian, and the coordination algorithms for fractional-order
systems studied in (Cao et al. 2010).
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112 4. Formation control of mobile robots

4.4 Conclusion

In this chapter, we have presented original insights and results pertaining to the forma-
tion control problem. Extensive numerical examples and simulation results have sup-
ported the proposed theory. In particular, in Sect. 4.1, we have studied distance-bearing
formations of unicycle robots and proposed a natural extension to the well-known clas-
sification of wheeled robots by type. In Sect. 4.2, we have presented decentralized op-
timal strategies for cooperative adaptive cruise control of a car platoon (a special 1D
leader-follower formation control problem). Moreover, as an original contribution, we
showed how to explicitly incorporate the string-stability constraints of the platoon into
the optimization-based formulation. In Sect. 4.3, we have revisited the notion of func-
tion of Laplacian matrix originally introduced in (Michelitsch et al. 2019), and explored
its possible application to shape-based formation control of single-integrator robots.

As mentioned in the partial conclusions of the three sections, the results presented
in this chapter provide fertile ground for further research. To fill the gap between the-
ory and practice, the validation of the proposed control strategies with real robots and
instrumented cars is important subject of future work.

In the next chapter, three tasks that need the coordinated action of multiple au-
tonomous robots will be analyzed and two further extensions of the classical consensus
protocol will be discussed.
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Chapter 5

Coordinated control of multi-robot systems

If an elderly but distinguished scientist says that something is
possible, he is almost certainly right; but if he says that it is
impossible, he is very probably wrong.

Arthur C. Clarke

Abstract

This chapter is divided into two parts. In the first part, we deal with three tasks (environ-
mental monitoring, active target tracking, 3D reconstruction), which require the coordinated
action of of a group of aerial robots and the interaction with the surrounding environment.
For these tasks, the goal will be to design local and decentralized control strategies, which
are generally preferable to global and centralized ones, because of their inherent scalability
and robustness. In the second part of the chapter, we present two extensions of the conven-
tional consensus protocol, that we have already encountered in Chapters 3 and 4: we first
introduce a generalization of combinatorial Laplacian which guarantees enhanced flexibility
in the execution of coordinated tasks (rendezvous of single-integrator robots will be consid-
ered as a benchmark problem). Second, we propose a general geometric formulation to easily
handle the state constraints in the discrete-time consensus protocol without affecting the
consensus value, and show relevant applications (obstacle avoidance).

The material of this chapter is drawn from (Morbidi, Freeman and Lynch 2011, Morbidi
and Mariottini 2013, Hardouin et al. 2023) and (Morbidi 2013a, Morbidi 2020) (cf. [C19],
[J12], [J24] and [J13], [C35] in Sect. 1.1.2).

I
n Chapter 4, we have seen two examples of distributed algorithms for the formation
control problem (cf. Sect. 4.2 and Sect. 4.3). In this chapter, we develop this aspect

further and consider other relevant tasks which can be performed by a team of mo-
bile robots in a distributed fashion. In all cases, the consensus protocol, a fundamental
building block for the design of distributed control laws, will play a central role. In fact,
this protocol and its dynamic extensions (dynamic average consensus estimators (Kia
et al. 2019)) allow, under certain assumptions, to transform a centralized controller or
estimator into a decentralized one. The plan of this chapter is the following. In Sect. 5.1,
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114 5. Coordinated control of multi-robot systems

Sect. 5.2 and Sect. 5.3, we study three related problems pertaining to the coordination
of multiple UAVs in the 3D world (cooperative environmental monitoring based on
geometric moments, cooperative active target tracking, and cooperative 3D reconstruc-
tion of unknown environments). In Sect. 5.4 and Sect. 5.5, we consider two variants
of the traditional consensus protocol by introducing a new GSO and a new principled
approach based on subspace projectors which allows to seamlessly incorporate state
constraints. Finally, Sect. 5.6 recapitulates the major contributions of the chapter.

The work in Sect. 5.1, Sect. 5.2 and Sect. 5.4 was carried out during my stays, as
a post-doc, at Northwestern University, University of Texas at Arlington, USA, and
Joannes Kepler University, Austria, respectively (2009-2012). The material in Sect. 5.3 is
part of the Ph.D. thesis of G. Hardouin, which I co-supervised with E. Mouaddib and
J. Moras (ScanBot project, 2018-2022, see Sect. 1.1.5). Finally, the results presented in
Sect. 5.3 and Sect. 5.5 were obtained at ONERA DTIS and at the University of Picardie
Jules Verne.
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116 5. Coordinated control of multi-robot systems

5.1 Cooperative environmental monitoring

This section presents a distributed estimation and control strategy for cooperative mon-
itoring by swarms of unmanned aerial vehicles (UAVs) modeled as constant-speed uni-
cycles. The geometric moments, encoding an abstraction of the swarm, are controlled
via a nonlinear gradient descent to match those of a discrete set of particles describ-
ing the occurrence of some event of interest to be monitored. Because of its limited
sensing capabilities, each agent can measure the position of only a subset of the overall
particles, from which it locally estimates the desired moments of the swarm running a
proportional-integral (PI) average consensus estimator. The closed-loop stability of the sys-
tem arising from the combination of the gradient-descent controllers and the consensus
estimators is studied and simulation results are provided to illustrate the theory.

5.1.1 Introduction

Recent years have witnessed an acceleration in research efforts aimed at designing en-
vironmental monitoring algorithms for mobile sensor networks (Leonard et al. 2007,
Smith et al. 2010). In fact, as known, mobile sensors offer distinctive advantages over
static ones, in terms of quality of sensing and estimation, area coverage, adaptability to
changing conditions and robustness against failures.

Our goal is to monitor a set of moving particles describing the occurrence of some
event of interest in a 2-D environment, with a team of unmanned aerial vehicles (UAVs)
flying at fixed altitude. With the term particle, we refer to any discrete entity belonging
to a given ensemble, whose position in the plane has to be tracked over time: examples
include animals in a group, people in a crowd, smoke particles in a plume, multiple
wildfire spots, droplets in an oil spill. The “shape” of the UAV swarm and of the en-
semble of particles is synthetically described in terms of their geometric moments. Be-
cause of its limited sensing capabilities, each agent, modeled as a unicycle with constant
positive forward velocity, can only measure the position of a subset of the overall par-
ticles. The objective is to design a distributed estimation and control strategy to match
the moments of the swarm with those of the particles: this in turn guarantees the UAVs
to properly cover the region of interest.

Literature review

Two literature domains are relevant to this work. In the first one, the goal is to de-
sign distributed algorithms for multiple agents to detect and track the boundary of a region of
interest. In (Marthaler and Bertozzi 2004), a “snake algorithm” is adopted to identify
and track the boundary of harmful algae blooms using a team of agents equipped with
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5.1. Cooperative environmental monitoring 117

chemical sensors. In (Clark and Fierro 2007), a random coverage controller is used to
detect and surround oil spills, and in (Casbeer et al. 2006) an algorithm is described
to allow multiple UAVs to cooperatively monitor and track the propagation of large
forest fires. Recently, in (Susca et al. 2008), a method has been proposed to optimally
approximate an environmental boundary with a polygon. The mobile agents rely only
on sensed local information to position some interpolation points and define the ap-
proximating polygon whose vertices are uniformly distributed along the boundary of
the target region.

In the second literature domain of interest for this work, the goal is to synthesize
decentralized simultaneous estimation and control strategies for multiple agents. In (Yang
et al. 2008), a general framework to design collective behaviors for groups of mobile
robots has been proposed: each agent communicates with its neighbors and estimates
the global performance properties of the robotic network needed to make a local control
decision. In (Lynch et al. 2008), a decentralized strategy for modeling of environmental
parameters is presented and a gradient control is used to move the agents in order to
maximize their sensory information relative to the current uncertainty in the model. A
distributed learning and cooperative control strategy has been proposed in (Choi et al.
2009). Each agent recursively estimates an unknown field of interest from noisy mea-
surements and moves towards its peaks using the gradient of its estimated field, while
maintaining network-wide connectivity. Other distributed approaches to controlled
sampling and modeling of deterministic or stochastic scalar fields, include (Ögren et al.
2004, Zhang and Leonard 2010, Martı́nez 2010). In (Ögren et al. 2004), the agents move
in a fixed platoon along an estimated gradient, while in (Zhang and Leonard 2010) they
are controlled to track a level set of the field. Recently, in (Martı́nez 2010), a procedure
to adapt local interpolations to represent spatial fields as they are measured by a mobile
sensor network, has been presented.

Original contributions

We propose here a distributed estimation and control strategy for cooperative monitor-
ing by swarms of UAVs. Differently from the first literature domain above, our focus
is not on the boundary of the region spanned by the particles (that may be faint or
fuzzy in real settings, and thus hard to detect and track), but on controlling the (first-
and second-order) geometric moments encoding an abstraction of the swarm (Belta and
Kumar 2004, Michael and Kumar 2009), to match the moments of the ensemble of par-
ticles observed by the UAVs. Although full aircraft dynamics are quite complex, the
essential components for level cruise flight can be captured by the model of a planar
constant-speed unicycle. This model is challenging to control because the vehicle cannot
stop (nor move directly sideways), and so it is not small-time locally controllable (Lalish
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118 5. Coordinated control of multi-robot systems

et al. 2007). A new nonlinear gradient-descent angular control is proposed to steer our
team of unicycle-type vehicles.

Differently from (Cortés et al. 2004, Kwok and Martı́nez 2010) and related works
in the coverage literature, we assume here that the agents have not access to a distri-
bution density function, providing an a priori global measure of information or probabil-
ity that some event takes place over the region of interest. On the contrary, similarly
to (Schwager et al. 2009) where sensor measurements are used to learn the distribu-
tion of sensory information in the environment, each agent is equipped with a limited-
footprint sensor (e.g., a camera pointing downward), which allows it to detect only a
fraction of the overall particles. We will abstract from any actual sensor model, and
assume that each agent processes only the particles lying within the Voronoi cell that
it generates (and ignores those possibly located outside): from them each UAV locally
estimates the desired moments of the swarm running a proportional-integral (PI) average
consensus estimator (Lynch et al. 2008). As known, if the inputs of the PI estimators as
well as the topology of the connected network are slowly varying (this is true in our
setting since the dynamics of the environment is assumed to be significantly slower
than that of the swarm, cf. Theorem 5.2), small estimation errors are achieved. The
closed-loop stability of the system arising from the combination of the gradient-descent
angular controllers and the PI estimators has been studied and simulation experiments
have been performed to illustrate the proposed theory.

The rest of the section is organized as follows. In Sect. 5.1.2 we introduce the gradient-
based control, assuming that the desired moments of the swarm are a priori known to
each agent. In Sect. 5.1.3 and Sect. 5.1.4 we deal with the distributed estimation prob-
lem and the closed-loop stability analysis, respectively. Finally, in Sect. 5.1.5 simulation
results are presented and in Sect. 5.1.6 the main contributions are summarized and pos-
sible avenues for future research are highlighted.

5.1.2 Control design

Consider a swarm of n unmanned aerial vehicles (hereafter, simply agents or vehicles)
flying at fixed altitude, with the following unicycle model (cf. Sect. 3.3.2),⎧⎪⎪⎨⎪⎪⎩

ṗix(t) = vi(t) cos(θi(t)),

ṗiy(t) = vi(t) sin(θi(t)), i ∈ {1, . . . , n},
θ̇i(t) = ωi(t),

(5.1)

where pi(t) = [pix(t), piy(t)]
T ∈ R2 denotes the position of agent i at time t in the plane

of motion, θi(t) ∈ [−π, π) its heading and [vi(t), ωi(t)]
T ∈ [vmin,+∞) × R, vmin > 0, its

forward and angular velocities. Let p = [pT
1 , . . . ,p

T
n ]

T ∈ (R2)n. The configuration of
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the agents is described by using a swarm moment function f : (R2)n → R� that we will
assume to be of the form:

f(p) =
1

n

n∑
i=1

φ(pi),

where the moment-generating function φ : R2 → R� is defined as,

φ(pi) � [ pix, piy, p
2
ix, p

2
iy, pixpiy, p

3
ix, p

3
iy, . . . ]

T. (5.2)

Note that � = 1
2
(r + 1)(r + 2) − 1 where r ∈ Z>0 is the maximum order of the moments

appearing in (5.2), and that if � moment constraints are specified on n agents then there
is in general a (2n − �)-dimensional algebraic set of swarm configurations that satisfy
them. The primary objective of the agents is to move so that their final arrangement
minimizes the error f(p)− f�, where the goal vector f� ∈ im(f) defines the desired shape
of the formation. For the sake of simplicity, thorough this section we will assume that f�

is constant and a priori known to each agent: we will relax this hypothesis in Sect. 5.1.3,
where each agent independently estimates the goal vector from the environmental data.
Our control strategy relies on the gradient of the potential function Π : (R2)n → R≥0,

Π(p) = (f(p)− f�)T Γ (f(p)− f�), (5.3)

where Γ ∈ R�×� is an assigned symmetric positive-definite gain matrix. Let Crit(Π) �
{p ∈ (R2)n : ∇p Π(p) = 0} denote the set of critical points of (5.3) and classify such
points as good critical points where f(p) = f� (these are the global minima of Π) and bad
critical points where f(p) �= f�. Given a closed set of swarm configurations P ⊂ (R2)n and
a goal vector f� ∈ f(P), let G(f�,P) be the convex cone of all symmetric positive-definite
matrices Γ such that no bad critical points of Π in P are local minima of Π. To reduce the
risk of the swarm “getting stuck” at bad critical points of Π, we would ideally choose a
gain matrix Γ belonging to G(f�,P) for a large set P . Actually, for r = 2 one can always
compute members of G(f�,P) when P contains all possible configurations of at least
3 agents. This idea is made precise in the following theorem, readapted from (Yang
et al. 2008, Th. 2):

5.1. THEOREM. Let P = (R2)n with n ≥ 3 and f� ∈ f(P). Then there exists a symmetric
positive-definite matrix Γ such that for every bad critical point p ∈ P of Π, the Hessian matrix
H(Π(p)) has at least one strictly negative eigenvalue (hence, p cannot be a local minimum of Π).
In particular, Γ ∈ G(f�,P). �

In the rest of this section, we will then restrict to the case of r = 2, (i.e., � = 5), i.e.,
only the first- and second-order moment statistics will be considered. To provide concise
statements in the sequel, we introduce the function proj(·), which maps the angle α ∈ R

into the interval [−π, π),
proj(α) � ((α + π)mod 2π) − π, (5.4)
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.
[cos θi, sin θi]

T

−∇pi
Π(p)

Agent i

pi

Figure 5.1: The angular control of agent i forces its heading direction [cos θi, sin θi]
T to align

with the negative gradient of Π(p).

where “mod” stands for the modulo operator which returns the remainder after divi-
sion. The symbol A[i, j] will be used to denote the (i, j)-th component of a matrix A.

The geometric intuition behind our control strategy (see equation (5.5) below) is sim-
ple: in fact, the forward velocity of the agents is set to the same positive constant value
and the angular velocities are chosen so that the heading direction of each vehicle is
forced to align with the negative gradient of the potential function Π(p) (see Fig. 5.1).
Let n ≥ 3 and choose Γ and P as in Theorem 5.1. Let us define the vector function
gi : R≥0 → R2, i ∈ {1, . . . , n},

gi(t) � −∇pi
Π(p(t)) = −(Jφ(pi(t)))

T Γ (f(p(t))− f�),

where Jφ(·) ∈ R�×2 is the Jacobian matrix of φ(·) and set αi(t) � proj(arg(gi(t))− θi(t))

where arg : R2 → [−π, π). Consider the following control input for agent i,

vi(t) = v, ωi(t) = ραi(t), (5.5)

where v ≥ vmin is a positive constant and ρ is a positive gain.
We observe the following two properties, for almost every initial configuration of

the agents:

a) For any ε > 0, there exists a sufficiently large gain ρ such that the error on the
desired swarm configuration is uniformly ultimately bounded with an ultimate
bound ε, i.e., for every ζ > 0 there is a positive constant t0 = t0(ζ) such that:

Π(p(0)) < ζ ⇒ Π(p(t)) ≤ ε, ∀ t ≥ t0.

b) Let dθij(t) � proj(θi(t) − θj(t)) and dωij(t) � ωi(t) − ωj(t), i, j ∈ {1, . . . , n}, i �= j,
be the functions measuring the disagreement between the heading directions and
angular velocities of agents i and j at time t, respectively. Then, for any εθ, εω > 0

there exists a sufficiently large constant μ ∈ R>0 satisfying,

Γ[1, 1],Γ[2, 2] ≥ μ
∣∣Γ[h, l]∣∣, h, l ∈ {1, . . . , �}, (h, l) �= {(1, 1), (2, 2)},
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Figure 5.2: Example: Trajectory of n = 4 agents using control (5.5). The red dashed ellipse
graphically represents the initial moments of the swarm, the red solid ellipse the moments of
the swarm at the final time instant (t = 80 sec.), and the black ellipse the desired moments of
the swarm.

such that |dθij(t)|, |dωij(t)| are uniformly ultimately bounded with ultimate bounds
εθ, εω, respectively.

Point b) states that dθij(t) becomes bounded as t→ +∞: this behavior is typically
referred to as phase locking in the literature of coupled oscillators (Strogatz 2000).

5.1. REMARK. Note that the angular control in (5.5) presents discontinuities: in fact, the func-
tion proj(·) in (5.4) is discontinuous at (2m+1)π,m ∈ Z, and arg(·) is not defined at the origin.
It is possible to modify the control in order to make it smooth: however, in order to simplify our
subsequent analysis we will not pursue this direction herein. �

5.2. REMARK. To compute the angular control in (5.5), agent i needs to know the position of
all the other agents (i.e., the vector p) at each time instant. This means that control (5.5) is
not implementable in a distributed fashion. We will sidestep this issue in Sect. 5.1.3 where we
will introduce distributed estimators of the swarm moment function f(p) (as well as of the goal
vector, using the environmental data) for each agent. �

For the sake of illustration, Fig. 5.2 shows the trajectory of n = 4 agents implement-
ing control (5.5) with v = 1 m/s, ρ = 0.5, f� = [10, 5, 800, 100, 10]T and Γ = diag(1000,
1000, 0.1, 0.1, 0.1). The red dashed ellipse graphically represents the initial moments
of swarm (i.e., the uniform-density ellipse has the same mass and the same first- and
second-order moments as the swarm at the initial time), the red solid ellipse the mo-
ments of the swarm at the final time instant, and the black ellipse the desired moments
of the swarm. Note that differently from (Yang et al. 2008), where double-integrator
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122 5. Coordinated control of multi-robot systems

agents are considered, the red solid and black ellipses are not perfectly superimposed
at steady state and the vehicles hover about four points corresponding to a minimum
of Π(p). In other words, the swarm converges to a configuration that satisfies the de-
sired moment statistics up to an inherent error, consequence of the inability of the agents
to stop moving forward. Actually, with a control of the form (5.5), spinning around the
equilibrium turns out to be the “best strategy” for the vehicles to reach the goal.

5.1.3 Distributed estimation

In this section we present a distributed algorithm to locally estimate the swarm mo-
ment function f(p) and the vector of desired geometric moments using the environ-
mental data. The following notion of Voronoi partition (Okabe et al. 2000) is essential for
the forthcoming developments.

5.1. DEFINITION (VORONOI PARTITION). Given a set Q ⊂ R2 and n distinct points {p1,

. . . , pn} in Q, the Voronoi partition of Q generated by {p1, . . . , pn} is the collection of sets
{V1, . . . , Vn} defined by, for each i ∈ {1, . . . , n},

Vi �
{

z ∈ Q | ‖z − pi‖ ≤ ‖z − pj‖, ∀ j �= i
}
,

where ‖ · ‖ denotes the standard Euclidean norm. We will refer to Vi as the Voronoi cell of pi. �

Given a set Q ⊂ R2, let qk = [qkx, qky]
T , k ∈ {1, . . . , N} be the k-th of N particles

describing the occurrence of some event of interest in Q and evolving over time accord-
ing to,

q̇ = Υ(q, t), (5.6)

where q = [qT
1 , . . . ,q

T
N ]

T and Υ = [ΥT
1 , . . . ,Υ

T
N ]

T : QN × R≥0 → (R2)N is a vector field
unknown to the agents. Since each vehicle is assumed to be equipped with a limited-
footprint sensor (e.g., a camera pointing downward), it will be able to measure the x-
, y-coordinates of only a subset of the N particles. For the sake of simplicity, we will
abstract from any actual sensor model and assume that agent i processes only the par-
ticles lying within the Voronoi cell Vi that it generates, while ignoring those possibly
located outside (see Fig. 5.3): in other words, agent i is only responsible for the par-
ticles over its “dominance region” Vi. Note that since the sides Vi ∩ Vj , i �= j, of the
Voronoi cells are of measure zero, each particle will be assigned exactly to one agent,
thus avoiding possible double counting. We will denote by Ni, 0 < Ni < N , the number
of particles lying within Vi (note that by construction

∑n
i=1 Ni = N), and we will assume

that agent i computes the following vector from the Ni particles:

hi =
∑

qk: qk ∈ Vi

φ(qk), i ∈ {1, . . . , n}.

122



5.1. Cooperative environmental monitoring 123

Q

Ni
Vi

Agent i

Figure 5.3: Voronoi partition of the set Q generated by six agents (black triangles). Agent i

processes only Ni of the overall N particles (gray dots): these are the particles lying within the
Voronoi cell Vi of pi (purple).

Note that the Voronoi cells V1, . . . , Vn can be locally computed and maintained by the
agents using the distributed asynchronous algorithms presented in (Cortés et al. 2004,
Sect. IVB).

We recall here that our ultimate goal is to match the geometric moments of the
swarm with those of the ensemble of particles: this in turn guarantees a suitable cover-
age of the region spanned by the particles. In order to obtain local estimates of the func-
tion f(p), necessary for a distributed implementation of control (5.5) (recall Remark 5.2)
and of the environmental goal vector,

f�env � 1

N

N∑
k=1

φ(qk) =
1

N

n∑
i=1

hi,

obtained from the overall particles and thus unknown to the vehicles, we will suppose
that agent i runs the following proportional-integral (PI) average consensus estimator (Yang
et al. 2008, Lynch et al. 2008):

ξ̇i = − γ ξi −
∑
j �=i

σ(pi,pj) (ξi − ξj) +
∑
j �=i

τ(pi,pj) (ηi − ηj) + γ [φ(pi)
T , hT

i , Ni]
T ,

(5.7)

η̇i = −
∑
j �=i

τ(pi,pj) (ξi − ξj),

χi = ξi[1 : �]− ξi[�+ 1 : 2�]

ξi[2�+ 1]
, (5.8)

where [φ(pi)
T , hT

i , Ni]
T ∈ R2� × Z>0, i ∈ {1, . . . , n}, is agent i’s vector input, ξi is agent

i’s estimate of the average of all the agents’ input, ηi is the internal estimator state, γ > 0
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124 5. Coordinated control of multi-robot systems

is a global forgetting factor governing the rate at which new information replaces old in-
formation in the dynamic averaging process, and σ, τ : R2 ×R2 → R≥0 are C1 bounded
symmetric gain functions (i.e., σ(pi, pj) = σ(pj , pi) and τ(pi, pj) = τ(pj , pi), ∀ pi, pj

with i �= j), such that σ(pi,pj) and τ(pi,pj) are different from zero only if agents i and j
can communicate with each other. We also suppose that τ(·, ·) has bounded first-order
partial derivatives. Vector χi ∈ R� is the output of the PI estimator and ξi[1 : �] denotes
the vector consisting of the first � components of ξi. Note that the last entry of the input
vector of the PI estimator is necessary for a correct estimation of f�env: in fact the overall
number of particles N is unknown to the agents (in fact, agent i has only knowledge of
the number Ni of particles that it processes).

We henceforth assume that each agent is able to measure its pose [pT
i , θi]

T , and that
agents i and j can communicate with each other if and only if ‖pi − pj‖ ≤ R, where
R > 0 represents a fixed communication radius (agent j is then said a neighbor of
agent i). Each configuration p ∈ (R2)n then defines the graph of an underlying com-
munication network and we will use C ⊂ (R2)n to denote the set of all such configura-
tions for which this graph is connected. As the agents move with time, the topology
of the network can change, but we will assume that p(t) ∈ C, i.e., that the network re-
mains connected in forward time. Each agent transmits its estimate ξi and its internal
estimator state ηi to its neighbors in the network. Each ξi will approximately track the
true average of the inputs [φ(pi)

T , hT
i , Ni]

T , i∈{1, . . . , n}. If the input and the topol-
ogy of the (connected) network were ideally constant, each ξi would exactly converge
to 1

n

∑n
i=1 [φ(pi)

T , hT
i , Ni]

T = [f(p)T , 1
n

∑N
k=1φ(qk)

T , N/n]T and the output χi of the PI
estimator would converge exactly to f(p)− f�env. However, it has been shown in (Lynch
et al. 2008, Th. 3) that the network of n PI estimators (5.7) is input-to-state stable: hence,
even if the inputs and the topology of the network are arbitrary fast time-varying, a
bound on the norm of the input implies a bound on the norm of the estimation error.

We define the proportional Laplacian LP (p) ∈ Rn×n to be the symmetric matrix whose
off-diagonal elements in row i, column j are equal to −σ(pi,pj) and whose diagonal
elements are such that LP (p)1 = 0n×1, where 1 denotes the vector of n ones and 0n×1

the vector of n zeros. The integral Laplacian LI(p) ∈ Rn×n is defined in an analogous way,
but using function τ(·, ·) instead of σ(·, ·). Let Orth(1) denote the collection of n×(n−1)

matrices S such that STS = In−1, where In−1 is the (n− 1)× (n− 1) identity matrix, and
ST1 = 0n−1×1. Then, by orthogonal decomposition,

In = SST +
1

n
11T , (5.9)

and thus ‖AS‖F ≤ ‖A‖F for any n-column real matrix A, where ‖ · ‖F denotes the
Frobenius norm. Fixing some S ∈ Orth(1), we finally define the reduced proportional and
integral Laplacians to be the (n− 1)× (n− 1) symmetric matrices L�

P (p) � STLP (p)S and
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5.1. Cooperative environmental monitoring 125

L�
I(p) � STLI(p)S, respectively. We finally assume that there exist constants � > −γ

and ϑ > 0, such that,

� In−1 ≤ L�
P (p) ≤ �̄ In−1, ϑ In−1 ≤ L�

I(p) ≤ ϑ̄ In−1, (5.10)

along trajectories in forward time (this implies a connected network p(t) ∈ C). The
constants �̄, ϑ̄ > 0 represent upper bounds on the reduced Laplacians, which exist since
the functions σ(·, ·) and τ(·, ·) are bounded.

5.1.4 Closed-loop stability analysis

In this section we study the closed-loop behavior of the system arising from the com-
bination of the gradient-descent controllers (5.5) and the PI estimators (5.7)-(5.8). Fol-
lowing (Yang et al. 2008), we will assume that the maximum diameter of a connected
swarm of n agents,

d(n) � sup
p∈C∩ (R2)n

max
i,j ∈{1,...,n}

‖pi − pj‖, (5.11)

is finite for every n. It follows from (5.11) that there exists a class-K function a and a C1

function � : R2 → R≥0 such that

‖[φ(pi)
T,hT

i , Ni]
T − [φ(pj)

T,hT
j , Nj]

T‖2 ≤ a(d(n))�(pi), (5.12)

for every p ∈ C and every i, j ∈ {1, . . . , n}. Let us also assume that the following
inequality holds,

λmax(blkdiag(Γ,B)) < 2 δ1, (5.13)

where λmax(blkdiag(Γ,B)) denotes the largest eigenvalue of the block diagonal matrix
blkdiag(Γ,B), and B is a certain (� + 1) × (� + 1) invertible symmetric matrix (see the
proof of Theorem 5.2 for more details). δ1 > 0 is a scalar constant depending on n, �,
�̄, ϑ, ϑ̄, γ and the bounds on the partial derivatives of τ(·, ·) (the exact dependencies are
given in the proof). Note that inequality (5.13) represents a small-gain condition: in fact,
for given estimator gains which determine δ1, the control gain Γ (as well as the matrix B)
should be sufficiently small. Given a closed set of swarm configurations P ⊂ (R2)n and
f�env(t) ∈ f(P), ∀ t ≥ 0, let

⋂
t≥0 G(f�env(t),P) denote the convex cone of all symmetric

positive-definite matrices Γ such that no bad critical points of the potential function,

Πenv(p) � (f(p)− f�env)
T Γ (f(p)− f�env),

in P are local minima of Πenv.

5.2. THEOREM (CLOSED-LOOP STABILITY). Let us suppose there exists a closed setP ⊂ (R2)n

such that Γ ∈ ⋂
t≥0 G(f�env(t),P) and p(t) ∈ P , ∀ t ≥ 0. Suppose that n ≥ 3 is fixed, that (5.10)
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126 5. Coordinated control of multi-robot systems

holds for some � > −γ and ϑ > 0 (with γ > 0), and that (5.13) is satisfied. Let the control input
of agent i be of the form (5.5), with αi(t) � proj(arg(gi(t))− θi(t)) and

gi(t) = −(Jφ(pi(t)))
T Γ χi(t). (5.14)

Finally, let us suppose that the evolution of the N particles is governed by equation (5.6) and
that ‖Υk(q, t)‖, ∀ k ∈ {1, . . . , N}, is sufficiently smaller than v. Then, for almost every ini-
tial configuration of the agents, each trajectory of the system (5.1), (5.5), (5.7)-(5.8), (5.14) is
bounded in forward time. Moreover, for any ε > 0, there exists a sufficiently large gain ρ on the
angular control such that the error on the desired swarm configuration is uniformly ultimately
bounded with an ultimate bound ε.

Proof : See (Morbidi, Freeman and Lynch 2011). �

5.1.5 Numerical experiments

Numerical simulations have been conducted to illustrate the proposed theory. Fig. 5.4
shows the closed-loop behavior of the gradient-descent controllers and PI estimators
for a swarm of n = 4 agents. The plots were generated using v = 1 m/s, ρ = 3 and
Γ = diag(100, 100, 0.1, 0.1, 0.1). As far as the PI estimators are concerned, we set γ = 7

and chose the gain functions according to an equal weighting scheme with a commu-
nication radius R = 27 m: σ(pi,pj) = 25 and τ(pi,pj) = 0.8 when ‖pi − pj‖ ≤ R and
σ(pi,pj) = τ(pi,pj) = 0, otherwise. The PI estimators have been initialized with ξi(0) =

[0, 0, 80, 80, 0, 0, 0, 0, 0, 0, 50]T and ηi(0) = 0, for all i. The particles qk, k ∈ {1, . . . , N},
N = 200, have been drawn from a bivariate normal distribution N (μ, Σ) with mean
μ = [10, 5]T and variance Σ =

[
70 1
1 70

]
, and lie within a rectangular domain Q with

vertices (−30, −22), (32, −22), (32, 30), (−30, 30).
Fig. 5.4(a) shows the cluster of particles and the corresponding ellipse of desired ge-

ometric moments of the swarm. Fig. 5.4(b) reports the initial random pose of the four
agents and the corresponding ellipse of geometric moments (red). The initial Voronoi
partition {V1, V2, V3, V4} of Q and the graph of the underlying communication network
are represented with solid and dashed lines in the figure. Fig. 5.4(c) shows the trajec-
tory of the four agents and the ellipse of geometric moments of the swarm at the final
time instant: note that the red and black ellipses are almost exactly superimposed and
the agents rotate around four points corresponding to a minimum of Πenv(p). Finally,
Fig. 5.4(d) shows the time history of log10Πenv(p(t)), and Figs. 5.4(e) and 5.4(f) the time
evolution of f�env(t) (dashed) and f(p(t)) (solid), respectively: the symbols CMx, CMy
and Ixx, Iyy, Ixy refer to the first- and second-order moment statistics, respectively.
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Figure 5.4: Simulation results: (a) Cluster of N = 200 particles and corresponding ellipse of de-
sired geometric moments of the swarm (black); (b) Initial pose of the four agents and correspond-
ing ellipse of geometric moments (red). The initial Voronoi partition of Q and the graph of un-
derlying communication network are represented with solid and dashed lines; (c) Trajectory of
the four agents and ellipse of geometric moments at the final time instant (red); (d) Time history
of log10 Πenv(p(t)); (e) First-order moments and (f) second-order moments of f�env(t) (dashed,
“Particles”) and f(p(t)) (solid, “Swarm”).

5.1.6 Conclusions and future work

In this section we have proposed a new estimation and control strategy for distributed
monitoring tasks. The geometric moments of a team of UAVs modeled as constant-
speed unicycles are controlled via a nonlinear gradient descent to match those of an
ensemble of discrete particles describing the occurrence of some event of interest to be
monitored. A PI average consensus estimator is run by each agent to locally estimate the
desired moments of the swarm from the environmental data. The closed-loop stability
of the system has been studied and simulation results have been presented to support
the theoretical analysis.
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128 5. Coordinated control of multi-robot systems

In future investigations, we would like to extend our strategy to SE(3) and to vehi-
cles with non-constant positive forward velocity. we also aim to use second-order cen-
tral moments in order to have a translation-invariant description of the desired swarm
configuration, and we plan to test our estimation and control algorithm on field data
(e.g., on recorded trajectories of marine oil spills).
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5.2. Cooperative active target tracking 129

5.2 Cooperative active target tracking

In this section, we study the active target-tracking problem for a team of double-integrator
aerial vehicles equipped with 3-D range-finding sensors. A gradient-based control strat-
egy that encompasses the three major optimum experimental design criteria is pro-
posed, and a Kalman filter is used for estimating the target’s position in a cooperative
setting. The control strategy is active because it moves the vehicles along paths that min-
imize the uncertainty about the location of the target. Simulation experiments illustrate
the proposed theory.

5.2.1 Introduction

Problem statement and related work

We are interested here in the optimal deployment of a team of unmanned aerial vehicles
in the 3-D space, in order to maximize the accuracy of the position estimate of one or
multiple moving targets (active target-tracking problem). This problem has relevant ap-
plications in surveillance, military and environmental monitoring tasks, and offers dif-
ferent levels of complexity depending on whether the position of the agents is perfectly
known or needs to be estimated together with that of the targets (localization problem).

An essential capability that each autonomous robot should possess is that of being
able to efficiently measure the surrounding environment and to promptly respond to
stimuli coming from other robots, humans, or moving targets. Extensive research has
been done in the literature on the subject of tracking targets with static sensors (Bar-
Shalom et al. 2001, Taylor et al. 2006), or on the optimal placement of fixed sensors
(Uciński 2005). Mobile sensor networks are known to offer distinctive advantages over
static sensor arrays in terms of quality of sensing and estimation, area coverage, adapt-
ability to changing conditions (in the environment as well as in the target’s behavior),
and robustness against failures (Robin and Lacroix 2016). Cooperative active sensing lever-
ages the mobility of a robotic sensor network in order to enhance the target tracking
performances (Chung et al. 2006, Yang et al. 2007, Olfati-Saber 2007, Olfati-Saber and
Jalalkamali 2012), (Zhou and Roumeliotis 2008, Zhou and Roumeliotis 2011, Stroupe
and Balch 2005, Martı́nez and Bullo 2006, Zhao et al. 2002, Singh et al. 2009), (Grocholsky
et al. 2006, Stump et al. 2009): in the simplest instance of this problem, n sensors have
to fuse their local measurements and move in order to attain the best position estimate
of a moving target. This mechanism is sometimes referred to as “information-driven
mobility” in the literature, and it amounts, in practice, to minimize a certain scalar func-
tion of the covariance matrix of the position estimates: in optimum experimental design
theory (Walter and Pronzato 1994, Uciński 2005), this function is typically the determi-
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130 5. Coordinated control of multi-robot systems

nant or the trace of the covariance matrix (D- and A-optimality criteria). In the coop-
erative active target-tracking literature, a large body of research has focused on agents
equipped with sensors providing range-only or range-bearing measurements to the tar-
get, while relatively fewer works have dealt with the more challenging bearing-only
case (cf. (Passerieux and Cappel 1998)). Moreover, most of the existing papers have
limited themselves to single targets moving in a 2-D environment.

In (Chung et al. 2006), a motion-planning algorithm has been presented for solving
the cooperative 2-D target-tracking problem using range-bearing measurements. The
control law proposed by the authors is based on the gradient of the determinant of the
covariance matrix of the target’s position estimate with respect to each of the robot’s
coordinates. The multiple-target case is briefly treated as a possible extension, and
the role of imperfect communication between agents is also investigated, thus eluci-
dating the trade-offs in performance between sensing and communication. The results
in (Chung et al. 2006) have been extended in two directions in (Yang et al. 2007). First,
by using dynamic average consensus estimators, the controller proposed in (Chung
et al. 2006) can be implemented in a distributed fashion. Second, a new control de-
sign procedure based on the distributed Kalman filter (Olfati-Saber 2005) for estima-
tion fusion is presented, and the case of range-only sensors is addressed. Pursuing
this line of research, the same authors have lately proposed decentralized estimation
algorithms alternative to the Kalman filter (H∞ filters, set-valued estimators), and stud-
ied the impact of “intelligent” evasive targets on the tracking performances. Embrac-
ing an approach similar to (Yang et al. 2007), the collaborative active-sensing problem
has been studied in (Olfati-Saber 2007) for a group of double-integrator ground robots
equipped with range-bearing sensors. The network-connectivity issue is addressed
using a flocking-based mobility model (which also accounts for collision avoidance),
and a modified version of the distributed Kalman filter in (Olfati-Saber 2005) for es-
timating the target’s state is presented, along with information-driven decentralized
control laws for the agents. More recently, in (Olfati-Saber and Jalalkamali 2012), a
formal closed-loop stability analysis of an enhanced version of the coupled estimation-
and-control algorithm described in (Olfati-Saber 2007), has been proposed by the same
author. In (Zhou and Roumeliotis 2008), the authors focused on discrete-time target-
tracking for a team of unicycle robots with bounds on the positive forward velocity, and
shown that the associated optimization problem is NP-hard in general. Non-trivial re-
laxations to this problem are then proposed for determining the set of feasible locations
that each robot should move to, in order to collect the most informative distance mea-
surements. Note that differently from (Chung et al. 2006), where the nonlinearities in-
herent to the range-bearing model are “absorbed” into the non-stationary sensor noise,
the approach in (Zhou and Roumeliotis 2008) takes the nonlinear nature of the distance-
only measurements explicitly into account. In (Zhou and Roumeliotis 2011), the results
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in (Zhou and Roumeliotis 2008) have been extended to the case of ground vehicles pro-
cessing mixtures of relative measurements (i.e., range and

/
or bearing) and a closed-

form global optimal solution for the active-sensing problem is derived in the case of a
single vehicle for arbitrary target-motion models. In addition, constraints on the maxi-
mum speed of the robots and on the minimum distance between the agents and the tar-
get have been incorporated into the problem formulation. However, the mathematical
tools used by the authors in (Zhou and Roumeliotis 2008, Zhou and Roumeliotis 2011),
appear much more involved than those in (Chung et al. 2006), thus making their ap-
proach difficult to extend to different scenarios or to implement in a distributed fashion.
Moreover, differently from (Chung et al. 2006, Yang et al. 2007, Olfati-Saber 2007), inter-
agent cooperation does not seem fully exploited in (Zhou and Roumeliotis 2008, Zhou
and Roumeliotis 2011). In (Stroupe and Balch 2005) an approximate tracking algorithm
is proposed, where the agents try to minimize the target’s location uncertainty us-
ing range-bearing sensors. The optimization problem (minimize the determinant of
the target-position estimates’ covariance matrix), is solved separately by each agent
by a greedy search over the discretized set of candidate headings. In (Martı́nez and
Bullo 2006) the authors have studied the optimal placement of range-only sensors for
non-random static target position estimation. In this specific scenario, the determinant
of the Fisher information matrix (the inverse of the covariance matrix) can be computed
in closed-form and its critical points easily characterized. An optimal configuration,
then turns out to be one in which the sensors are uniformly placed in a circular fashion
around the target.

Related work on cooperative active target tracking has been done in (Triplett et al.
2009), where constant-speed unicycle robots are controlled using a distributed behavior-
based approach, the communication takes place on a broadcast network and estimation
is achieved by an unscented Kalman filter. However, differently from (Martı́nez and
Bullo 2006, Zhou and Roumeliotis 2008) and (Zhou and Roumeliotis 2011), this paper
does not provide an accurate theoretical characterization of the properties of the pro-
posed coordination algorithm. Finally, in (Quintero et al. 2010), the authors have stud-
ied the optimal routing of two camera-equipped fixed-wing aircraft cruising at fixed
altitude, cooperatively tracking a single ground target. A perspective transformation
relating the image-plane measurements to the ground allows to derive the geolocation
error covariance matrix, and dynamic programming is used by the authors to compute
optimal coordinated control policies which minimize the fused target localization error
covariance.

Original contributions

This work builds upon (Chung et al. 2006, Yang et al. 2007) and extend them in two
new directions. First, by using a spherical coordinates representation, we present a gen-
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132 5. Coordinated control of multi-robot systems

eralization for a team of unmanned aerial vehicles modeled as double integrators and
equipped with 3-D range-finding sensors. Second, we introduce a gradient-based con-
trol design procedure that encompasses the three major optimum experimental design
criteria: a Kalman filter is used for the fusion process.

It is also worth emphasizing herein that we are not specifically concerned with the
problem of designing distributed control laws for the aerial vehicles: in fact, one can
straightforwardly move in this direction, by adapting the distributed strategies pro-
posed in (Olfati-Saber 2007, Yang et al. 2007) to our specific setup. Moreover, in order
to keep our presentation accessible and concise, we decided not to incorporate collision-
avoidance or maximum-speed constraints in our problem formulation. These issues will be
addressed in future, more experiment-oriented works.

The rest of this section is organized as follows. Sect. 5.2.2 presents the measurement
model and estimation-and-control strategies for the aerial vehicles. In Sect. 5.2.3 the
results of extensive simulation experiments are discussed, and in Sect. 5.2.4 the main
contributions are summarized and possible avenues of future research are outlined.

5.2.2 Problem formulation and main results

Measurement model

Consider a team of n aerial vehicles (hereafter, also simply “agents”) with positions
p1, . . . , pn ∈ R3 expressed with respect to a common global reference frame, and a
target moving in 3-D according to the following model,

ẋ(t) = Fx(t) +GuT(t) +w(t) , (5.15)

where x(t) ∈ R3 denotes the position of the target at time t, uT(t) ∈ R3 is an exogenous
input and w(t) ∈ R3 is a continuous-time white Gaussian noise with zero mean and
covariance matrix Q ∈ R3×3. The observation zi(t) ∈ R3 of the target’s position made by
the i-th vehicle at time t, is assumed to be given by the following measurement model,

zi(t) = Hi x(t) + vi(t) ,

where vi(t) is a continuous-time zero-mean white Gaussian noise. In the following, we
will assume that the measurement noises of the vehicles are independent and that the
position pi of vehicle i is perfectly known, e.g., from accurate GPS measurements. In
addition, we will suppose that each agent is equipped with a magnetic compass (or
an equivalent sensor), which provides its absolute orientation with respect to the fixed
global reference frame: in this way, without loss of generality, we can assume that the
reference frames attached to the vehicles are all aligned.
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target
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θi

φi

ex

ey

ez

ri
eφ

eθ
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Figure 5.5: Measurement model for the 3-D range-finding sensor of vehicle i. The spherical
coordinates (ri, θi, φi) have been used, where ri ∈ (0, +∞) is the distance from vehicle i to the
target, θi ∈ (0, 2π) \ {π} is the bearing angle and φi ∈ (0, π) is the polar angle. {ex, ey, ez},
{eφ, eθ, er} represent the Cartesian and spherical orthonormal bases, respectively.

By adopting a 3-D range-finding sensor model (Ramachandra 2000, Sect. 4.3.2), we
have that Hi = I3 and that the covariance matrix RCar

i (t) ∈ R3×3 of vi(t) ∈ R3 assumes
the form,

RCar
i (t) � Ti(t)Ri(t)T

T
i (t) , (5.16)

where the rotation matrix Ti (dropping the time index t), is given by,

Ti = Rz(θi)Ry(φi) =

⎡⎢⎣cos θi cosφi − sin θi cos θi sinφi

sin θi cosφi cos θi sin θi sin φi

− sinφi 0 cosφi

⎤⎥⎦, (5.17)

and Rz(θi), Ry(φi) denote the basic 3 × 3 rotation matrices about the z- and y-axes of
an angle θi and φi, respectively (see Fig. 5.5). Ri in (5.16) is the covariance matrix of
the measurement noise in the range-bearing-polar frame of vehicle i, and it has the
following diagonal structure,

Ri = diag
(
σ2
φi
, σ2

θi
, σ2

ri

)
. (5.18)

The variance of the range-measurement noise σ2
ri

is typically represented by a func-
tion fr(ri) of the Euclidean distance ri � ‖pi − x‖2 from agent i to the target (Chung
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fr(ri)

a1 ri

a0

Figure 5.6: The uncertainty in measurements is minimal at a distance a1 from the target. The lo-
cus of points at distance a1 from the target is called the “sweet spot”, cf. (Chung et al. 2006).

et al. 2006): the polar and bearing measurement-noise variances σ2
φi

and σ2
θi

can also be
modeled as dependent on the range ri through the functions fφ(ri) and fθ(ri), respec-
tively. We will consider the following simple form for these functions,

fr(ri) � a2(ri − a1)
2 + a0,

fθ(ri) � αθ fr(ri),

fφ(ri) � αφ fr(ri),

where a0, a1, a2, αθ and αφ are strictly positive parameters (however, note that our sub-
sequent results can be straightforwardly extended to the case of general differentiable
positive-valued convex functions fr(ri), fθ(ri), fφ(ri)). This model assumes the existence
of a “sweet spot” located at a distance a1 from the target, where uncertainty in measure-
ments is minimal (see Fig. 5.6). Parameter a1 depends on the physics of the sensing
device, and it may vary from several tens of centimeters for infrared sensors, to few me-
ters for time-of-flight sensors (e.g. ultrasonic sensors). Although environmental factors,
such as temperature, humidity or background noise, might affect the sweet spot, a1 is
typically assumed to be a constant parameter in the literature. It is finally worth ob-
serving that a1, together with the other parameters a0, a2, αθ, αφ, can be estimated from
real data collected by the range-finding sensor, using standard least-squares methods
(cf. (Gowal et al. 2011)).

5.3. REMARK. Note that the transformation (5.16) from spherical coordinates, Ri, to Cartesian
coordinates1, RCar

i , is valid only for small θi and φi (cf. (Bar-Shalom et al. 2001, Sect. 10.4.3)).
1The spherical coordinates (r, θ, φ) are related to the Cartesian coordinates (x, y, z) by the nonlinear

transformation r =
√

x2 + y2 + z2, θ = atan2(y, x), φ = arccos (z/r), where atan2(·, ·) stands for the four-
quadrant inverse tangent.
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However, our simulation experiments (see Sect. 5.2.3), have shown that a violation of this “small-
angle condition”, does not lead to a significant performance degradation of our target-tracking
algorithm. �

Cooperative control

The target-position measurements zi and covariances RCar
i from the n agents will be

fused together to obtain a global target position estimate x̂fus and global position-error
covariance Pfus. In this section, we will present a cooperative control strategy that
moves the aerial vehicles in order to minimize a scalar function of the covariance Pfus,
thus reducing the target’s localization error, cf. (Yang et al. 2007).

In order to show the generality of our approach, for the design of the gradient-based
control laws we will simultaneously consider the cost functions for the three most pop-
ular optimum experimental design criteria (Uciński 2005, Sect. 2.3),

J = ln det(Pfus), (5.19)

for the D-optimality (determinant) criterion,

J = tr(Pfus), (5.20)

for the A-optimality (trace) criterion, and

J = λmax(Pfus) = ‖Pfus‖2 , (5.21)

for the E-optimality criterion, where λmax(Pfus) denotes the maximum eigenvalue of Pfus

and ‖Pfus‖2 is the spectral norm of Pfus. The D-optimum design (the most widely used
criterion), minimizes the volume of the uncertainty ellipsoid for the estimates, the E-
optimum design minimizes the length of the largest axis of the same ellipsoid, and the
A-optimum design suppresses the average variance of the estimates. Note that although
the cost functions (5.19)-(5.21) are convex with respect to P−1

fus (assuming that tr(Pfus) =

∞ and λmax(Pfus) = ∞, if det(P−1
fus) = 0, cf. (Uciński 2005, Sect B.5)), they are not convex

with respect to the relative position and orientation of the vehicles and target, and they
are thus prone to local minima (Chung et al. 2004).

Since the cost function (5.21) is not differentiable in general (in fact, the gradient of
λmax(Pfus) does not exist when the maximum eigenvalue of Pfus is not simple), in the
following we will consider its smoothed version (Chen et al. 2004):

Φε(Pfus) = ε ln
( 3∑

i=1

exp
(
λi(Pfus)/ε

))
,
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136 5. Coordinated control of multi-robot systems

where ε > 0 is an assigned smoothing parameter and λi(Pfus) denotes the i-th eigen-
value of Pfus. Note that function Φε(Pfus) is of class C∞ and it possesses the following
uniform approximation property to λmax(Pfus),

0 ≤ Φε(Pfus)− λmax(Pfus) ≤ ε ln(3), ∀ ε > 0,

from which it follows that limε ↓ 0 Φε(Pfus) = λmax(Pfus). As indicated in (Polak 1997,
p. 249), it turns out that when ε ∈ [10−6, 10−4], Φε(Pfus) yields an excellent approxi-
mation to λmax(Pfus). The following double-integrator model will be used for the aerial
vehicles (cf. Sect. 3.3.1),

ṗi = qi, q̇i = ui, i ∈ {1, . . . , n}, (5.22)

where qi ∈ R3 denotes the velocity of vehicle i and ui ∈ R3 its control input. The
gradient controller of vehicle i will be then of the form,

ui = −Bqi − ΓTi

[
1

ri sin θi

∂ J

∂ φi
,

1

ri

∂ J

∂ θi
,
∂ J

∂ ri

]T
, (5.23)

where B ∈ R3×3, B � 0, is a damping matrix and Γ ∈ R3×3, Γ � 0, is a gain matrix2.
In order to simplify the forthcoming derivations, let us introduce the following 3 × 3

matrices, whose explicit expression will be given in Sect 5.2.2,

Pr
i � ∂Pfus

∂ ri
, Pθ

i � ∂Pfus

∂ θi
, Pφ

i � ∂Pfus

∂ φi
. (5.24)

By using (Uciński 2005, Th. B.17), we can explicitly compute the partial derivatives ap-
pearing on the right-hand side of (5.23) for the D-optimality criterion,

∂ J

∂ ri
= tr(P−1

fus P
r
i ),

∂ J

∂ θi
= tr(P−1

fus P
θ
i ),

∂ J

∂ φi
= tr(P−1

fus P
φ
i ),

for the A-optimality criterion,

∂ J

∂ ri
= tr(Pr

i ),
∂ J

∂ θi
= tr(Pθ

i ),
∂ J

∂ φi
= tr(Pφ

i ),

and for the E-optimality criterion,

∂ J

∂ ri
= tr

(
UTdiag(∇λΦε(Pfus))UPr

i

)
,

∂ J

∂ θi
= tr

(
UTdiag(∇λ Φε(Pfus))UPθ

i

)
,

∂ J

∂ φi
= tr

(
UTdiag(∇λΦε(Pfus))UPφ

i

)
.

(5.25)

2The symbols “�”, “�”, denote the matrix inequality in the positive definite and positive semidefinite
sense, respectively.
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The l-th component of the gradient vector ∇λΦε(Pfus) in (5.25) is,

[∇λ Φε(Pfus)]l =
exp

(
λl(Pfus)/ε

)
3∑

j=1

exp
(
λj(Pfus)/ε

) , l ∈ {1, 2, 3},

and the orthogonal matrix U satisfies Pfus = UTdiag(λ(Pfus))U, where diag(λ(Pfus)) is
a diagonal matrix with the elements of the vector λ(Pfus) � [λ1(Pfus), λ2(Pfus), λ3(Pfus)]

T ,
λ1(Pfus) ≥ λ2(Pfus) ≥ λ3(Pfus), put on its main diagonal.

5.4. REMARK. Note that the controller (5.23) is centralized since Pfus, Pr
i , Pθ

i and Pφ
i contain

information from all the agents. However, the control law (5.23) can be implemented in a dis-
tributed fashion by replacing any unavailable global quantity with local estimates, as done, e.g.,
in (Yang et al. 2007, Olfati-Saber 2007). �

Kalman-filter fusion

As anticipated, we describe here a method inspired by (Yang et al. 2007), to fuse the local
target position measurements and error covariance matrices: in this way, we can deter-
mine the three matrices in (5.24), necessary for the implementation of controller (5.23).
The method defines x̂fus and Pfus by means of a Kalman-Bucy filter (Stengel 1994, Sect. 4.5):

Ṗfus = FPfus + Pfus F
T + Q − Pfus CPfus, (5.26)

˙̂xfus = F x̂fus + GuT + Pfus (y − C x̂fus), (5.27)

where

C �
n∑

i=1

(RCar
i )−1, y �

n∑
i=1

(RCar
i )−1 zi,

and (5.26) and (5.27) are respectively initialized with,

Pfus(t0) =

[ n∑
i=1

(RCar
i (t0))

−1

]−1

, (5.28)

x̂fus(t0) = Pfus(t0)

n∑
i=1

(RCar
i (t0))

−1 zi(t0), (5.29)

where t0 denotes the initial time instant. Note that (5.29) is a weighted least-squares
estimate for the position of the target, and that (5.28) is the covariance matrix of the
weighted least-squares estimator. By taking the partial derivatives with respect to ri, θi
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and φi on both sides of the Riccati differential equation (RDE) (5.26), we get the following
three Lyapunov differential equations,

Ṗr
i =

(
F−Pfus C

)
Pr

i + Pr
i

(
F−Pfus C

)T
+ 2 a2(ri − a1)Pfus Ti R

−2
i diag(αφ, αθ, 1)T

T
i Pfus,

Ṗθ
i =

(
F−Pfus C

)
Pθ

i + Pθ
i

(
F−Pfus C

)T−Pfus
(
Aθi +AT

θi

)
Pfus , Aθi = ΘTi R

−1
i TT

i ,

Ṗφ
i =

(
F−Pfus C

)
Pφ

i + Pφ
i

(
F−Pfus C

)T−Pfus
(
Aφi

+AT
φi

)
Pfus , Aφi

= TiΥR−1
i TT

i ,
(5.30)

where

Θ =

⎡⎢⎣ 0 −1 0

1 0 0

0 0 0

⎤⎥⎦ , Υ =

⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦ .
The equations in (5.30) are respectively initialized with,

Pr
i (t0) = 2 a2(ri(t0)− a1)Pfus(t0)Ti(t0)R

−2
i (t0)diag(αφ, αθ, 1)T

T
i (t0)Pfus(t0),

Pθ
i (t0) = −Pfus(t0)

(
Aθi(t0) +AT

θi
(t0)

)
Pfus(t0),

Pφ
i (t0) = −Pfus(t0)

(
Aφi

(t0) +AT
φi
(t0)

)
Pfus(t0).

5.2.3 Numerical experiments

Simulation experiments have been performed to illustrate the theory presented in the
previous section: in all our tests we used the cost function for the D-optimality crite-
rion to design the gradient controller, because of its invariance under any nonsingular
reparametrization (Walter and Pronzato 1994, Sect. 6.1). In the simulations, the initial
velocity qi(t0) = qi(0) of the aerial vehicles is set to zero.

Fig. 5.7(a) shows the trajectory of 4 aerial vehicles cooperatively tracking a target
whose motion is governed by system (5.15), with F = −5diag(10−3, 10−4, 10−2), G = I3,
uT(t) = [0, −10−2, 0]T and Q = 0.07 I3. The initial positions of the agents and target
are, in meters, p1(0) = [−3, 15, 0]T , p2(0) = [3, 15, 0]T , p3(0) = [0, 15, 5]T , p4(0) =

[0, 15, −5]T , x(0) = [0, 12, 0]T , and are respectively marked with circles and a square
in Fig. 5.7(a). The parameters of the measurement model are a0 = a2 = 0.2, a1 = 3,
αθ = αφ = 0.8, and the gain and damping matrices are Γ = 0.5 I3 and B = 2 I3, respec-
tively. Fig. 5.7(b) reports the time history of J = ln det(Pfus) and Fig. 5.7(c) the target’s
estimation error x− x̂fus. Fig. 5.7(d) displays the time evolution of ri, i ∈ {1, . . . , 4} (col-
ored): note that after about 150 seconds all the vehicles reach their sweet spot located
at a distance a1 = 3m from the target (black, dashed line). It is also worth mention-
ing that although the “small-angle condition” is violated here (recall Remark 5.3), in
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Figure 5.7: (a) Trajectory of the 4 agents (colored) and of the target (black): the initial positions
are marked with circles and a square, respectively, and the direction of motion of the target is
indicated with an arrow; (b) Time history of the cost function J = ln det(Pfus); (c) Time evolution
of the estimation error x−x̂fus; (d) Time history of ri, i ∈ {1, . . . , 4} (colored) and a1 = 3m (black,
dashed); (e) Mean and standard deviation of ‖x(Tfin)− x̂fus(Tfin)‖2, Tfin = 300 sec., over 10 trials
for Q = β2 I3, β ∈ {0.01, 0.05, 0.1, 0.15, 0.2, . . . , 0.4}.

this as well as in many other simulation experiments, we never experienced a signifi-
cant performance degradation of our algorithm. Finally, Fig. 5.7(e) shows the influence
of the process noise w(t) on the steady-state target’s estimation error. In particular, in
the figure we have reported the mean and standard deviation of ‖x(Tfin) − x̂fus(Tfin)‖2,
(Tfin = 300 sec. is the final simulation time), over 10 trials for increasing process-noise
power: Q = β2 I3, β ∈ {0.01, 0.05, 0.1, 0.15, 0.2, . . . , 0.4}. For consistency, in all the tri-
als we used the same initialization for the Kalman filter: x̂fus(0) = xT (0) + [1, −3, −2]T ,
Pfus(0) = I3.
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5.2.4 Conclusions and future work

In this section we have proposed an active target-tracking strategy to deploy a team of
unmanned aerial vehicles along paths that minimize the uncertainty about the position
of a moving target. The proposed theoretical results have been illustrated via numerical
simulations.

There is a series of interesting open issues that have not been addressed in the
present study. First, in future research, we are going to extend the proposed results
to heterogeneous teams of ground and aerial robots (e.g., modeled as more realistic
nonholonomic vehicles, cf. (Morbidi, Ray and Mariottini 2011)). We also like to study
the impact of team’s topology on the target estimation accuracy in the case of limited
inter-vehicle communication (Mourikis and Roumeliotis 2006), and to test the proposed
approach on real flying platforms (e.g. quadrotors). Finally, in future works we will in-
vestigate convex approximations to the cost functions (5.19)-(5.21), by exploiting, e.g.,
the concavity property of the Riccati differential equation of the Kalman-Bucy filter.
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5.3 Cooperative 3D reconstruction

In this section, we are interested in the problem of surface reconstruction of large-scale
unknown environments, with multiple cooperative robots. As they progress through
the 3D environment, the robots rely on volumetric maps obtained via a TSDF repre-
sentation to extract discrete Incomplete Surface Elements (ISEs), and a list of candidate
viewpoints is generated to cover them. A Next-Best-View planning approach, which
approximately solves a Traveling Salesman Problem (TSP) via greedy allocation, is then
used to iteratively assign these viewpoints to the robots. Two multi-agent architectures,
a centralized one (TSP-Greedy Allocation or TSGA) and a distributed one (dist-TSGA),
in which the robots locally compute their maps and share them, are developed and
compared. Extensive numerical and real-world experiments with multiple aerial and
ground robots in challenging 3D environments, show the flexibility and effectiveness of
our surface representation of a volumetric map. The experiments also shed light on the
nexus between reconstruction accuracy and surface completeness, and between total
distance traveled and execution time.

5.3.1 Introduction

In this section, we present a novel 3D reconstruction method for multiple cooperative
robots that addresses the problem of surface inspection of unknown environments, via a
Next-Best-View (NBV) frontier-based planner. A single objective function, which takes
the surface representation explicitly into account, is used to plan collision-free paths for
the robots within a centralized and a distributed architecture. Numerical simulations and
real-world experiments show that the proposed architectures are robust against uncer-
tain measurements, and provide accurate, complete and time-efficient 3D reconstructions.

We can summarize our original contributions, as follows:

• Differently from the conventional NBV exploration approaches, which select view-
points among a large set of randomly-sampled poses (Yoder and Scherer 2016,
Schmid et al. 2020), we directly consider a 3D representation of the incomplete-
ness of the surface to generate a roadmap of viewpoints and to carry out the re-
construction with a team of mobile robots,

• We introduce multi-agent NBV planners to route robots to viewpoint configura-
tions, and achieve surface reconstruction. More specifically, clusters of configura-
tions are greedily allocated to the robots by successively (approximately) solving
a Traveling Salesman Problem (TSP),
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142 5. Coordinated control of multi-robot systems

• To validate our approach, which admits both a centralized and a distributed im-
plementation, we undertook a large campaign of numerical simulations with UAVs
and real-world experiments with ground robots.

The rest of this section is organized as follows. Sect. 5.3.2 reviews and catalogues
the related work, while Sect. 5.3.3 is devoted to the problem formulation. Sect. 5.3.4
provides a general overview of the proposed approach, and Sect. 5.3.5 and Sect. 5.3.6
deal with the perception and planning problems, respectively. The centralized and dis-
tributed multi-robot architectures are tested via numerical and hardware experiments
in Sect. 5.3.7 and Sect. 5.3.8, respectively. Finally, Sect. 5.3.9 concludes the section and
discusses possible areas of improvement.

5.3.2 Related work

Planning informative paths for real-time 3D modeling of unknown environments has
been the subject of intense research in recent years. Volumetric-mapping methods rep-
resent the free and occupied space, and provide accurate surface estimations for recon-
struction, both for single and multiple robots. In tandem with these emerging map-
ping methods, volume exploration planners have been developed to rapidly explore
unknown volumes and provide coarse 3D reconstructions. The main focus of early
work on surface-based reconstruction has been on accuracy, and the optimized cost
function incorporates one or multiple surface criteria. Recently, the volumetric and
surface-based approaches have been combined to take advantage of their unique prop-
erties, but only the single-robot case has been studied.

Volumetric mapping

Volumetric mapping consists in discretizing the 3D space into small cells: the cells can
be unknown, empty or occupied, and they can be used to represent a 3D scene of in-
terest. A popular online 3D modeling approach, OctoMap, was introduced in (Hornung
et al. 2013). It relies on a 3D occupancy grid with an internal octree data structure. This
representation adapts the level of detail of the map to the environment, which reduces
memory usage, enabling real-time processing on CPU. In (Newcombe et al. 2011), the
authors proposed KinectFusion, which uses measurements from an RGB-D camera to
calculate the Truncated Signed Distance Function (TSDF) (Curless and Levoy 1996) over
a grid, leading to an implicit surface representation. Successive improvements of the
method resulted in reduced memory usage (Nießner et al. 2013), and recently the open
source library CHISEL (Klingensmith et al. 2015) made it available for 3D reconstruc-
tion on mobile devices. In (Oleynikova et al. 2017), this mapping method has been revis-
ited by considering Euclidean Signed Distance Fields (ESDF), which improves the ac-
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curacy of the distance map. The concept of manifold mapping (Howard 2004) has been
incorporated within a TSDF framework, to mitigate the mapping error due to localiza-
tion drift (Millane et al. 2018), and the traditional monolithic map has been replaced
by a collection of multiple local sub-maps (or patches). In (Duhautbout et al. 2019), the
authors have extended this concept to distributed mapping, for multiple ground robots.

Single-robot planning

Given a volumetric map, a robot can try to explore an unknown volume containing ob-
jects of interest. Volumetric-exploration methods usually leverage a volumetric represen-
tation (e.g. an OctoMap), to identify known, unknown, or occupied areas. Sampling-
based planners, such as Rapidly-exploring Random Trees, RRT (LaValle and Kuffner
Jr 2001), RRT� (Karaman and Frazzoli 2011), are used for trajectory generation by in-
crementally expanding a tree constituted of randomly-sampled sensor poses in the free
space. On the other hand, Probabilistic Roadmap planners, PRM (Kavraki et al. 1996),
Lazy PRM� (Hauser 2015), extract the trajectory/path from a graph formed by randomly-
sampled poses between a start and a goal configuration, according to a given objective
function. In an NBV-planning framework, volumetric exploration methods are usu-
ally related to informative path planning, which consists in expanding trees and in se-
lecting the NBV trajectory that guarantees the maximum coverage of the volume, see
(Bircher et al. 2016, Papachristos et al. 2019, Selin et al. 2019, Batinovic et al. 2021, Respall
et al. 2021) for RRT-based methods, and (Xu et al. 2021) for a PRM-based method.
Pose coverage along the trajectory is evaluated via ray tracing (Bresenham 1965), and
as the robot follows the assigned path, the volume is automatically explored. These fast
and efficient methods rely on a coarse volumetric map of the environment for naviga-
tion purposes, but they do not explicitly account for the completeness and accuracy of
the reconstructed surface.

Surface-inspection methods use the current surface to generate a roadmap of candidate
viewpoints which ensure a complete and accurate 3D reconstruction. NBV methods
determine the next best viewpoints to visit, depending on the mission of the robots.
Among them, frontier-based methods yield viewpoint configurations pointing towards
the frontier of the known surface, represented as a mesh, according to a given orienta-
tion, position, or sensing constraint. By visiting these configurations, the robot-sensor
gathers new surface information with some overlap, for ensuring continuity (Connolly
1985, Vasquez-Gomez et al. 2014, Border et al. 2018). Most of these approaches deal
with small objects reconstructed by cameras mounted on the end-effector of robot ma-
nipulators, and make strong assumptions on the navigable free space. In the last five
years, NBV inspection methods have been extended to mobile robots by using volu-
metric representations (Vasquez-Gomez et al. 2014, Yoder and Scherer 2016) and the
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144 5. Coordinated control of multi-robot systems

Method Mapping View planning
Ours (2020) TSDF Roadmap

(Bircher et al. 2018) TSDF Random sampling
(Newcombe et al. 2011) TSDF, Point cloud Random sampling

(Schmid et al. 2020) TSDF Random sampling
(Kompis et al. 2021) TSDF, ESDF Roadmap

(Mannucci et al. 2017) OctoMap Random sampling
(Corah and Michael 2021) General occupancy grid Random sampling

(Lauri et al. 2020) General occupancy grid Offline sampling

Method Criterion Path computation Multi-robot
Ours (2020) Surface Lazy PRM� �

(Bircher et al. 2018) Volumetric RRT �

(Newcombe et al. 2011) Volumetric RRT� �

(Schmid et al. 2020) Surface RRT� �

(Kompis et al. 2021) Surface A� �

(Mannucci et al. 2017) Volumetric RRT� �

(Corah and Michael 2021) Volumetric MCTS �

(Lauri et al. 2020) Volumetric Offline Multi-sensor

Table 5.1: Main features of some representative state-of-the-art NBV reconstruction methods,
compared to ours.

TSDF (Hardouin, Morbidi, Moras, Marzat and Mouaddib 2020, Monica and Aleotti
2018, Schmid et al. 2020).

Recently, hybrid or mixed methods, which benefit from the main advantages of surface-
inspection and volumetric-exploration approaches, have emerged for improved recon-
struction accuracy and faster coverage (see Table 5.1). In (Bircher et al. 2018), the re-
construction process includes two steps: first, a coarse TSDF map of the environment
is generated, and then, in a second modeling step, the surface is refined. Reasoning on
the occupancy map, the algorithm in (Song and Jo 2017) allows the robot to cover the
whole surface model. The authors have extended their approach in (Song and Jo 2018),
where the RRT� path is further refined by taking the completeness of the environment
surface, into account. More recently, in (Song et al. 2022), the method has been im-
proved and validated via numerical and real-world experiments. These approaches
rely on both volumetric and surface representations, which are costly to generate, and
only a few of them solve the surface-inspection problem directly. A RRT-based planning
method with a volumetric representation of the surface, has been presented in (Schmid
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et al. 2020). However, the poses are still sampled randomly rather than planned in
advance, which may lead to unnecessary maneuvers. In (Hardouin, Morbidi, Moras,
Marzat and Mouaddib 2020), we proposed to extract the viewpoints directly from the
knowledge of the map. A planning roadmap is created and used for 3D reconstruc-
tion, and the magnitude of unknown surface determines the stopping criterion. Finally,
in (Kompis et al. 2021), the authors introduced a method reminiscent of ours, based on
ESDF mapping and A� path search.

Multi-robot planning

As alluded to in the previous sections, the existing research on incremental online re-
construction generally targets a single robot, and multi-robot cooperative systems are
still relatively rare in the literature (Amigoni and Gallo 2005). By considering robots
equipped with laser scanners in a 2D environment, the authors in (Burgard et al. 2005)
were the first to propose a method for computing frontier cells, and to define the trade-
off between utility and distance traveled in a multi-agent exploration task. In (Juliá
et al. 2012), the authors compared multiple volumetric objective functions in terms of
reconstruction time and volume completeness, by considering pose measurement errors
in 2D environments. In (Mannucci et al. 2017), the authors considered a team of aerial
robots in an uncluttered outdoor environment, and proposed one of the first coopera-
tive frontier-based methods, which relies on 3D space modeling for multi-robot explo-
ration. The centralized OctoMap and the (RRT�-based) coordinated motion planning of
the aerial vehicles are computed on a base station, and the algorithm is evaluated via
realistic numerical experiments with emulated stereo sensors in ROS/Gazebo. Explo-
ration methods based on probabilistic occupancy maps with entropy reduction, such
as decMCTS (Best et al. 2016) or SGA (Atanasov et al. 2015), stem from the notion of
mutual information of range sensors (Charrow et al. 2015). The authors in (Corah et al.
2019, Corah and Michael 2019) have proposed a finite-horizon decentralized planner,
called DSGA (Distributed Sequential Greedy Assignment), which relies on sampling-
based Monte-Carlo Tree Search (MCTS) (Chaslot 2010). The paths are allocated to the
robots by solving a submodular maximization problem over matroid constraints with
greedy assignment heuristics. More recently, in (Corah and Michael 2021), the authors
have established connections between information-theoretic and volumetric coverage
objectives in terms of expected coverage, for teams of mobile robots. Finally, a similar
matroid-constrained submodular maximization problem has been considered in (Lauri
et al. 2020) for multi-sensor NBV planning, and real-world experiments have been con-
ducted with two KUKA robot arms. One NBV per sensor and per iteration is computed,
and viewpoint sampling and trajectory generation are performed offline, by assuming
a partial prior knowledge of the environment (location of the target object).
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146 5. Coordinated control of multi-robot systems

Based on this literature review, we can notice that a large body of research has lever-
aged volumetric exploration for 3D reconstruction, but without taking the problems of
surface completeness and occlusion explicitly into account. Moreover, even though the
surface inspection problem with mobile robots is becoming increasingly popular, to the
best of our knowledge, no multi-robot formulation exists.

We propose here a generic NBV planning strategy inspired by the mixed approaches,
to solve the surface inspection problem and cooperatively reconstruct large-scale envi-
ronments with a team of mobile robots. Our frontier-based method relies on a volumet-
ric representation of the surface, which allows to identify areas of interest to be scanned.
Candidate viewpoint configurations are generated from these areas in compliance with
the sensing and dynamic constraints of the robots, and they are clustered according to
their location in space. In order to find the best path for each robot, we evaluate the
interest of visiting a specific cluster. By successively solving this assignment problem,
we find the paths which allow to explore the unknown environment and maximize the
completeness of reconstructed surface, while ensuring short travel distances and ex-
ecution times. The proposed strategy, called TSGA (TSP-Greedy Allocation), has been
validated via extensive experiments with multiple quadrotor UAVs and wheeled robots,
by using a centralized architecture. A distributed variant, referred to as dist-TSGA, is
also introduced and tested via numerical and real-world experiments. With dist-TSGA,
it is possible to perform cluster assignment in a decentralized fashion, and to keep track
of the map under construction.

5.3.3 Problem formulation

Let us consider a team of N cooperative mobile agents3. Let qi ∈ SE(m) be the pose
of agent i, and qi

0 its initial configuration, i ∈ {1, 2, . . . , N}: m = 2 in the case of
ground vehicles, and m = 3 in the case of aerial vehicles. We assume that all agents
are equipped with an accurate localization system which allows to estimate their pose
with respect to a global reference frame, and that a robust low-level trajectory tracking
algorithm is available. Each agent is equipped with a forward-facing depth sensor with
limited field-of-view (FoV) and sensing range, extrinsically calibrated with respect to
its body frame. The agents should cooperatively scan an unknown 3D environment
(for instance, a building), characterized by its surface. A mapping algorithm is required
to build a representation of the reconstructed surface and identify the free space for
navigation. We consider a volumetric mapping, which allows to build a map M as a
collection of discretized 3D space elements. These elements, referred to as voxels v ∈M ,
represent unknown, occupied, or empty space. Let X ⊂ M be the set of unknown voxels,
and A ⊂ M the set of known voxels such that X ∩ A = ∅. Moreover, let O ⊂ A be

3We will use the terms “agent” and “robot”, and “path” and “trajectory” interchangeably.
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the set of occupied voxels, and E ⊂ A the set of empty voxels. The goal of the scan-
ning process is to discover unknown voxels: in particular, a voxel is said to be scanned
when it becomes known, once at least one agent has detected it. Similarly to (Yoder and
Scherer 2016, Monica and Aleotti 2018, Kompis et al. 2021), we aim at identifying the in-
complete surface within a given volume. Based on (Monica and Aleotti 2018, equ. (2)),
we propose the following general definition of incompleteness of a surface model:

5.2. DEFINITION (INCOMPLETE SURFACE ELEMENT). We call Incomplete Surface Ele-
ment, or ISE, for short, a voxel v ∈M lying on the surface at a frontier, near both the unknown
and empty space. Let C be the set of all ISEs. A voxel v ∈ C if and only if

a) v ∈ E, (empty)

b) ∃u ∈ N 6
v s.t. u ∈ X, (unknown)

c) ∃o ∈ N 18
v s.t. o ∈ O, (occupied)

where N 6
v and N 18

v denote the 6- and 18-connected voxel neighborhoods of v, respectively. �

5.3. DEFINITION (REMAINING INCOMPLETE SURFACE). Let Q be the set of all collision-
free configurations of an agent, and letQc ⊆ Q be the set of all configurations from which an ISE
v ∈ C can be scanned. The remaining incomplete surface is then defined as

Crem =
⋃
v∈C

{
v | Qc = ∅}.

�

We will use the function pi
j,k(s) : [0, 1] → SE(m), m ∈ {2, 3}, to define the path of

agent i from configuration j to configuration k, where pi
j,k(0) = qi

j and pi
j,k(1) = qi

k,
i ∈ {1, 2, . . . , N}. We assume that pi

j,k(s) is collision-free and feasible for agent i (i.e. the
kinematic/dynamic constraints of the robot are satisfied along the path). The problem
studied of interest can then be formally stated as follows.

Figure 5.8: 2D illustration (from left to right) of NBV planning for surface inspection via volu-
metric mapping. White, blue, and black voxels represent unknown, empty, and occupied voxels,
respectively. The surface is depicted in orange.
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148 5. Coordinated control of multi-robot systems

5.1. PROBLEM (MULTI-AGENT INSPECTION PROBLEM). Consider a team ofN agents with
initial configurations qi

0 ∈ Q, i ∈ {1, 2, . . . , N}. The multi-agent inspection problem asks to
find collision-free paths pi

0,f(s) visiting the poses qi
k, k ∈ {0, 1, . . . , f}, which allow the agents

to scan the set Cins = C \ Crem of all ISEs contained in the current reconstructed map M . �

By progressing along their paths pi
0,f (s), i ∈ {1, 2, . . . , N}, the agents are able to dis-

close the unknown space, discover new ISEs, and iteratively solve the inspection prob-
lem until Cins = ∅. Fig. 5.8 graphically illustrates this idea for a planar quadrotor.

Based on these premises, in the next section, we will provide a general overview of
the approach proposed to solve Problem 5.1.

5.3.4 Overview of the proposed approach

In what follows, we present a generic multi-agent system for 3D surface reconstruction
of unknown environments, which admits both a centralized and a distributed imple-
mentation. The centralized and distributed architectures depicted in Fig. 5.9, are well
suited to accommodate multiple ground or aerial robots, or a combination thereof (i.e.
heterogeneous fleets). The architectures include two distinct modules: a perception mod-
ule (green block in Fig. 5.9), which extracts the ISEs (cf. Sect. 5.3.3) from a volumetric
map estimated online, and a planning module (blue and orange blocks in Fig. 5.9), that is
in charge of computing the paths of the robots.

A mapping algorithm acts as the front-end of the perception module, which takes
as input the depth maps generated by the on-board sensors (RGB-D cameras, stereo-
rig, etc.) together with their associated poses, and integrates them into a 3D volumetric
map used for reconstruction (i.e. extraction of ISEs) and for navigation (i.e. collision-
free path planning and tracking in the free space). The map is then processed for the
duration of the overall mission in order to extract new ISEs, which are the centerpieces
of the planning module. We chose the TSDF representation for its attractive proper-
ties, and in particular for its ability to implicitly represent surfaces. In fact, it allows
to generate configurations in the free space that efficiently cover the ISEs, while taking
the specificities of the environment and depth sensors (range, resolution, etc.) explicitly
into account (see Sect. 5.3.5). However, note that other volumetric mapping methods
could be used as well, with minor modifications. The centralized architecture incremen-
tally integrates all input data (depth maps and poses from all agents) into a unique
map on a single base station, where all the ISEs are generated. In the distributed ar-
chitecture, instead, each agent computes its own local map, henceforth referred to as
“patch” and identified by a unique ID, based on its own sensing and localization in-
formation. The patches are exchanged via a distributed algorithm based on manifold
mapping (Howard 2004).
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Figure 5.9: General flow chart of our multi-agent surface-reconstruction architectures: [left] cen-
tralized, [right] distributed. The internal structure of the perception module is shown inside the
green shaded box. The intra- and inter-block connections are represented with black solid and
red dashed lines, respectively.

The planning module guarantees that the agents complete the surface reconstruc-
tion. The scanning process stops when no ISEs are left. Given the list of poses pro-
vided by the perception module, one can schedule the visit of each configuration via
an appropriate TSP-based path finder. To this end, the TSGA planner (TSP-Greedy Al-
location) clusters sets of configurations according to their location in space, in order
to identify and rank areas of interest in the incomplete map. It then generates a di-
rected graph which represents the travel utility of visiting a cluster, depending on the
capabilities of each robot (terrestrial or aerial). In order to maximize the cumulative
utility function at the team level, collision-free paths are extracted from the digraph
and broadcast to the robots. The high-level paths are sent to the low-level planners,
which generate sampling-based trajectories for the agents and gather the odometric and
path-allocation information for collision avoidance (see Sect. 5.3.6). In the distributed
architecture, global-map inconsistencies, due, e.g., to patch losses or communication
delays, may result in clusters assigned to multiple robots. To overcome this problem,
the low-level planners exchange their current paths with the robots, check the consis-
tency between the individual and team-wise allocation, and wait for a re-assignment, if
needed. Finally, trajectory tracking is performed with standard controllers (e.g. PID or
Model Predictive Control).
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150 5. Coordinated control of multi-robot systems

5.3.5 Perception

Surface-based mapping

A volumetric map M , here based on a TSDF representation, is used to detect non-
reconstructed areas, as defined by the extraction of ISEs. The TSDF map (Curless and
Levoy 1996) consists of a voxel grid, where each voxel contains a truncated signed dis-
tance value φ ∈ R and a positive weight w. It implicitly represents surfaces, which cor-
respond to the zero level set of the distance field: hence, the TSDF volume is a volumetric
representation of a surface. Algorithms such as MarchingCubes (Lorensen and Cline 1987)
can be used to extract a triangular mesh, which is an explicit representation of those sur-
faces, e.g. for visualization. The map is built in an incremental fashion by sequentially
integrating depth measurements. In order to keep the map consistent, the pose of the
sensor on-board the robot must be used to relocate depth measurements with respect
to the map frame. We assume that this pose is provided by a localization system which
relies, for example, on a visual SLAM algorithm (cf. (Engel et al. 2015, Mur-Artal and
Tardós 2017)), and that the pose estimates are sufficiently accurate. At each time step
and for each voxel v, the integration is performed by recursively computing a weighted
mean of the distance. In order to take into account uncertainty due to sensors (Nguyen
et al. 2012, Oleynikova et al. 2020), the new measurements are weighted by an inverse-
squared distance increment 1/z2q(v), where zq(v) is the distance between voxel v and
the current pose q of an agent4. The state of a voxel v is set to known (either occupied or
empty), if w(v) ≥ Wth and to unknown if w(v) < Wth, where the positive threshold Wth

depends on the sensing range of the depth sensor.

ISE extractor and viewpoint generation

Similarly to (Monica and Aleotti 2018), a voxel v ∈M is considered as an ISE, i.e. v ∈ C,
as stated in Definition 5.2, if it verifies the following conditions:

a) w(v) ≥ Wth ∧ φ(v) > 0, (empty)

b) ∃u ∈ N 6
v s.t. w(u) < Wth, (unknown)

c) ∃o ∈ N 18
v s.t. w(o) ≥Wth ∧ φ(o) ≤ 0. (occupied)

5.4. DEFINITION (SCANNED ELEMENT). A voxel v ∈ M which satisfies, w(u) ≥ Wth,
∀u ∈ N 6

v , is called a scanned element. �
4In the interest of clarity, in the remainder of this section, we will drop the superscript i, and we will

simple write q instead of qi.
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The direction nv to observe the ISE v, is determined from the gradient of the weight
function ∇w(x, y, z), which can be computed as

nv =
∑

c∈N 26
v

w′(c)
c− v

‖c− v‖ , nv =
nv

‖nv‖ ,

where N 26
v is the 26-connected neighborhood of v and the weight function

w′(c) =

{
−Wth if voxel c is occupied,

Wth otherwise.

Note that the last definition differs from (Monica and Aleotti 2018, equ. (6)), since
w′(c) takes the value Wth if the voxel is unknown or empty (in our experiments, we
empirically observed that this variant is more robust against noisy data). A sensor con-
figuration is generated along the direction nv at a distance δpose from the corresponding
voxel v (see Fig. 5.10). The sensor is oriented towards v along −nv, and the value of
δpose depends on the sensing range of the depth sensor.

If two poses qj,qk ∈ Q generated from the ISEs vj ,vk ∈ C, are located within a short
distance (i.e. dist(qj, qk) < ε, for a small ε > 0), and their viewing directions nvj

, nvk
are

almost parallel (i.e. |nvj
· nvk

| � 1, where “·” denotes the dot product), then these con-
figurations are merged into a single viewpoint, by averaging their positions and ori-
entations. This allows to reduce the overall number of poses, without missing key in-
formation. Even after the merging step, a large number of candidate poses pointing
towards the ISEs is typically generated in large-scale environments, which is not com-
patible with the planning objective. To avoid this problem, neighboring viewpoints are

Figure 5.10: [left] Two-dimensional example of ISE v (filled green square). Its 2D neighborhood
is represented by a dashed green square. Unknown voxels are black, occupied are gray, and
empty voxels are white. The reconstructed surface is depicted as a blue segment, and the sen-
sor configuration and its frustum as a dark blue triangle. [center] Direction from the contour,
nv, and corresponding viewpoint configuration at distance δpose from v (light blue triangle).
[right] Snapshot of a simulated reconstruction in progress, with ISEs and their directions from
the contour (green arrows).
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152 5. Coordinated control of multi-robot systems

grouped into Nc clusters Uj , j ∈ {1, 2, . . . , Nc} (the idea, as will become apparent later, is
to assign each cluster to an agent, in order to improve efficiency). The set of all clusters
is denoted by U = {U1, U2, . . . , UNc}. A configuration ql belongs to a generic cluster U
if ∃qj ∈ U such that d(τ jl ) < dν , where d(τ jl ) denotes the length of the path τ jl between
ql and qj on a directed graph (to be defined in Sect. 5.3.6), and dν is an upper bound on
the distance. If no neighbors are found, dν is increased up to a maximum value dmax

ν .
Once the clusters have been defined, their respective level of informativeness needs to
be quantified, since each cluster does not necessarily contain the same number of view-
points. To evaluate a configuration, we use the ray-tracing method (Bresenham 1965)
from a frontier-based perspective, i.e. the ISEs that can be seen, are counted. Let Cq

be the set of all ISEs seen from viewpoint q and let CU =
⋃

q∈U Cq. The gain g(U) of
cluster U is then defined as

g(U) =
|CU |
|C| , (5.31)

where |CU | denotes the cardinality of the set CU .

Centralized vs distributed mapping

In the centralized architecture, all the computations are performed on the base station.
The agents send their poses and depth maps to it, and a GPU-based algorithm5 fuses
them to create the global TSDF volume. The ISE extractor then computes the ISEs for
the whole team. The correct operation of the base station is crucial to the centralized
architecture: in fact, if it crashes, a system breakdown occurs. If the communication
with a robot is temporary broken, the robot freezes, and a degradation of planning
performances is experienced. On the other hand, in the distributed architecture, a CPU-
based distributed manifold mapping founded upon (Duhautbout et al. 2019), enables
each agent to compute TSDF (sub-)maps on its own embedded computer. The general
block diagram of the mapping module is depicted in Fig. 5.11. To synchronize the map
among the agents, it is subdivided into different patches. Each patch is a local TSDF
with a unique ID. It is associated with a local frame (i.e. the frame of the first depth map
processed), which is used to integrate the depth maps until a certain user-defined event
is triggered. Originally, in (Duhautbout et al. 2019), a distance-traveled criterion was
considered, for simultaneous localization and mapping (SLAM). Here, we assume that a
new patch is created, when a certain number of depth maps has been integrated into the
current map. Once this occurs, the current patch is locally stored into the agent’s private
map and shared with the others, and a new “current” patch is initialized. Moreover,
for each new patch stored, the list of patch IDs is updated and broadcast to the other

5When the depth maps sent by all the agents are fused, a GPU implementation is needed to ensure
real-time performance.
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Figure 5.11: Distributed mapping: inner structure of the module. The intra- and inter-block
connections are represented with green solid and red dashed lines.

agents. Thanks to this ID list, a client-server protocol allows the other agents to request a
missing patch which might have been lost during the first communication attempt. The
request is processed by the closest agent which owns it. Finally, when a robot receives a
patch sent by another agent, it stores it locally into its public map.

An approximation of the global map, denoted by M̂i, can thus be constructed by
agent i, as the union of its current patches, its private map, and its public map. We im-
proved the method proposed in (Duhautbout et al. 2019), in order to rebuild the TSDF
map from the collection of patches. In fact, the volumes are aggregated, and the over-
lapping regions between the patches are fused together by summing up the weights
and computing the weighted average of distance values for each TSDF voxel. To not
overload the communication network, the current map of an agent is not accessible to
the others until its completion. Therefore, even excluding the communication losses, the
agents do not have access to the full mapM , simultaneously. However, it is worth point-
ing out that our list-and-request mechanism to synchronize the older patches between
the agents, ensures that the majority of the global map M is available to the agents, ex-
cept for the most recent patches which are currently being built by each agent. Follow-
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154 5. Coordinated control of multi-robot systems

ing the procedure described in the previous subsection, the ISEs are extracted by agent
i from M̂i, and Ûi = {U i

1, U
i
2, . . . , U

i
NC

} is used to denote the set of clusters that should
be observed to complete the surface reconstruction process. Finally, the gains are com-
puted with equation (5.31), as in the centralized case. Fault tolerance is an asset to our
architecture: in fact, in the event of a communication failure, each agent can evolve in-
dependently using the last map exchanged. New patches are locally stored as the agent
reconstructs the environment on its own, and if communication is re-established, they
can be requested by the team, once the IDs list has been updated.

5.3.6 Planning

Next-Best-View planning

The high-level planner allocates clusters to the agents and schedules their visit accord-
ing to a given common TSDF map (or its best approximation, in the distributed archi-
tecture). To formulate our optimization problem, we introduce the weighted directed
graph G = (U , E , {aUV }(U, V )∈E), where U is the set of clusters, E is the set of edges, and
{aUV }(U, V )∈E is the collection of weights associated to the edges. Each directed edge
eUV ∈ E connects cluster U to cluster V , with U, V ∈ U . It is assumed that the initial
configuration of agent i belongs to one of the clusters of G, i.e. qi

0 ∈ U . Let qi
k be a

configuration in cluster U , and qi
l , q

i
m two configurations in cluster V . Then, the weight

aUV between cluster U and V is the 6-tuple

aUV =
{
τ lk, τ

m
l , g(V ), d(τ lk), d(τml ), fUV

}
, (5.32)

where

• τ lk denotes the path from qi
k ∈ U to qi

l ∈ V , i.e. the path between cluster U and
cluster V ,

• τml denotes the shortest Hamiltonian path (Godsil and Royle 2001) including con-
figurations of V , which starts at qi

l and ends at qi
m,

• g(V ) is the gain of cluster V , as defined in (5.31),

• d(τ lk) is the cost associated with the inter-cluster path τ lk, i.e. the length of τ lk,

• d(τml ) is the cost associated with the intra-cluster path τml , i.e. the length of τml ,

• fUV is the utility function defined as

fUV = g(V ) exp
(−λtc d(τ lk)− λic d(τml )

)
, (5.33)
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where λtc and λic are positive penalty terms for the inter-cluster and intra-cluster
costs, respectively, which can be used to promote the visit of clusters far apart
or large clusters. Their value depends on the motion capabilities of the agents
(i.e. ground vs aerial robots). A similar utility function was originally proposed
in (González-Banos and Latombe 2002).

The weights on the directed graph G in (5.32), quantify the potential benefit of choos-
ing a certain path, to pursue the 3D reconstruction: in fact, the higher the value of the
function fUV , the more convenient is the path. Note that fUV > 0, since g(V ) > 0.

Our inspection problem can be stated as a maximum Asymmetric Traveling Salesman
Problem (maxATSP), i.e. as the problem of finding a maximum-utility Hamiltonian path
p on G, see (Hardouin, Moras, Morbidi, Marzat and Mouaddib 2020). In a graph, a
Hamiltonian path is an undirected or directed path that visits each vertex exactly once.
In what follows, we will denote by maxATSP(U), the set function that takes the set of
clusters U as input and outputs its utility value p, from which the path p can be com-
puted. A linear programming formulation of maxATSP is

max
∑
U∈U

∑
V ∈U

fUV xUV

s.t.
xUV ∈ {0, 1}, U, V ∈ U , U �= V,∑
U∈U , U �=V

xUV = 1, V ∈ U \ {q0},
∑

V ∈U\{q0}, V �=U

xUV ≤ 1, U ∈ U ,
∑

V ∈U\{q0},
x{q0}V = 1, {q0} ∈ U ,

∑
U∈S

∑
V ∈S,V�=U

xUV ≤ |S| − 1, ∀S � U , |S| > 2,

where {q0} denotes the cluster which only contains the initial configuration, S is a
proper subset of U , and xUV = 1, if the edge belongs to the optimal path, and xUV = 0,
otherwise. maxATSP is solved by converting it into a symmetric TSP (i.e. a standard
TSP) and then by using the classical Lin-Kernighan heuristic (Helsgaun 2000).

Let U i be the set of clusters assigned to agent i ∈ {1, 2, . . . , N}, such that
⋃N

i=1 U i = U .
Then, the assignment problem can be stated as follows

max
U1, ...,UN ⊂U

{ N∑
i=1

maxATSP(U i)
∣∣ U i ∩ U � = ∅, i �= �,

N⋃
i=1

U i = U
}
, (5.34)

where
∑N

i=1 maxATSP(U i) is a non-decreasing set function, and the space of feasible
paths has the structure of a simple partition matroid (Wilson 1973). Problem (5.34) can
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Algorithm 1: TSP-Greedy Allocation (TSGA)
Set U i = ∅ and pi = 0 for each agent i ∈ {1, 2, . . . , N};
foreach cluster V ∈ U do

i ← arg max
k∈{1,2,...,N}

{maxATSP(Uk ∪ V )− pk};

U i ← U i ∪ V ;
pi ← maxATSP(U i);
pi
U i ← {pi, U i};

Send paths p1
U1 , . . . ,p

N
UN to the agents (low-level planner);

be approximately solved via local greedy heuristics (cf. (Bian et al. 2017, Nemhauser
et al. 1978, Fisher et al. 1978)), which seek for the local maximum utility, based on an
initial ranking of the items to assign. The centralized TSP-Greedy Allocation (TSGA)
procedure (Hardouin, Moras, Morbidi, Marzat and Mouaddib 2020) is reported in Al-
gorithm 1 and its distributed version (dist-TSGA) in Algorithm 2. Note that the single-
agent algorithm is a special case of the centralized multi-agent algorithm with N = 1.

At each ISE extraction, the clusters are formed, and the shortest Euclidean distance
to each agent is computed. These distances are then arranged in ascending order for
the greedy heuristic. The TSGA planners greedily assign each cluster to an agent. More
specifically, a cluster is assigned, when it locally maximizes the overall utility for the
team. The path of agent i, e.g. the viewpoint sequence which results from the allo-
cated clusters U i, is denoted by pi

U i , and the associated utility value by pi. Once pi
U i is

computed, it is sent to the low-level planner. Unlike the classical insertion methods, in
which a cluster is added to the path of a robot path (Jawaid and Smith 2015), maxATSP
is solved for the extended cluster set U i ∪ V with V ∈ U \ U i. This strategy maximizes
the individual utility of the agents over disjoint sets, so as to maximize, in turn, team-
wise utility. Moreover, it is amenable to a distributed implementation, since only local
information is used (e.g. local free space, ISEs, U i related to the map of agent i). On the
long run, the maximization of the utility function pushes the agents towards the most
valuable areas, in terms of completeness. For instance, this might prompt an agent to
visit areas at the frontier between a known and an unknown surface containing multiple
ISEs, and scan them all (cf. equation (5.31)).

Low-level planner

The low-level planner computes the path of an agent, using Lazy PRM� from the Open
Motion Planning Library (OMPL) (Şucan et al. 2012). It leverages the path found by
the TSGA planner (Algorithm 1 or 2) and the TSDF-map updates. Given a start and an
end pose, it computes the path of a robot in the free space, given by the TSDF volume
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Algorithm 2: dist-TSGA
Set Û i

i = ∅ and pii = 0 for agent i ∈ {1, 2, . . . , N};
foreach cluster V ∈ Ûi do

� ← arg max
k∈{1,2,...,N}

{maxATSP(Ûk
i ∪ V )− pki };

if � = i then
Û i
i ← Û i

i ∪ V ;
pii ← maxATSP(Û i

i );
pi

̂U i
i

← {pii, Û i
i};

Send path pi
̂U i
i

to the low-level planner;

(on the plane for ground vehicles, and in the 3D space for aerial vehicles). By gathering
all odometric information, each agent knows the position and orientation of the others,
and it is then able to detect when another robot is near, when it faces it, or when it will
cross its path. A TrafficPolicy function takes care of collision avoidance: for example, a
robot might be asked to step aside to avoid a frontal impact, or to temporarily stop and
wait until a teammate crossing its path, is outside its FoV. The function takes the robot’s
speed into account, and relies on a safety distance threshold for collision avoidance. On
the other hand, the ObstacleCheck function triggers an emergency stop via a distance
threshold to the surface (obtained from the TSDF), if a new obstacle is detected along
the path.

Note that an ISE may be potentially scanned before the planned visit of an agent. To
avoid unnecessary back-and-forth motions, the UtilityCheck function computes the re-
maining ISEs along the paths since the last planning iteration, and it waits for a possible
update. This ensures a reactive visit of uncovered ISEs, as the map grows over time.

The high-level planner may generate paths of various length: hence, the agents may
finish their tours at different time instants. When an agent has completed its current
path, it continues the reconstruction asynchronously, with the latest path provided by
the high-level planner.

Centralized vs distributed planning

In the centralized architecture, the map is directly generated from the depth maps sent
by the agents. The centralized map is used for the extraction of the ISEs and the de-
termination of the configuration clusters. A resolution of problem (5.34) on the base
station allows to compute the paths p1

U1 , . . . ,pN
UN , which are broadcast to all the agents

(cf. Algorithm 1).
In the distributed architecture, due to material constraints (such as, saturation of
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communication network or packet losses), a newly-created patch may not be received
by all the agents. Hence, in practice, the agents do not have the same knowledge of
the full map. Nevertheless, provided that the patch request is frequent enough, agent
i may have a rapid access to a full public map: it can thus update its own local version
of the global map M̂i, and synchronize it with the map of the other agents (see Sect. 5.3.5
and Fig. 5.11). Recalling that Ûi denotes the set of all clusters generated from the ISEs
extracted by agent i from its current global map M̂i, let Û i

i ⊂ Ûi be the set of clusters
assigned to agent i, such that

⋃N
j =1 Û j

i = Ûi. Based on the known set of clusters Ûi, each
agent performs its own cluster allocation in a distributed way, to compute the best path.
Once the assignment step is done successfully, agent i sends its path pi

̂U i
i

to the low-level
planner (cf. Algorithm 2).

Because of possible inconsistencies in the global maps, multiple agents might be
assigned to the same viewpoints of a cluster. To avoid such a scenario, the low-level
planner broadcasts the path that is currently followed by an agent, to the others. In case
of redundancy, the RedundancyCheck function of each low-level planner evaluates each
agent’s progress along the current path. The priority is given to the first agent which
can reach the viewpoint, by taking its ranking in the list of visits and its current location,
into account. The agents which were not granted priority, keep on moving until their
last maneuver before the redundant cluster, and then wait for a new high-level path.

5.3.7 Numerical experiments

In this section, the centralized and distributed multi-robot systems are validated via ex-
tensive simulations with synthetic data. As a complement to our preliminary results
in (Hardouin, Morbidi, Moras, Marzat and Mouaddib 2020), the single-robot architec-
ture is also compared with (Schmid et al. 2020), using the simulation environment of the
authors. Our baseline multi-agent planner, to test TSGA and dist-TSGA, is the Near-
est Neighbor (NNB) greedy algorithm. In NNB, only one cluster is allocated to each
robot by locally computing maxV ∈U fUV for the updated map (cf. equation (5.33)). Re-
planning is thus very fast compared to TSGA’s, but only one cluster at a time is set
to be visited. The different methods are evaluated in terms of map accuracy, surface
completeness, total path length, and execution time.

Robots: RotorS simulator (Furrer et al. 2016) has been used to model quadrotor UAVs
equipped with a stereo camera, in the ROS-Gazebo environment. We considered 3 and
5 UAVs in our tests, and report the single-robot case previously studied in (Hardouin,
Morbidi, Moras, Marzat and Mouaddib 2020), for the sake of completeness. Each UAV
has 4 degrees of freedom: its 3D position [x, y, z]T and its yaw angle ψ.
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Simulation setup: We chose an industrial plant benchmark, which is well-known in
the volumetric exploration literature (Song and Jo 2018). The Powerplant model6 (see
Fig. 5.12-[top-left]) was scaled to fit in a 65× 42 × 15m3 box (as a consequence, the five
flues have the same height). To study the impact of the two penalty terms in the utility
function (5.33), on the reconstruction accuracy/completeness, we also considered the
monumental Statue of Liberty7 (SoL), of size 20×20×60m3, see Fig. 5.12-[top-left]. The
simulation parameters used in the two scenarios are reported in the first and second
column of Table 5.2.

To represent the depth-map uncertainty, we considered a Gaussian noise model.
The standard deviation associated with a pixel, corresponds to the depth-value sens-
ing error of the corresponding point located at a distance z, i.e. σ(z) = |ed|

fB z
2, where

|ed| is the magnitude of the disparity error, f is the focal length in pixels, and B is the
baseline of the stereo camera on the UAVs, in meters. Following (Nguyen et al. 2012, Ke-
selman et al. 2017), the raw depth map was blurred out by using a 3 × 3 kernel. In the
single-UAV and centralized architecture, the TSDF volume was generated with the al-
gorithm proposed in (Zeng et al. 2017), that we adapted to multi-robot case. Our GPU-
based algorithm allows to rapidly build and update (at about 1 Hz) the TSDF volume,
as new depth maps sensed by robots are sent to the base station. Surface mesh re-

6http://models.gazebosim.org
7https://free3D.com

Table 5.2: Parameters used in the numerical experiments.

Parameter Powerplant SoL CB
Voxel resolution rv [m] 0.3 0.15 0.2
Threshold Wth 0.3 0.3 0.3
emax [m] 0.2598 0.1299 0.1732
Camera range [m] [1.6, 8] [1, 5] [1.5, 6]
Camera FoV [deg.] (H, V) 90 × 60 90 × 60 90 × 60
ed [pixels] 0.1 0.1 0.1
f [pixels] 376 376 376
B [m] 0.11 0.11 0.11
Collision radius [m] 1 1 1
UAV nominal speed [m/s] 0.5 0.5 0.5
δpose [m] 4.7 3.6 2.5
dν [m] 2.0 2.5 1.5
dmax
ν [m] 5 5 5

Penalty term λtc 0.3 0.17 0.25
Penalty term λic 0.03 0.15 0.08
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Figure 5.12: Numerical experiments: [top-left] Powerplant and SoL models. Reconstructed
meshes and 3D exploration paths p1

0,f , p2
0,f , p3

0,f (green, red, blue) of the 3 UAVs for the two
models, obtained with: [bottom-left] distributed architecture; [2nd column] centralized archi-
tecture; [3rd column] centralized architecture with NNB planner. The initial locations of the
UAVs are marked with magenta dots. [4th column] Signed distance error: the color bar shows
the error in meters with respect to the ground truth, computed with CloudCompare’s M3C2
plugin.

construction is performed with MarchingCubes (Lorensen and Cline 1987), and the
TSDF weight increment has been modified to be the inverse of squared distance, as
reported in Sect. 5.3.5. Distributed mapping is performed with the method proposed
in (Duhautbout et al. 2019), which allows each robot to compute its own local volume,
and send it to other robots, so that a global map can be obtained. The event that triggers
the integration and broadcast of a new patch to the other robots, is that 5 depth maps
have been processed. Unlike centralized mapping, distributed mapping is CPU-based,
and it can be run on an embedded computer with limited resources. Lazy PRM� from
OMPL (Şucan et al. 2012) is used by the low-level planner (see Sect. 5.3.6) to compute
collision-free paths for the UAVs (the collision radius is set to 1 m). The UAVs track the
generated paths using Model Predictive Control (Kamel et al. 2017), with a reference
translational velocity fixed to 0.5 m/s.

The UAVs are initially located in the same area, around the base station (magenta
dots in Fig. 5.12-[Columns 1 through 3]). The quantitative results of our numerical
experiments are reported in Table 5.3. The single-UAV architecture with perfect and
noisy depth measurements (denoted by “H”, (Hardouin, Morbidi, Moras, Marzat and
Mouaddib 2020), and “H∗”, respectively), has been used as a baseline, and compared
with the centralized multi-robot architectures (with NNB and TSGA planners), and the
distributed architecture (with the dist-TSGA planner), for a fleet of 3 and 5 UAVs. The
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Table 5.3: Results of the numerical experiments with Powerplant, SoL and CB (statistics over
10 trials).

Powerplant
Number of UAVs 1 3 5
Algorithm H H∗ NNB Centr. Distr. NNB Centr. Distr.
Path length [m] 780 785 1038 790 781 1113 879 872

Compl. time [min.] 32 33′10′′ 11′09′′ 10′20′′ 9′56′′ 6′51′′ 6′22′′ 6′09′′

Time gain [%] w.r.t. H∗ − − 66.4 68.8 70.0 79.4 80.8 81.5

Surface coverage [%] 91.5 90.4 90.0 91.0 95.9 90.5 90.6 95.6

M3C2 avg. error [cm] 0.14 −0.13 −0.15 −0.26 0.62 −0.11 −0.3 −0.73

M3C2 std. error [cm] 5.85 7.51 7.52 7.54 3.33 7.50 7.52 3.43

RMSE [cm] 5.86 7.51 7.52 7.55 3.39 7.50 7.52 3.51

SoL CB
Number of UAVs 1 3 5 1
Algorithm H H∗ NNB Centr. NNB Centr. S H
Path length [m] 547.0 550.0 733.0 721.0 580.0 574.2 641 632

Compl. time [min.] 36′ 37′ 13′10′′ 10′18′′ 7′30′′ 6′45′′ 27′38′′ 25′20′′

Time gain [%] w.r.t. H∗ − − 64.4 72.2 79.7 81.8 − −
Surface coverage [%] 92.3 91.2 91.1 91.0 90.9 91.1 94.6 95.7

M3C2 avg. error [cm] 0.29 −0.02 −0.80 −0.03 0.06 −0.01 −1.06 0.28

M3C2 std. error [cm] 3.41 3.67 3.61 3.69 3.65 3.66 7.22 6.34

RMSE [cm] 3.43 3.67 3.69 3.69 3.65 3.66 7.29 6.34

last architecture has been only tested with Powerplant. To obtain statistically-significant
values, 10 trials per architecture and per team of robots, were performed. For more de-
tails about the hardware platforms used in the simulations, see (Hardouin 2022).

Metrics: The architectures have been evaluated in terms of cumulative path length
and completion time (to fully cover the 3D environments). This includes travel time and
sensing time (e.g., one depth map integration and map update). The reconstructed 3D
surface has been evaluated with CloudCompare8 using the M3C2 (Multiscale Model to
Model Cloud Comparison) algorithm (Lague et al. 2013). To assess how well the surface
is covered, the reconstructed mesh is compared with a dense point cloud sampled on the
ground truth (GT) mesh. The deviation is quantified via a cloud-to-mesh comparison
(see Fig. 5.12-[4th column]). For a fair evaluation, all the invisible surfaces of the GT

8https://danielgm.net/cc
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mesh were pruned beforehand (e.g., the interior floor and walls), and the analysis was
restricted to the exterior surface mesh only. A point belonging to the GT point cloud
is considered to be covered, if the shortest distance to this point along a normal to a
mesh facet, is less than the length of the half diagonal of a voxel, i.e. emax = rv

√
3/2,

where rv is the voxel resolution. As a result, the more points are accurate, the better the
coverage is. The quality of the recovered surface is evaluated in Table 5.3 (average and
standard deviation of the signed distance error with respect to the GT point cloud and
Root-Mean-Square Error).

Choice of penalty terms: The selection of penalty terms λtc and λic in the utility func-
tion (5.33), depends on the nature of the 3D environment to explore. To find the com-
bination of parameters which guarantees the shortest distance traveled, multiple re-
constructions of Powerplant and SoL have been carried out with a single robot and
different values of λtc and λic. The results are compiled in Table 5.4, and indicate that
the shape of the environment has a clear impact on the tuning of the penalty terms.
In particular, in wide box-like environments as Powerplant, the majority of ISEs are
uncovered near sharp edges or occluded regions, and tend to appear in groups sepa-
rated by large layers of known space. To minimize the total path length, inter-cluster
utility should then take priority over intra-cluster utility, i.e. λtc ( λic. On the other
hand, the pedestal of the statue excluded, SoL predominantly consists of round sur-
faces and the average distance between two clusters is much smaller than in Power-
plant. Hence, similar penalty terms are preferable (i.e. λtc � λic).

Results: From an inspection of Table 5.3, we can see that for a single UAV, the presence
of noise has an impact on mesh accuracy, but that the navigation performance remains

Table 5.4: Penalty terms and path lengths for Powerplant and SoL.
Powerplant

λtc 0.35 0.3 0.15 0.03 0.01

λic 0.01 0.03 0.15 0.3 0.35

Path length [m] 787 780 795 814 822

SoL
λtc 0.35 0.3 0.17 0.03 0.01

λic 0.01 0.03 0.15 0.3 0.35

Path length [m] 578 559 550 587 601
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Table 5.5: Comparison between the centralized TSGA and NNB planners.

Powerplant SoL
Number of UAVs 3 5 3 5

Path length gain [%] 23.90 21.00 1.64 1.00
Completion time gain [%] 7.32 7.06 21.80 10.00

largely unaffected. We compared our single-robot algorithm with (Schmid et al. 2020)
(denoted by “S”, for short), by adapting our code to the simulator developed by the
authors. We kept their default parameters and configurations, and selected the City-
Building (CB) environment (see the third column of Table 5.2). As we can notice in
Table 5.3, our method works slightly better than (Schmid et al. 2020) in terms of com-
pletion time, path length, surface coverage, and accuracy. The algorithms described
in (Song and Jo 2017, Song and Jo 2018) exhibit a similar completion time with Power-
plant. The deviation is more pronounced with SoL: in fact, the algorithm in (Song and
Jo 2017) takes twice as long to finish the exploration. As the number of robots grows,
the execution time decreases: in fact, with Powerplant (see the 4th row of Table 5.3), the
distributed (centralized) architecture with 3 UAVs is 70.0% (68.8%) faster, compared to
the single-robot case. With 5 UAVs, the distributed (centralized) architecture is 81.5%

(80.8%) faster, compared to a single quadrotor. Similarly, with SoL, TSGA achieves the
task 72.2% (81.8%) faster with a fleet of 3 UAVs (5 UAVs), compared to the single-robot
case. The distance traveled per UAV is shorter than that of a single UAV, but the total
path length is larger, for any team of aerial vehicles.

The centralized TSGA also guarantees a shorter completion time and shorter dis-
tances compared to the classical NNB planner (see Table 5.5), even with SoL. In fact,
the profile of the statue and the presence of numerous contiguous ISEs should be more
favorable, in principle, to fast local planners (for more details, the reader is referred
to (Hardouin, Moras, Morbidi, Marzat and Mouaddib 2020, Sect. V)). With Powerplant,
the centralized architecture ensures that all the incomplete reachable regions are ulti-
mately covered (surface coverage ranges between 90.4% and 91.5%). The overall re-
construction accuracy is better with the distributed mapping algorithm. Coverage im-
proves as well, reaching 95.9% with 3 robots and 95.6% with 5 robots. Since the perfor-
mance of MarchingCubes is dictated by the voxel size, the reconstructed mesh is more
accurate, if the resolution is high. However, if the environment to explore is large, a
high resolution entails resource-intensive mapping and ISE-extraction steps, which ulti-
mately make the whole reconstruction process prohibitively expensive. Therefore, a bal-
ance between computational efficiency and reconstruction accuracy, should be found.

In summary, our numerical experiments show that the two multi-robot architectures
are successful in scanning the 3D environments, covering upwards of 90% of their sur-
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face, even in the presence of noise in the depth measurements. In the next section, we
will extend our analysis and study the accuracy and robustness of the centralized and
distributed architectures deployed on mobile robots in real-life conditions.

5.3.8 Real-world experiments

In this section, which is organized as Sect. 5.3.7, the results of our hardware experiments
are presented and discussed. To cope with variable environmental conditions (e.g. light-
ing change during the day), and slight differences in robot configuration (camera cali-
bration, level of charge of the battery, etc.), a statistical analysis over multiple trials has
been carried out.

Robots: The experiments have been conducted with a team of 4 identical Wifibots9.
Each robot is equipped with an Intel NUC7i7BNH computer, a stereo rig with two IDS
UI-1241-LE cameras (baseline B = 26 cm), and a Wi-Fi system to communicate with a
ground station. An HQ camera (IDS UI-3252-LE) is also installed on each robot to gener-
ate a GT map (for more details on the software/hardware specifications, see (Hardouin
2022)). The other parameters used in our experiments are reported in Table 5.6. Only
minor changes have been made to adapt our ROS-based system to the real sensors and
physical constraints of the Wifibots. In particular, the code that generated the emulated
depth maps and odometry, has been replaced with validated software modules: the
depth maps are computed with the ELAS algorithm (Geiger et al. 2010), and the pose
of the robots is estimated with the vision-based eVO algorithm (Sanfourche et al. 2013).

9https://wifibot.com

Figure 5.13: Real-world experiments: [top] Test arena, [bottom] Parking lot. [left] 2D maps, and
[center, right] photos of the two environments, including two panoramic views of Test arena.
The circled numbers indicate obstacles or areas of interest.
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This latter algorithm does not address the loop closure problem: hence, a localization
drift, proportional to the distance traveled may occur. In the centralized architecture,
the map is updated upon receipt of a new depth map (at around 1 Hz). Instead, in the
distributed architecture, a new patch is stored and broadcast to the robots, every time
that 5 depth maps have been integrated into the current TSDF map. The mapping and
planning modules of the centralized and distributed architectures are identical to those
presented in Sect. 5.3.7.

Environments: Two different indoor environments have been considered in our ex-
periments. An 8 × 7 × 2 m3 Test arena, consisting of a central obstacle surrounded
by four walls covered by mattresses (green in Fig. 5.13-[top-left]), and an underground
21 × 14 × 2 m3 Parking lot, containing several obstacles at ground level. The 2D maps
and photos of these environments are shown in Fig. 5.13.

Metrics: The same metrics as in the numerical experiments, have been considered
(please refer to Sect. 5.3.7). Data exchange has been monitored during the experiments:
in the single-robot and centralized multi-robot algorithms, it pertains to depth maps,
odometry and path messages transmitted between the ground station and the vehicles,
whereas in the distributed algorithm, to patches, odometry, and paths exchanged by
the robots.

Table 5.6: Parameters used in the real-world experiments.

Parameter Test arena Parking lot

Voxel resolution rv [m] 0.1 0.2
Threshold Wth 0.3 0.3
emax [m] 0.0866 0.1732
Camera range [m] [0.3, 5] [0.3, 5]
Camera FoV [deg.] (H, V) 90 × 60 90 × 60
Collision radius [m] 0.55 0.55
Robot nominal speed [m/s] 0.5 0.5
δpose [m] 1.3 1.3
dν [m] 2.0 2.0
dmax
ν [m] 3.5 3.5

Penalty term λtc 0.5 0.7
Penalty term λic 0.01 0.01
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Figure 5.14: Real-world experiments: Parking lot, centralized architecture. From left to right,
time progression expressed in percentage of final 3D reconstruction (top view). In the rows,
the number of robots varies between 1 and 4. The last column reports an isometric view of
reconstructed mesh and the exploration paths of the robots. The ceiling of the parking lot has
been removed to provide visibility of the interior.

Results: Table 5.7 summarizes our experimental results. For Test arena, the recon-
struction has been performed with a single robot, and a team of 2 robots for the central-
ized and distributed architectures. On the other hand, for Parking lot, we considered a
single robot and teams of 2, 3 and 4 robots for the centralized architecture, and a team
of 2 robots for the distributed architecture. For each environment/team, we carried out
5 trials with identical initial positions and orientations for the robots. Fig. 5.14 shows
different snapshots of the 3D reconstruction of Parking lot, obtained with the central-
ized architecture. The GT, reconstructed mesh, and signed distance errors for the dis-
tributed architecture, are reported in Fig. 5.15 (left, center, and right, respectively). The
single-robot case is considered as a reference, in both environments. From Table 5.7,
we can see that as the number of robots grows, the completion time decreases while
the cumulative path length (at the team level), increases. Nevertheless, taken individ-
ually, the distance traveled by each robot, decreases. For example, in Parking lot, a
team of 4 robots allows to reduce the completion time by 31.1%, compared to the single-
robot case. Doubling the number of robots, the gain in completion time is 6.25%, in
Test arena. The distributed architecture works just as well as the centralized one in
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Figure 5.15: Real-world experiments: [top] Test arena, [bottom] Parking lot. [left] GT
point cloud. [center] Reconstructed mesh using the distributed architecture with 2 robots.
[right] Signed distance error: the color bar shows the error in meters with respect to the GT,
computed with CloudCompare’s M3C2 plugin.

terms of distance traveled and time to completion. However, the volume of data ex-
changed by the robots using the distributed architecture, in “nominal operation”, is
smaller (3.031 GB vs 6.029 GB for the centralized case). In fact, during our experiments,
additional information (mainly meshes) was transmitted on the communication net-
work, to monitor the progression of the robots. This resulted in an 87.5% increase in the
volume of data exchanged (24.111 GB), which tended to saturate the network. To cir-
cumvent this problem, simpler spatial representations (such as, TSDF maps) could be
used for visualization, which is a priority area for future research. As an indication
on the scalability of the proposed algorithms, the last row of Table 5.7, also reports the
average bandwidth usage.

In the two environments, the robots were left free to cover the entire accessible area.
In the single-robot case, the reconstructed mesh covered 89.1% of the surface of Parking
lot for a voxel resolution rv = 20 cm and an admissible error emax = 17.32 cm. For Test
arena, instead, the surface coverage was 85.6% with rv = 10 cm and emax = 8.66 cm.
Differently from the numerical experiments (cf. Sect. 5.3.7), as the number of robots in-
creases, surface coverage decreases, until reaching the 73% level with 4 robots (Parking
lot), and the 80.3% level with 2 robots (Test arena). In fact, a depth map depends on
the pose estimated by a visual odometry algorithm, which is prone to drift. The esti-
mation error due to the drift, has an impact on the TSDF volume when the depth map
is integrated. Hence, accumulation of errors is experienced, as the number of robots
increases: the overall mesh accuracy decreases, more outliers need to be pruned, and
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Table 5.7: Results of the real-world experiments (statistics over 5 trials).

Test arena Parking lot
Number of robots 1 2 1 2 3 4
Architecture − Centr. Distr. − Centr. Distr. Centr. Centr.
Cum. path length [m] 20.6 27.0 24.2 106.0 113.6 107.1 134.2 161.0
Comp. time [min.] 2′53′′ 2′45′′ 2′37′′ 13′56′′ 11′06′′ 10′41′′ 10′14′′ 9′36′′

Time gain [%] − 6.25 9.25 − 20.30 23.30 26.60 31.10
w.r.t. 1 robot
Surface coverage [%] 85.6 80.3 91.0 89.1 81.1 88.4 76.4 73.0
M3C2 avg. error [cm] 0.27 0.40 0.12 0.01 −0.48 0.07 −0.18 0.61
M3C2 std. error [cm] 3.99 4.16 3.33 8.37 8.29 5.85 8.93 8.97
RMSE [cm] 4.00 4.18 3.33 8.37 8.30 5.85 8.94 8.99

Data exchanged [GB] 0.750 0.888 0.501 4.849 6.029 3.031 10.715 13.271
Bandwidth [Mb/s] 35.51 44.09 26.14 47.52 74.16 38.74 142.96 188.74

less free space is covered. The RMSE ranges between 8.37 cm and 8.99 cm for Parking
lot, and between 4 cm and 4.18 cm for Test arena. The distributed mapping outperform
the centralized mapping in terms of surface coverage (88.4% vs 80.3%). This depends
on the superior accuracy of the distributed mapping algorithm compared to the central-
ized one, for a given resolution. It is also worth mentioning that the fusion policy in
the distributed case (cf. Sect. 5.3.5), superimposes the TSDF patches with an integration
rule which prioritizes those which have maximum weights, thus mitigating the impact
of depth noise. Fig. 5.14 and Fig. 5.15 show that the centralized and distributed algo-
rithms provide accurate 3D reconstruction, with a decent surface coverage despite the
odometry drift.

Finally, the difference in speed-up observed in the numerical and real-world exper-
iments with an increasing number of robots, can be ascribed to the different specifica-
tions of the robotic platforms and set-ups considered. In fact, the motion of the UAVs in
the 3D space, is far less constrained than that of the Wifibots on the ground.

5.3.9 Conclusions and future work

In this section, we have introduced a new multi-robot system for surface inspection of
large-scale unknown 3D environments. The proposed approach relies on Next-Best-
View planning to address the coordinated inspection problem, and directly exploits the
3D surface representation. Centralized and distributed architectures (TSGA and dist-
TSGA) have been developed and analyzed in detail. To illustrate and validate our al-
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gorithms, we performed extensive numerical simulations with quadrotor UAVs using
two challenging ROS-Gazebo 3D models, and real-world experiments with up to four
wheeled robots in two indoor environments. The simulation results indicate that our so-
lution is competitive with the state-of-the-art in terms of navigation and reconstruction
accuracy, and that it can be easily tailored to different software stacks. The experimen-
tal results complement the tests with synthetic data, and confirm that our approach is
versatile with different types of robots and environments, and effective in generating
accurate meshes in real-time.

The experiments also provide evidence that odometry drift, via uncertainty propa-
gation, has a non-negligible impact on the overall reconstruction process. To circum-
vent this problem, one could envisage a hybrid approach which takes advantage of a
SLAM landmark map in the planning module. This would endow the robots with loop-
closure capabilities, thus minimizing the effect of drift and ultimately boosting the map
accuracy. In future works, we also place a premium on a more efficient mechanism to
monitor the progression of the robots, and we plan to perform real-world experiments
with larger teams of heterogeneous agents, in obstacle-rich dynamic environments.
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5.4 Deformed consensus protocol

In this section, we study a generalization of the standard continuous-time consensus
protocol, obtained by replacing the Laplacian matrix of the communication graph with
the so-called deformed Laplacian. The deformed Laplacian is a second-degree matrix
polynomial in the real variable s which reduces to the standard Laplacian for s equal
to unity. The stability properties of the ensuing deformed consensus protocol are studied
in terms of parameter s for some special families of undirected and directed graphs,
and for arbitrary graph topologies by leveraging the spectral theory of quadratic eigen-
value problems. Examples and simulation results are provided to illustrate our theoret-
ical findings.

5.4.1 Introduction

Consensus theory originated from the work of (Tsitsiklis 1984), (Jadbabaie et al. 2003)
and (Olfati-Saber and Murray 2004), in which the consensus problem was formulated
for the first time in system-theoretic terms (cf. Sect. 3.2). A very rich literature em-
anated from these seminal contributions in recent years. In particular, numerous exten-
sions to the prototypal consensus protocol in (Olfati-Saber and Murray 2004) have been
proposed: among them, we mention here the case of time-varying networks (Ren and
Beard 2005), networks with delayed (Olfati-Saber and Murray 2004) or quantized

/
noisy

communication and link failure (Frasca et al. 2009, Kar and Moura 2009), random net-
works (Tahbaz-Salehi and Jadbabaie 2008), and more recently, the emergence of dy-
namic average consensus estimators (Kia et al. 2019) and open systems (Franceschelli
and Frasca 2020). We follow here this active line of research and propose an orig-
inal extension to the basic continuous-time consensus protocol in (Olfati-Saber and
Murray 2004), that exhibits a rich variety of behaviors and whose flexibility makes
it ideal for a broad range of mobile robotic applications (e.g., for target enclosing or
formation control). The new protocol, termed deformed consensus protocol, relies on the
so-called deformed Laplacian matrix, a second-degree matrix polynomial in the real vari-
able s, which extends the standard Laplacian matrix and reduces to it for s equal to
unity. Parameter s has a dramatic effect on the stability properties of the deformed con-
sensus protocol, and it can be potentially used by a supervisor to dynamically modify
the behavior of the network and trigger different desired agents’ responses according to
time-varying external events. The stability properties of the proposed protocol are stud-
ied in terms of parameter s for some special families of undirected and directed graphs
for which the eigenvalues and eigenvectors of the deformed Laplacian can be computed
in closed form. The analysis is extended to arbitrary graph topologies by exploiting
the spectral theory of quadratic eigenvalue problems (Tisseur and Meerbergen 2001).
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172 5. Coordinated control of multi-robot systems

Beside the aforementioned promising applications, we believe that the study of the
proposed protocol is of value for shedding new light on known results (Olfati-Saber
et al. 2007), and for gaining a more general perspective on consensus algorithms.

The rest of this section is organized as follows. In Sect. 5.4.2, the problem formu-
lation and the main results are presented. In Sect. 5.4.3, the theory is illustrated via
numerical simulations, and finally, in Sect. 5.4.4 the main contributions are summarized
and possible directions for future research are outlined.

5.4.2 Main results

Problem formulation

As seen in Sect. 3.2, if the static undirected communication graph G is connected, each
component of the state vector x = [x1, . . . , xn]

T ∈ Rn of the linear time-invariant system,

ẋ(t) = −Lx(t), (5.35)

asymptotically converges to the average of the initial states x1(0), . . . , xn(0),

lim
t→∞

xi(t) =
1

n

n∑
i=1

xi(0) =
1

n
xT
0 1,

where x0 = [x1(0), . . . , xn(0)]
T , i.e., average consensus is achieved. Let us now consider

the following generalization of the Laplacian L (cf. Sect. 3.1):

5.5. DEFINITION. The deformed Laplacian of the graph G is an n× n matrix defined as,

Δ(s) = (D− In) s
2 − A s + In,

where s is a real parameter. �
Inspired by (5.35), we will study the stability properties of linear system,

ẋ(t) = −Δ(s)x(t), (5.36)

in terms of the real parameter s, assuming that the graph G is connected. We will refer
to (5.36), as the deformed consensus protocol.

5.5. REMARK. Note that parameter s in the deformed Laplacian Δ(s) can be regarded as a
control input and it can be exploited to dynamically modify the behavior of system (5.36).
This may be useful when the vertices of the graph are mobile robots and a human supervisor
is interested in changing the collective behavior of the team over time, e.g., by switching from
a marginally- to an asymptotically-stable equilibrium point of system (5.36), or between two
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Figure 5.16: Illustrative example: The 6 agents rendezvous at the origin while avoiding the two
obstacles (gray rectangles): this is made possible by switching s from −1 to 0 (the initial position
of the vehicles is marked with a circle and the final position with a diamond). The communica-
tion graph is the path graph P6.

marginally-stable equilibria. The former case is illustrated in the example in Fig. 5.16, where
the communication graph is the path graph P6: in order to make the 6 single-integrator agents
rendezvous at the origin while avoiding the two gray obstacles, the supervisor can initially set
s = −1 and then switch to s = 0 (cf. Proposition 5.1 below). �

Note that since Δ(1) = L, we will always achieve average consensus for s = 1. More-
over, since Δ(s) is real symmetric, all the eigenvalues of Δ(s) are real, and the de-
formed Laplacian admits the spectral decomposition Δ(s) = U(s)Λ(s)UT (s), where
U(s) = [u1(s),u2(s), . . . ,un(s)] ∈ Rn×n is the matrix consisting of normalized and mu-
tually orthogonal eigenvectors of Δ(s) and Λ(s) = diag(λ1(Δ(s)), . . . , λn(Δ(s))). The
solution of (5.36), can thus be written as,

x(t) =

n∑
i=1

e−λi(Δ(s))t (uT
i (s)x0)ui(s). (5.37)

In the next subsection, we will focus on some special families of undirected graphs for
which the eigenvalues and eigenvectors of Δ(s) can be computed in closed form, and
thus the stability properties of system (5.36) can be easily deduced from (5.37). We will
then address the more challenging case of undirected graphs with arbitrary topology.
Finally, we will discuss the case of directed communication graphs.
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174 5. Coordinated control of multi-robot systems

Stability conditions for special families of graphs

This section presents a sequence of eight propositions which provide stability condi-
tions for system (5.36), in the case of path, cycle, wheel, m-cube, Petersen, complete,
complete bipartite and star graphs (see Sect. 3.1 and refer to (Godsil and Royle 2001)
for a precise definition of these graphs).The proofs are omitted and they can be found
in (Morbidi 2013b). In the following, k � [−1, 1,−1, 1, . . . , (−1)n−1, (−1)n]T ∈ Rn and
·� will denote the floor function

5.1. PROPOSITION (PATH GRAPH Pn). For the path graph Pn with n ≥ 2 vertices, we have:

• For |s| < 1, system (5.36) is asymptotically stable.

• For |s| > 1, system (5.36) is unstable.

• For s = −1, system (5.36) is marginally stable. In this case, it is possible to identify two
groups of n/2 vertices (if n is even), or one group of n/2� vertices and one of n/2� + 1

vertices (if n is odd). The states associated to the vertices in one group asymptotically
converge to 1

n
xT
0 k and the states associated to the vertices in the other group converge to

− 1
n
xT
0 k. �

5.2. PROPOSITION (CYCLE GRAPH Cn). For the cycle graph Cn with n > 2 vertices, we
have that:

• If n is even:

– For all s ∈ R \ {−1, 1}, system (5.36) is asymptotically stable.

– For s = −1, system (5.36) is marginally stable. In this case, the states associated to
n/2 vertices asymptotically converge to 1

n
xT
0 k and the states associated to the other

n/2 vertices converge to − 1
n
xT
0 k.

• If n is odd, system (5.36) is asymptotically stable for all s ∈ R \ { 1}. �

5.3. PROPOSITION (WHEEL GRAPH Wn). Consider a wheel graph Wn with n > 3 vertices
where vertex 1 is the center of the wheel, and let μ be the non-unitary root of,

−n
2
s2 + s +

√
((n− 4) s+ 2)2 + 4(n− 1)

2
s − 1.

μ monotonically decreases from 1/2 (for n = 4) to 0 (for n = ∞). We have that:

• For s > 1 or s < μ, system (5.36) is asymptotically stable.

• For s ∈ (μ, 1), system (5.36) is unstable.
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• For s = μ, system (5.36) is marginally stable. If n = 4 average consensus is achieved. If
n > 4 the state associated to vertex 1 asymptotically converges to xT

0 [α
2, αβ, . . . , αβ]T ,

and the states associated to the other n−1 vertices converge to xT
0 [αβ, β

2, . . . , β2]T , where
[α, β, . . . , β]T , α, β ∈ R, is the unit-norm eigenvector associated to the zero eigenvalue
of −Δ(μ). �

5.4. PROPOSITION (m-CUBE Qm). For the m-cube graph Qm with n = 2m > 4 vertices, we
have that:

• For |s| > 1 or |s| < 1
m−1

, system (5.36) is asymptotically stable.

• For s ∈ (− 1, − 1
m−1

)
or s ∈ (

1
m−1

, 1
)
, system (5.36) is unstable.

• For s = 1
m−1

, average consensus is achieved. The convergence rate to 1
n
xT
0 1 is slower for

s = 1
m−1

than for s = 1.

• For s ∈ {−1, − 1
m−1

}, system (5.36) is marginally stable. In this case, the states associated
to n/2 vertices asymptotically converge to 1√

n
xT
0 u1, while the states associated to the other

n/2 vertices converge to − 1√
n
xT
0 u1, where u1 is the unit-norm eigenvector associated to

the zero eigenvalue of −Δ(−1) or −Δ(− 1
m−1

). �

5.5. PROPOSITION (PETERSEN GRAPH). For the Petersen graph, we have that:

• For s > 1 or s < 1/2, system (5.36) is asymptotically stable.

• For s ∈ (1/2, 1), system (5.36) is unstable.

• For s = 1/2, average consensus is achieved. The convergence rate to 1
10
xT
0 110 is slower

for s = 1/2 than for s = 1. �

5.6. PROPOSITION (COMPLETE GRAPH Kn). For the complete graph Kn with n > 2 ver-
tices, we have that:

• For s > 1 or s < 1
n−2

, system (5.36) is asymptotically stable.

• For s ∈ (
1

n−2
, 1
)
, system (5.36) is unstable.

• For s = 1
n−2

, average consensus is achieved. The convergence rate to 1
n
xT
0 1 is slower for

s = 1
n−2

than for s = 1. �

5.7. PROPOSITION (COMPLETE BIPARTITE GRAPH Km,n). For the complete bipartite graph
Km,n = (V1 ∪ V2, E), where |V1| = m, |V2| = n with m,n ≥ 2, we have that:

• For |s| > 1 or |s| < 1√
(m−1)(n−1)

, system (5.36) is asymptotically stable.
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• For s ∈ (− 1,− 1√
(m−1)(n−1)

)
or s ∈ (

1√
(m−1)(n−1)

, 1
)
, system (5.36) is unstable.

• For s∈{ − 1, ± 1√
(m−1)(n−1)

}
, system (5.36) is marginally stable. In particular, given

x0 ∈ Rm+n:

– If m �= n: for s = −1, the states associated to the vertices in V1 asymptotically con-
verge to 1

m+n
xT
0 [1

T
m,−1T

n ]
T and the states associated to the vertices in V2 converge to

− 1
m+n

xT
0 [1

T
m,−1T

n ]
T .

For s = ± 1√
(m−1)(n−1)

, the states associated to the vertices in V1 and V2 asymptoti-

cally converge to one of the two different values taken by the components of the vector
(u1 u

T
1 )x0, where u1 is the unit-norm eigenvector associated to the zero eigenvalue

of −Δ
(± 1√

(m−1)(n−1)

)
.

– If m = n: for s = 1
n−1

average consensus is achieved, and the convergence rate
to 1

2n
xT
0 12n is slower for s = 1

n−1
than for s = 1. For s ∈ {− 1,− 1

n−1

}
the states

associated to the vertices in V1 asymptotically converge to 1
2n

xT
0 [1

T
n,−1T

n ]
T and the

states associated to the vertices in V2 converge to − 1
2n

xT
0 [1

T
n,−1T

n ]
T . �

From Proposition 5.7, we deduce the following result (note that the star graph is a
complete bipartite graph with m = 1):

5.8. PROPOSITION (STAR GRAPH K1,n). For the star graph K1,n with n ≥ 3, where vertex 1
is the center of the star, we have that:

• For |s| < 1, system (5.36) is asymptotically stable.

• For |s| > 1, system (5.36) is unstable.

• For s = −1, system (5.36) is marginally stable. In this case, the state associated to vertex
1 asymptotically converges to 1

n+1
xT
0 [1,−1T

n ]
T and the states associated to the other n

vertices converge to − 1
n+1

xT
0 [1,−1T

n ]
T . �

For the reader’s convenience, all the results found in this section are summarized in
Table 5.8.

Stability conditions for graphs of arbitrary topology

In order to extend the analysis of the previous subsection to arbitrary undirected graphs,
we briefly review here the spectral theory of quadratic eigenvalues problems (QEPs) (Tisseur
and Meerbergen 2001, Sect. 3). Let P(λ) = B2 λ

2+B1 λ+B0 be an n×nmatrix polynomial
of degree 2, where B2, B1 and B0 are n× n complex matrices.
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Graph name Asymptotic stability for :

Path graph, Pn, n ≥ 2 |s| < 1

Cycle graph, Cn, n > 2, n even ∀ s ∈ R \ {−1, 1}
Cycle graph, Cn, n > 2, n odd ∀ s ∈ R \ {1}
Wheel graph, Wn, n > 3 s > 1 or s < μ

Cube graph, Qm, n = 2m > 4 |s| > 1 or |s| < 1
m−1

Petersen graph s > 1 or s < 1
2

Complete graph, Kn, n > 2 s > 1 or s < 1
n−2

Complete bipartite graph,
Km,n, m, n ≥ 2

|s| > 1 or |s| < 1√
(m−1)(n−1)

Star graph, K1,n, n ≥ 3 |s| < 1

Graph name Marginal stability for :

Path graph, Pn, n ≥ 2 s = −1 (2 groups of vertices)

Cycle graph, Cn, n > 2, n even s = −1 (2 groups of vertices)

Cycle graph, Cn, n > 2, n odd

Wheel graph, Wn, n > 3 s = μ (2 groups of vertices for n > 4)

Cube graph, Qm, n = 2m > 4
s ∈ {−1,− 1

m−1
} (2 groups of vertices)

s = 1
m−1

(average consensus)

Petersen graph s = 1
2

(average consensus)

Complete graph, Kn, n > 2 s = 1
n−2

(average consensus)

Complete bipartite graph,
Km,n, m, n ≥ 2

s = 1√
(m−1)(n−1)

(if m = n, average consensus)

(if m �= n, 2 groups of vertices)

Star graph, K1,n, n ≥ 3 s = −1 (2 groups of vertices)

Table 5.8: Summary of the stability properties of the deformed consensus protocol (5.36), for
some special families of undirected graphs. Average consensus is achieved in all cases for s = 1.

5.6. DEFINITION (SPECTRUM OF P(λ)). The spectrum of P(λ), denoted by Σ(P), is defined
as Σ(P) = {λ ∈ C : det(P(λ)) = 0}, i.e., it is the set of eigenvalues of P(λ). �
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5.7. DEFINITION (REGULAR P(λ)). The matrix P(λ) is called regular when det(P(λ)) is
not identically zero for all values of λ, and nonregular otherwise. �

Note that det(P(λ)) = det(B2)λ
2n+ lower-order terms, so when B2 is nonsingu-

lar, P(λ) is regular and has 2n finite eigenvalues. When B2 is singular, the degree of
det(P(λ)) is r < 2n and P(λ) has r finite eigenvalues and 2n − r infinite eigenvalues.
The algebraic multiplicity of an eigenvalue λ0 is the order of the corresponding zero in
det(P(λ)), while the geometric multiplicity of λ0 is the dimension of ker(P(λ0)).

5.2. PROBLEM (QUADRATIC EIGENVALUE PROBLEM, QEP). The QEP consists of finding
scalars λ and nonzero vectors z, y, satisfying P(λ) z = 0, y∗P(λ) = 0 where z, y ∈ Cn are
respectively the right and left eigenvector corresponding to the eigenvalue λ ∈ C, and y∗ is the
conjugate transpose of y. �
A QEP has 2n eigenvalues (finite or infinite) with up to 2n right and 2n left eigenvec-
tors. If a regular P(λ) has 2n distinct eigenvalues, then there exists a set of n linearly
independent eigenvectors.

5.1. PROPERTY (SPECTRAL PROPERTY OF P(λ)). If matrices B2, B1, B0 are real symmet-
ric, the eigenvalues of P(λ) are either real or occur in complex-conjugate pairs, and the sets of
left and right eigenvectors coincide. �

By leveraging the previous facts (note that according to Def. 5.7, Δ(λ) is a regular
matrix since we always have det(Δ(λ)) �= 0 for λ = 0), we deduce the following prope-
rty of the deformed consensus protocol (5.36).

5.9. PROPOSITION. The finite real eigenvalues λ of the QEP,

((In −D) λ2 +A λ− In) z = 0, (5.38)

are the values of s for which system (5.36) is marginally stable. Moreover, if λ is one of these
eigenvalues with geometric multiplicity one, and z = z/‖z‖ is the associated unit-norm eigen-
vector, we have that:

lim
t→∞

x(t) = (z zT )x0.

�

5.6. REMARK (COMPUTATION OF THE EIGENVALUES). The eigenvalues of the QEP (5.38)
can be easily computed by converting it to a standard generalized eigenvalue problem10 of
size 2n, by defining the new vector w = λ z. In terms of z and w, problem (5.38) becomes:[

0 In

In −A

][
z

w

]
= λ

[
In 0

0 In −D

][
z

w

]
.

10This construction is called “linearization” in the literature and it is not unique in general.
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Matlab’s function “polyeig” uses a linearization procedure similar to the one just described,
to numerically solve generic polynomial eigenvalue problems. �

The following proposition shows a connection existing between the topology of the
communication graph G and the properties of the QEP (5.38).

5.10. PROPOSITION. If the graph G has a vertex with degree equal to one, In −D is singular
and the QEP (5.38) admits at least two infinite eigenvalues. �

For example, with the path graph, rank(In −D) = n− 2, with the star graph, rank(In −
D) = 1, and in both cases, det((In − D)λ2 + A λ − In) = (−1)n−1(λ2 − 1). Hence, for
these two graphs the QEP (5.38) admits 2n−2 infinite eigenvalues. The next proposition
shows how to determine the s-stability interval of the deformed consensus protocol, for
graphs with arbitrary topology.

5.11. PROPOSITION (STABILITY INTERVAL FOR ARBITRARY G). Let q(s) � det((In−D)s2

+As− In), then:

• If n is even, system (5.36) is asymptotically stable for all s such that q(s) > 0, and
unstable for all s such that q(s) < 0.

• If n is odd, system (5.36) is asymptotically stable for all s such that q(s) < 0, and unstable
for all s such that q(s) > 0. �

The following example illustrates the rich variety of behaviors exhibited by the de-
formed consensus protocol on four “generic” graphs with five vertices.

5.1. EXAMPLE. Consider the four graphs reported in Fig. 5.17. By leveraging Proposition 5.9
and Proposition 5.11, we have that:

• With the graph in Fig. 5.17(a), system (5.36) is asymptotically stable ∀ s ∈ R \ {1}.

• With the graph in Fig. 5.17(b), system (5.36) is asymptotically stable for s < 0.7022 or
s > 1. For s = 0.7022, the system is marginally stable and three groups of vertices can
be identified: {1}, {2, 5}, {3, 4} (different shapes are used in Fig. 5.17(b) to indicate these
groups).

• With the graph in Fig. 5.17(c), system (5.36) is asymptotically stable for s < 0.4396 or
s > 1. For s = 0.4396, the system is marginally stable and three groups of vertices can be
identified: {1}, {2, 5}, {3, 4}.

• With the graph in Fig. 5.17(d), system (5.36) is asymptotically stable for s < 0.3804 or
s > 1. For s = 0.3804, the system is marginally stable and two groups of vertices can be
identified: {1, 3}, {2, 4, 5}.
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Figure 5.17: Example 1: In (b)-(d), different shapes are used to identify distinct groups of ver-
tices: the states associated to the vertices in these groups asymptotically converge to the same
value when system (5.36) is marginally stable.

From Figs. 5.17(b)-(d), we notice that vertices in the same group tend to have the same edge
degree, and that an increase in the algebraic connectivity of the graph leads to a shrinkage of the
s-stability interval of the deformed consensus protocol. In future works, we aim at providing
a general explanation for the peculiar grouping behavior exhibited by the vertices of the four
graphs considered in this example. �

Extension to directed graphs

In this section we assume that the communication graph is directed and contains a
rooted out-branching, and we will study the stability properties of the following lin-
ear system,

ẋ(t) = −Δ(D(s))x(t), (5.39)

in terms of the real parameter s, where the symbol “D(s)” indicates that the deformed
Laplacian is now relative to a directed communication topology. Note that similarly to
the undirected case, we have that Δ(D(1)) = L(D) and Δ(D(−1)) = Q(D). In what
follows, we first analyze the stability properties of system (5.39) when D is the directed
cycle graph, and then briefly explore the case of digraphs of arbitrary topology with
the help of few examples. The proof of the next proposition can be found in (Morbidi
2013b).

5.12. PROPOSITION (DIRECTED CYCLE Dn). For the directed cycle graph Dn with n > 2

vertices, we have that:
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• For s = 1 and for all n > 2, average consensus is achieved.

• If n is even:

– For |s| < 1, system (5.39) is asymptotically stable.

– For |s| > 1, system (5.39) is unstable.

– For s = −1, system (5.39) is marginally stable. In this case, the states associated to
n/2 vertices asymptotically converge to 1

n
xT
0 k and the states associated to the other

n/2 vertices converge to − 1
n
xT
0 k.

• If n is odd:

– System (5.39) is asymptotically stable for s ∈ (ϑ(n), 1), where,

ϑ(n) =
1

cos
(

n(n−2)+1
n

π
) .

– For s < ϑ(n) or s > 1, system (5.39) is unstable.

– For s = ϑ(n), system (5.39) is marginally stable. At steady-state, we have that the
i-th state of system (5.39), i ∈ {1, . . . , n}, obeys,

xi(t) = A sin
(
2π f(n) t + φi(n) + φ◦

)
,

where A and φ◦ are positive constants, the frequency f(n) = 1
2π

tan
(n(n−2)+1

n
π
)
,

and for i ∈ {1, . . . , n} the phase φi(n) =
2π (i−1)

n tan
(

n(n−2)+1
n

π
) . �

5.2. EXAMPLE. Consider the four digraphs in Fig. 5.18.

• With the digraph in Fig. 5.18(a), we have that system (5.39) is asymptotically stable for
s ∈ (1/ cos(16π/5), 1) (cf. Proposition 5.12). For s = 1/ cos(16π/5), system (5.39) is
marginally stable: at steady-state, its states oscillate with the same frequency and ampli-
tude, and the phases are evenly spaced. For s = 1, average consensus is achieved (see the
simulations in Sect. 5.4.3).

• With the digraph in Fig. 5.18(b), system (5.39) is asymptotically stable for s ∈ (−1.6889, 1).
For s = −1.6889, system (5.39) is marginally stable. At steady-state, its states oscillate
with the same frequency but have different amplitudes: the phases are regularly spaced. For
s = 1, consensus (but not average consensus, since edge (1, 3) breaks the balancedness of
digraph D5) is achieved (see the simulations in Sect. 5.4.3).

• With the digraph in Fig. 5.18(c), we have the same qualitative behavior as with the digraph
in Fig. 5.18(b). The only difference is represented by the stability threshold, that is now
s = −1.9441 instead of s = −1.6889.
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Figure 5.18: Example 2: Variations on the directed cycle D5.

• With the digraph in Fig. 5.18(d), system (5.39) is asymptotically stable for s ∈ (−1.3326, 1).
For s = −1.3326, system (5.39) is marginally stable and its non-oscillating states asymp-
totically converge, in general, to five different values. For s = 1, consensus (but, again,
not average consensus) is achieved.

Note that we cannot leverage Proposition 5.11 to determine the s-stability interval of system (5.39)
when it admits stable periodic solutions (the threshold values for the digraphs in Figs. 5.18(b)
and 5.18(c), have been determined on a trial-and-error basis): however, Proposition 5.11 appears
to provide the correct stability intervals in all the other cases (e.g., for the digraph in Fig. 5.18(d)).
The analytical determination of the stability thresholds for digraphs of arbitrary topology is the
subject of on-going research. �

5.4.3 Numerical experiments

Numerical simulations have been carried out to illustrate the theory in Sect. 5.4.2. We will
separately deal with undirected and directed graphs.
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Figure 5.19: Simulation results − undirected graph: (a) Trajectory of the 8 vehicles: the
communication graph is the cycle C8 (the initial position is marked with a circle and the fi-
nal position with a diamond; a star indicates the switching time); (b) Time evolution of the
x-, y-coordinates of the vehicles (top and bottom, respectively): the same color convention as in
(a) is adopted here; (c) Time history of parameter s.

Undirected communication graph

Consider a team of n single-integrator agents ṗi(t) = ν i(t), i ∈ {1, . . . , n}, where pi(t) =

[pix(t), piy(t)]
T ∈ R2 and ν i(t) ∈ R2 denote respectively the position and the input of

vehicle i at time t. Let the control input of agent i be of the form,

νi(t) = (s2 − 1)pi(t) + s
∑

j ∈N (i)

(pj(t)− spi(t)), (5.40)

where N (i) denotes the set of vertices adjacent to vertex i in the communication graph.
The collective dynamics of the group of vehicles adopting control (5.40), can then be
written as

ṗ(t) = (−Δ(s) ⊗ I2)p(t),

where p = [pT
1 , . . . , p

T
n ]

T ∈ R2n. Fig. 5.19(a) shows the trajectory of 8 vehicles im-
plementing the control law (5.40), when the communication graph is the cycle C8 (the
vehicles are initially on the vertices of a regular octagon centered at the origin, and their
position is marked with a circle in the figure). For the sake of illustration, in our sim-
ulation we selected s(t) = 0 for t ∈ [0, 1) seconds, and s(t) = −1 for t ∈ [1, 8] seconds
(see Fig. 5.19(c)). The time evolution of the x-, y-coordinates of the agents is reported
in Fig. 5.19(b). As it is evident in Figs. 5.19(a) and 5.19(b), the vehicles first converge
towards the origin by maintaining equal inter-distances, and then the even and odd
agents cluster in two distinct groups (recall Proposition 5.2).

183



184 5. Coordinated control of multi-robot systems

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x [m]

y [
m

]

 

A1 

A2

A3

A4

A5

t = 50 sec.

*

*

*

*

*

(a)

0 20 40 60 80 100
−4
−2

0
2
4

[m
]

 

time [s]

0 20 40 60 80 100
−4
−2

0
2
4

time [s]
[m

]
 

 

t = 50 sec.
p1x
p2x
p3x
p4x
p5x

p1y
p2y
p3y
p4y
p5y

(b)

0 20 40 60 80 100

−1

−0.5

0

0.5

1

time [s]

s(
t)

1/ cos(16π/5)

(c)

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8

x [m]

y [
m

]

 

A1 
A2
A3
A4
A5

*

*

*

**

t = 50 sec.

(d)

0 20 40 60 80 100
−10
−5

0
5

10

time [s]

[m
]

 

0 20 40 60 80 100

−5

0

5

time [s]

[m
]

 

t = 50 sec.
 

p1x
p2x
p3x
p4x
p5x

p1y
p2y
p3y
p4y
p5y

(e)

20 40 60 80 100

−1.5

−1

−0.5

0

0.5

1

time [s]
0

s(
t)

−1.6889

(f)

Figure 5.20: Simulation results − directed graph: (a) Trajectory of the 5 vehicles: the communi-
cation digraph is the one in Fig. 5.18(a); (b) Time evolution of the x-, y-coordinates of the vehicles
(top and bottom, respectively); (c) Time history of parameter s; (d) Trajectory of the 5 vehicles:
the communication digraph is the one in Fig. 5.18(b); (e) Time evolution of the x-, y-coordinates
of the vehicles; (f) Time history of parameter s.

Directed communication graph

A scenario similar to that described in the previous subsection is considered in Fig. 5.23.
In this case, 5 single-integrator agents implement the control law (5.40) and communi-
cate using a directed graph. This leads to a closed-loop system of the form:

ṗ(t) = (−Δ(D(s))⊗ I2)p(t).

The results in Figs. 5.23(a)-(c) are relative to the digraph in Fig. 5.18(a), i.e., D5. Fig. 5.23(a)
shows the trajectory of the 5 vehicles. As shown in Fig. 5.23(c), s(t) = 1/ cos(16π/5) for
t ∈ [0, 50) sec., and s(t) = 1 for t ∈ [50, 100] sec. Fig. 5.23(b) displays the time evo-
lution of the x-, y-coordinates of the agents. From Figs. 5.23(a) and 5.23(b), we can see
that the vehicles first move counterclockwise along a common elliptical trajectory with
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frequency f(5) = 1
2π

tan(16π/5) and phases φi(5) = 2π(i−1)
5 tan(16π/5)

, i ∈ {1, . . . , 5}, and then
rendezvous at the point (1

5

∑5
i=1 pix(50),

1
5

∑5
i=1 piy(50)), i.e., they achieve average con-

sensus (recall Proposition 5.12).
Finally, the results in Figs. 5.23(d)-(f), are relative to the digraph in Fig. 5.18(b).

Fig. 5.23(d) shows the trajectory of the 5 agents. In this case (see Fig. 5.23(f)), s(t) =

−1.6889 for t ∈ [0, 50) sec., and s(t) = 1 for t ∈ [50, 100] sec. From Figs. 5.23(d)
and 5.23(e), we observe that the vehicles first move counterclockwise on separate closed
orbits and then rendezvous at the same point.

5.4.4 Conclusions and future work

In this section, we have presented a generalization of the standard consensus protocol,
called deformed consensus protocol, and we have analyzed its stability properties in terms
of the real parameter s for some special families of undirected and directed graphs.
Results for arbitrary graph topologies have been also provided: however, some work
still needs to be done in order to precisely characterize, in graph-theoretical terms, the
variegated behavior of the deformed consensus protocol. The proposed theory has been
illustrated via extensive numerical simulations and examples.

In future works, we aim at studying the properties of the deformed consensus pro-
tocol when the (weighted) communication graph is not fixed but changes over time,
at establishing a link with the existing cluster synchronization and group consensus
literature (Xia and Cao 2011), and at investigating other “parametric” Laplacian-like
matrices besides the deformed Laplacian (a first step in this direction, has been done
in (Morbidi 2014)).

185



186 5. Coordinated control of multi-robot systems

5.5 Subspace projectors for state-constrained consensus
In this final section, we study the state-constrained consensus problem and introduce a
new family of distributed algorithms based on subspace projection methods which are sim-
ple to implement and which preserve, under some suitable conditions, the consensus
value of the original discrete-time agreement protocol. The proposed theory is applied
to the constrained rendezvous problem of single-integrator robots.

5.5.1 Introduction
As already discussed in Sect. 5.4.1, the consensus protocol has enjoyed growing success
in robotics, and it has been widely employed as a basic building block to design dis-
tributed coordination strategies for multi-agent systems. However, in many practical
situations, cooperative agents are not allowed to freely agree upon a common value,
and their state variables are constrained within a given (convex) set. This happens,
for example, when multiple mobile robots evolve in confined obstacle-ridden environ-
ments, when they are subject to motion constraints (e.g. their velocity is bounded), or
they have a limited communication/sensing range. The resulting constrained consen-
sus problem has been investigated from different angles in (Nedic et al. 2010, Lee and
Mesbahi 2011, Wang and Zhou 2015, Lageman and Sun 2016, Qiu et al. 2016, Fontan
et al. 2019). In fact, depending on the nature of constraints (linear vs. nonlinear, equal-
ity vs. inequality, including saturations), problems of different complexity arise. A re-
curring idea in (Nedic et al. 2010) (discrete-time formulation) and in (Wang and Zhou
2015, Lageman and Sun 2016) (continuous-time formulation), has been to project the
state vector of each agent onto its constraint set. Similar projection techniques have
also been used for distributed optimization (Shi et al. 2012, Qiu et al. 2016), and more
recently, to study the synchronization of a network of Kuramoto oscillators (Jafarpour
and Bullo 2019).

Inspired by the vast literature on Kalman filtering with state constraints (Andersson
et al. 2019, Simon 2010), we will show that under suitable conditions, it is possible to
constrain the joint state of a multi-agent system within a prescribed linear subspace,
without affecting the consensus value of the corresponding unconstrained agreement
protocol. In fact, differently from (Nedic et al. 2010, Wang and Zhou 2015), where the
local state of each agent is kept inside a closed convex set known only to it, we adopt here
an alternative approach based on subspace projectors which presents several attractive
features: it is straightforward to implement and it leads to a new class of discrete-time
constrained consensus protocols whose group decision properties can be easily char-
acterized thanks to a well-established projection theory (Galántai 2004, Ben-Israel and
Greville 2003). Our theoretical analysis is paired with numerical experiments for the
constrained rendezvous problem in the 2D space.
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The rest of this section is organized as follows. In Sect. 5.5.2, we recall some basic
facts about orthogonal and oblique projections. Sect. 5.5.3 presents the main theoretical
results. The theory is validated with the aid of numerical experiments in Sect. 5.5.4.
Finally, in Sect. 5.5.5, we summarize the main contributions and outline some possible
avenues for future research.

5.5.2 Preliminaries

In this section, we briefly review recall various definitions and results concerning or-
thogonal and oblique projections and reflections, that will support our subsequent de-
velopments: see (Galántai 2004, Ch. 1-2) and (Ben-Israel and Greville 2003).

5.8. DEFINITION (DEF. 2.1, (GALÁNTAI 2004)). A matrix Π ∈ Rn×n is a projection (idem-
potent matrix), if and only if Π2 = Π. �

5.9. DEFINITION (DEF. 2.2, (GALÁNTAI 2004)). Let M,N ⊂ Rn be complementary sub-
spaces (i.e. M ⊕ N = Rn, where ⊕ denotes the direct sum). For each z ∈ Rn, there exists a
unique decomposition of the form, z = x+ y where x ∈ M, y ∈ N . The transformation ΠM,N
defined by ΠM,N z � x is called projection onto M along N . The transformation ΠN ,M defined
by ΠN ,M z � y is called projection onto N along M. The vector x is the projection of z onto
M along N , and y is the projection of z onto N along M. �

Let M⊥ = {x ∈ Rn : x ⊥ y for all y ∈ M} be the orthogonal complement of
M ⊂ Rn, a linear subspace.

5.10. DEFINITION (DEF. 2.3, (GALÁNTAI 2004)). The projection Π onto M along M⊥ is
called orthogonal. �

5.11. DEFINITION (DEF. 2.4, (GALÁNTAI 2004)). Let M ⊂ Rn be a subspace. Π ∈ Rn×n

is the orthogonal projection onto M if (a) Im(Π) = M, (b) Π2 = Π, (c) ΠT = Π. �

Projections that are not orthogonal projections, are called oblique projections.

5.3. THEOREM (TH. 2.8, (GALÁNTAI 2004)). Π is a projection if and only if In −Π is also
a projection. If Π is a projection onto M along N , In −Π is a projection onto N along M. �

It is also straightforward to show that Π is a projection if and only if ΠT is also a
projection.

5.4. THEOREM (TH. 2.10, (GALÁNTAI 2004)). Any projection Π ∈ Rn×n may have only 0
and 1 eigenvalues. The multiplicity of the eigenvalue 1 is rank(Π) = tr(Π). �
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5.5. THEOREM (TH. 2.16, (GALÁNTAI 2004)). The linear transformation Π is an orthogo-
nal projection if and only if Π = Π2 = ΠT . Moreover, the orthogonal projections are positive
semidefinite and satisfy ‖Πx‖2 ≤ ‖x‖2 for all x ∈ Rn. �

5.12. DEFINITION (DEF. 3.1.1, (BERNSTEIN 2009)). A matrix Ψ ∈ Rn×n is a reflection if
Ψ is symmetric and orthogonal. �

Any reflection Ψ is an involutory matrix, i.e. Ψ2 = In, each of whose eigenvalues is 1
or −1. The following proposition provides an interesting link between projections and
reflections.

5.13. PROPOSITION (FACT 3.14.1, (BERNSTEIN 2009)). If Π ∈ Rn×n is an orthogonal pro-
jection, then Ψ � 2Π − In is a reflection. Conversely, if Ψ ∈ Rn×n is a reflection, then
Π � 1

2
(Ψ+ In) is an orthogonal projection. �

In fact, the affine mapping f(Π) � 2Π − In from orthogonal projections to reflec-
tions, is bijective. We also observe that if ΠM is the orthogonal projection onto M, then
(2ΠM − In)z is the reflection of z ∈ Rn across M⊥.

We report below some representations of projections that will be used in Sect. 5.5.3.

5.6. THEOREM (TH. 2.26, (GALÁNTAI 2004)). Let M,N ⊂ Rn be complementary sub-
spaces, and let the columns of V ∈ Rn×r and W ∈ Rn×r form a basis for M and N⊥, re-
spectively. Then, ΠM,N = V(WTV)−1WT . �

Note that either V and W(WTV)−T or V(WTV)−1 and W are biorthogonal pairs11,
and that (WTV)−1 can be interpreted as a “normalizing factor”. In the 3D example
of Fig. 5.21, we have:

V =

⎡⎣ 1 0

0 1

0 0

⎤⎦ , W =

⎡⎣1 0

0 2

0 −2

⎤⎦ ,
being N = span{[0, 1, 1]T}. Note that V and W is not a biorthogonal pair, since
WTV = diag(1, 2). In the more general case of an arbitrary positive definite weight
matrix Ω ∈ Rn×n defining an inner product 〈x, y〉Ω = yTΩx, the projection becomes
ΠΩ

M,N = V(WTΩV)−1WTΩ.

5.1. COROLLARY (COR. 2.27, (GALÁNTAI 2004)). If the columns of V = [v1,v2, . . . ,vr]

form an orthonormal basis for a subspace M ⊂ Rn, then ΠM = VVT is the unique orthogonal
projection onto M. �

11A ∈ Rn×m and B ∈ Rn×m is a biorthogonal pair, if BTA = Im.
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Figure 5.21: Example of complementary subspaces M and N in R3.

5.1. LEMMA (LEMMA 2.30, (GALÁNTAI 2004)). Let M,N ⊂ Rn be complementary sub-
spaces, and let U = [U1, U2] and V = [V1, V2] be orthogonal matrices such that U1 and U2

are bases for M and M⊥, respectively, and V1 and V2 are bases for N and N⊥, respectively.
Then,

ΠM,N = U

[
0 (VT

2U1)
−1

0 0

]
VT .

�

Matrices U and V can be chosen such that we obtain the Singular Value Decompo-
sition (SVD) of ΠM,N .

Any projection is diagonalizable by a similarity transformation. In particular, the
following result can be proved using Schur’s theorem (Galántai 2004, Th. 1.28).

5.7. THEOREM (TH. 2.31, (GALÁNTAI 2004)). If Π ∈ Rn×n is a projection of rank m, then
there is an orthogonal matrix V such that,

Π = V

[
Im B

0 0n−m

]
VT ,

where matrix B ∈ Rm×(n−m) is arbitrary. �

We finally recall here some connections between projections and generalized in-
verses (Ben-Israel and Greville 2003, Ch. 2). Moore’s original definition of Moore-
Penrose inverse is the following:

5.13. DEFINITION (DEF. 2.52, (GALÁNTAI 2004)). If M ∈ Rm×n, then the generalized in-
verse of M is defined to be the unique matrix M+ such that:
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a) MM+ = ΠIm(M),

b) M+M = ΠIm(M+) = ΠIm(MT ). �

To conclude, the next theorem provides useful properties of the Moore-Penrose in-
verse, cf. (Galántai 2004, Def. 1.54).

5.8. THEOREM (TH. 1.60, (GALÁNTAI 2004)). Let M+ ∈ Rn×m be the Moore-Penrose in-
verse of M ∈ Rm×n. Then,

a) Im(M+) = Im(MT ) = Im(M+M) = Im(MTM),

b) Im(In−M+M)=ker(M+M)=ker(M)= Im(MT )⊥. �

5.5.3 State-constrained consensus protocols

This section presents our main theoretical results. In what follows, we make the stand-
ing assumption that the graph G is connected.

5.9. THEOREM (ORTHOGONAL PROJECTION). Let us suppose that the following constraint
is imposed on the state vector of consensus protocol (3.6) (cf. Sect. 3.2),

x(k + 1) ∈ M ⊂ Rn, k ∈ {0, 1, 2, . . .}, (5.41)

where the columns of V = [v1,v2, . . . ,vr] ∈ Rn×r form an orthonormal basis for the linear
subspace M and 1 ∈ span{v1,v2, . . . ,vr}. Consider the projected consensus protocol,

xor(k + 1) = ΠMPxor(k), xor(0) = x0, (5.42)

where ΠM = VVT ∈ Rn×n is the orthogonal projection onto M (cf. Corollary 5.1), and let us
assume that

rank(In −ΠMP) = n− 1. (5.43)

Then, the solution to (5.42) satisfies,

lim
k→∞

xor(k) =
1

n
11Tx0. (5.44)

Proof : See (Morbidi 2020). �

Note that (5.42) simply proceeds by projecting each step of consensus protocol (3.6)
onto the constraint subspace M, thus ensuring positive invariance (Blanchini and Miani
2015). The orthogonal projection ΠM is instrumental in enforcing constraint (5.41), but
it does modify the spectrum of P and affects the convergence rate to average consensus.
Nevertheless, the sequences {xor(k)} and {x(k)} converge to the same consensus value.
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5.7. REMARK (NONNEGATIVE PROJECTIONS). If ΠM is nonnegative, then ΠMP is non-
negative as well. Since the row-sums of ΠMP are all equal to 1, then ΠMP is row-stochastic and
the statement of Theorem 5.9 becomes a direct consequence of(Bullo 2022, Th. 5.1). For further
results on nonnegative projections, the reader is referred to (Galántai 2004, pp. 48-50). �

The first of the next two corollaries states that Theorem 5.9 is still valid when the
orthogonal projection ΠM is replaced with the reflection ΨM = 2ΠM − In (recall Propo-
sition 5.13), while the second one specializes it to linear state equality constraints.

5.2. COROLLARY (REFLECTION). Let us suppose that the assumptions of Theorem 5.9 hold
true. Then, provided that rank(In −ΨMP) = n− 1, the solution to the reflected consensus
protocol,

xre(k + 1) = ΨMPxre(k), xre(0) = x0, (5.45)

satisfies
lim

k→∞
xre(k) =

1

n
11Tx0,

where ΨM = 2ΠM − In is the reflection across M⊥.
Proof : See (Morbidi 2020). �

Note that unlike Theorem 5.9, in this case the state vector xre of system (5.45) “bounces
off” the subspace M⊥.

5.3. COROLLARY (ORTHOGONAL PROJECTION: LINEAR EQUALITY CONSTRAINTS). Let
us suppose that the following equality constraint is imposed on the state vector of protocol (3.6),

Mx(k + 1) = 0, k ∈ {0, 1, 2, . . .}, (5.46)

where matrix M ∈ Rq×n has row rank m ≤ q and satisfies M1 = 0. Consider the projected
consensus protocol,

xor(k + 1) = Πker(M)Pxor(k), xor(0) = x0, (5.47)

where Πker(M) = VVT is the orthogonal projection onto the null space of M, i.e. the columns
of V ∈ Rn×(n−m) form a basis which satisfies MV = 0 and VTV = In−m. Then, under
condition (5.43), the state trajectories of protocol (5.47) satisfy (5.44).

Proof : Since M1 = 0, then 1 ∈ ker(M) and we can write the orthonormal basis of
ker(M) as V = [1/

√
n, V] where V ∈ Rn× (n−m−1). The rest of the proof is an immediate

transcription of that of Theorem 5.9. �

As illustrated in Sect. 5.5.4, matrix M can be used to encode a variety of constraints
frequently encountered in distributed robotics (e.g. collision avoidance or connectivity
maintenance constraints). Note that Πker(M) can be readily found by computing the
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SVD of M. In fact, if M is decomposed as M = [Um,Um]Σ [Vm,Vm]
T where [Um,Um],

[Vm,Vm] are orthogonal matrices with Um ∈ Rq×m, Um ∈ Rq×(q−m), Vm ∈ Rn×m,
Vm ∈ Rn×(n−m), and Σ ∈ Rq×n is a rectangular diagonal matrix with nonnegative real
numbers in decreasing order on the diagonal, then VmV

T

m is the orthogonal projection
onto ker(M) (Galántai 2004, Th. 2.36). Moreover, VmV

T
m, UmU

T
m and UmU

T

m are the
orthogonal projections onto ker(M)⊥, Im(M) and Im(M)⊥, respectively.

The next theorem extends Theorem 5.9 to the more challenging case of oblique projec-
tions (recall Theorem 5.6).

5.10. THEOREM (OBLIQUE PROJECTION). Let us suppose that constraint (5.41) is imposed
on the state vector of protocol (3.6). Let M,N ⊂ Rn be complementary subspaces. Let the
columns of V = [v1,v2, . . . ,vr] ∈ Rn×r and W = [w1,w2, . . . ,wr] ∈ Rn×r form a basis for
M and N⊥, respectively, and let V and W be a biorthogonal pair, i.e. WTV = Ir. Let 1 ∈
span{v1,v2, . . . ,vr} ∩ span{w1,w2, . . . ,wr}. Consider the projected consensus protocol,

xob(k + 1) = ΠM,N Pxob(k), xob(0) = x0, (5.48)

where ΠM,N = VWT and assume that

rank(In −ΠM,NP) = n− 1. (5.49)

Then, the solution to (5.48) satisfies,

lim
k→∞

xob(k) =
1

n
11Tx0.

Proof : See (Morbidi 2020). �

If 1 /∈ span{w1,w2, . . . ,wr}, system (5.48) may still achieve consensus asymptoti-
cally, but not average consensus.

5.8. REMARK (ON THE DISTRIBUTED NATURE OF PROJECTED CONSENSUS PROTOCOL).
Note that matrix ΠM,N P is less sparse than P, in general, and it can be associated with a
communication graph G ′ = (V, E ′) with E ⊆ E ′, over which the dynamics of (5.48) evolve
(cf. Fig. 5.24). This is not surprising, since to fulfill the state constraint (5.41) while still achiev-
ing average consensus, the communication between the robots must be more efficient. If the
subspaces M and N are known a priori, protocol (5.48) (as well as protocol (5.42)) admits a
distributed implementation over G ′. �

In the next theorem, we leverage Theorems 5.3 and 5.8, and consider a special oblique
projection for the case of linear state equality constraints. The “obliquity” of the projection
hinges on the positive definite weight matrix Ω, which alters the group decision value
of protocol (3.6).
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5.11. THEOREM (WEIGHTED OBLIQUE PROJECTION: LINEAR EQUALITY CONSTRAINTS).
Let us suppose that constraint (5.46) is imposed on the state vector of protocol (3.6), where
M ∈ Rq×n has full row rank and it satisfies M1 = 0. Consider the projected consensus
protocol,

xwob(k + 1) = Πob
ker(M)Pxwob(k), xwob(0) = x0, (5.50)

where Πob
ker(M) = In − M†

R M is the oblique projection onto the null space of M and M†
R =

Ω−1MT (MΩ−1MT )−1 is the weighted right pseudo-inverse of M (Siciliano et al. 2009, Sect.
A.7), where Ω ∈ Rn×n is a positive definite matrix. Provided that rank(In−Πob

ker(M)P) = n−1,
the state trajectories of (5.50) satisfy,

lim
k→∞

xwob(k) = (μTx0)1, (5.51)

where μ is the left eigenvector of Πob
ker(M)P with eigenvalue 1, normalized to have unit sum, i.e.

1Tμ = 1.
Proof : See (Morbidi 2020). �

Theorem 5.11 can be generalized to arbitrary weight matrices Ωg ∈ Rn×n such that
rank(MΩgM

T ) = rank(M). In this case, the weighted right pseudo-inverse of M be-
comes M†

R = ΩgM
T (MΩgM

T )−1 cf. (Galántai 2004, Th. 1.53(i)).
With reference to Theorem 5.9, in the following proposition we study the effect of a

rotation matrix R on the basis vectors of the constraint subspace M.

5.14. PROPOSITION. Let the columns of V = [v1,v2, . . . ,vr] ∈ Rn×r form an orthonormal
basis for the subspace M, and let ΠM the orthogonal projection onto M. Let MR be the sub-
space with orthonormal basis RV, where R ∈ SO(n). Then, ΠR

M = RΠMRT is the orthogonal
projection onto MR, and ΠR

M and ΠM have the same spectrum.
Proof : We have that,

(ΠR
M)2 = (RΠMRT )(RΠMRT ) = RΠ2

MRT = ΠR
M,

and (ΠR
M)T = (RΠMRT )T = RΠT

MRT = ΠR
M, hence owing to Definition 5.11, ΠR

M is the
orthogonal projection onto MR. Finally, since RT = R−1, matrices ΠR

M and ΠM are similar
and they have the same spectrum. �

Note that the result of Proposition 5.14 can be extended to oblique projections, i.e. if
we consider ΠR

M,N = RΠM,N RT , cf. (Galántai 2004, Th. 2.35).
It is finally worth pointing out that in many practical applications, protocol (3.6)

can be subject to multiple state constraints. For instance, one may wish to simultane-
ously account for the limited communication range of the robots and collision avoid-
ance. The following theorem (Ben-Israel and Greville 2003, p. 183) elucidates the case of
two subspace constraints.
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5.12. THEOREM (ANDERSON & DUFFIN). Let M1, M2 ⊂ Rn be two subspaces, with ΠM1

and ΠM2 the corresponding orthogonal projections. Then,

ΠM1 ∩M2 = 2ΠM1(ΠM1 + ΠM2)
+ΠM2 = 2ΠM2(ΠM1 + ΠM2)

+ΠM1 .
�

In particular, if ΠM1 and ΠM2 commute, i.e. ΠM1ΠM2 = ΠM2ΠM1 , then ΠM1 ∩M2 =

ΠM1ΠM2 .

5.5.4 Numerical experiments

In this section, the theory presented in Sect. 5.5.3 is illustrated via numerical experi-
ments. For its simplicity, the 2D rendezvous problem for single-integrator robots (Francis
and Maggiore 2016), is chosen as a testing ground for the proposed projected consensus
protocols. To improve readability, the discrete-time state trajectories will be displayed
as continuous curves.

The n = 10 robots are initially arranged at equal intervals around a unit circle cen-
tered at point (1, 1) (dashed gray in Figs. 5.22(a)-(c) and 5.23(a)-(c)), i.e.

x0 = [cos(0), sin(0), cos(π/5), sin(π/5), . . . , cos(9π/5), sin(9π/5)]T + [1, 1, . . . , 1]T ∈ R20,

and they have a prior knowledge of the surrounding environment. Fig. 5.22(a) shows
the trajectory of the robots obtained with the unconstrained consensus protocol,

x(k + 1) = (P ⊗ I2)x(k), x(0) = x0, (5.52)

with a cycle communication graph G = C10 and a step-size ε = 0.3 < 1/dmax(C10) = 1/2.
The corresponding time-evolution of the x- and y-coordinates of the robots for the first
half of the 100-iteration simulation, is reported in Fig. 5.22(d) (the same color convention
as in Fig. 5.22(a) is adopted here). As expected, the robots meet at point (1, 1). For
comparison, Fig. 5.22(b) shows the trajectory of the robots generated by the constrained
consensus protocol with orthogonal projection (cf. Corollary 5.3),

xor(k + 1) = (ΠMP ⊗ I2)xor(k), xor(0) = x0, (5.53)

where M = ker(M1) ⊂ R10, with

M1 =

⎡⎢⎣−1 1 0 0 0 0 0 0 0 0

0 0 −10 10 1
3
−1

3
0 0 0 0

0 0 0 0 0 0 0 0 −1
2

1
2

⎤⎥⎦ .
Matrix M1 allows here to encode “attraction forces” of various magnitude between pairs
of robots. From Fig. 5.22(b) and Fig. 5.22(e), which reports the corresponding time-
evolution of the x- and y-coordinates of the robots, we observe that the trajectories of
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Figure 5.22: Trajectory of the 10 robots (1st row), and corresponding time-evolution of their
x- and y-coordinates (2nd row). In the two rows, the same color convention is used. (a),(d)
Unconstrained consensus protocol with communication graph G = C10 and step-size ε = 0.3;
(b),(e) Constrained consensus protocol, orthogonal projection onto ker(M1); (c),(f) Constrained
consensus protocol, weighted oblique projection onto ker(M1).

robots 1 and 2, 3 and 4, and 9 and 10, merge after one iteration (i.e. for k = 1), but that
the rendezvous point (1, 1) is unaffected. Robots 2 and 3 thus avoid the collision with
the circular obstacle with radius r = 0.25 m, centered at (1.45, 1.5), shown in Fig. 5.22(b)
(shaded). Fig. 5.22(c) reports the trajectory of the robots generated by the constrained
consensus protocol with weighted oblique projection (cf. Theorem 5.11),

xwob(k + 1) = (Πob
ker(M1)

P ⊗ I2)xwob(k), xwob(0) = x0,

where the diagonal weight matrix Ω = diag(50, 1, 1, 1, 50, 1, 1, 1, 10, 1), and Fig. 5.22(f)
shows the time-evolution of the positions of the robots. In this case, the rendezvous
point is (0.79486, 0.64031), cf. equation (5.51). In Figs. 5.23(a),(d) the case of a general
oblique projection,

xob(k + 1) = (ΠM,NP ⊗ I2)xob(k), xob(0) = x0, (5.54)
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Figure 5.23: Trajectory of the 10 robots (1st row), and corresponding time-evolution of their
x- and y-coordinates (2nd row). In the two rows, the same color convention is used. (a),(d)
Constrained consensus protocol, general oblique projection ΠM,N ; (b),(e) Unconstrained con-
sensus protocol with communication graph G = W10 and step-size ε = 1/20; (c),(f) Constrained
consensus protocol, orthogonal projection onto Im(MT

2 ).

is considered (cf. Theorem 5.10). Here, the nine columns of

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
I8

−1

0
...
0

0 · · · 0 1

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
I8

0

0
...
0

1 · · · 0 0

0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

form a basis for the subspaces M, N⊥, respectively, beingN = span([1, 0, . . . , 0, −1 , 0]T ).
Matrices V and W satisfy the conditions of Theorem 5.10, and as shown in Fig. 5.23(a),
the subspace constraint M primarily affects the behavior of robots 1 and 9. However,
again, the rendezvous point is left unchanged, showing the convergence-preserving na-
ture of protocol (5.54).
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Figure 5.24: (1st row) Sparsity pattern of matrices P, ΠMP and Πob
ker(M1)

considered in
Figs. 5.22(a)-(c); (2nd row) Sparsity pattern of matrices ΠM,NP, P and ΠMP considered in
Figs. 5.23(a)-(c).

The trajectory of the robots obtained with protocol (5.52) using a wheel graph G =

W10 and a step-size ε = 1/20 < 1/dmax(W10) = 1/9 is reported in Fig. 5.23(b). To draw
a comparison, Fig. 5.23(c) shows the constrained trajectories of system (5.53) for M =

Im(MT
2 ) ⊂ R10, where

M2 =

⎡⎢⎢⎢⎣
1
3

1
3

1
3

0 0 0 0 0 0 0

0 0 0 0 0 0 2 2 0 0

0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2

⎤⎥⎥⎥⎦.
Similarly to M1, matrix M2 is used here for coupling the motion of two pairs and

two triplets of robots. In Figs. 5.23(c),(f), we see that to satisfy the imposed subspace
constraint, four robot clusters emerge after one iteration, but that the rendezvous point
remains (1, 1). Finally, to get a sense of the amount of communication between the
robots required by the six protocols studied in this section, Fig. 5.24 reports the sparsity
pattern of the corresponding dynamics matrices (grayscale map of matrix entries).

5.5.5 Conclusions and future work

In this final section of Chapter 5, we leveraged subspace projectors to design a new
class of state-constrained consensus protocols. The group decision properties of several
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variants of a prototypal algorithm have been studied, and numerical experiments for
the constrained 2D rendezvous problem have validated the proposed theory.

In future works, we plan to extend our results to directed communication networks
and characterize the convergence speed of new protocols. We also aim at generaliz-
ing the proposed theory to time-varying and nonlinear constraints (e.g. by locally pro-
jecting the joint state onto the tangent space of the constraint manifold (Lageman and
Sun 2016)). Finally, for given a graph topology, we would like to check how restrictive
is the rank condition in Theorem 5.9, for projection design.

5.6 Conclusion

In the first part of this chapter, we have studied three families of tasks (environmen-
tal monitoring, active target tracking, 3D reconstruction of unknown environments),
which can be performed in a distributed fashion via the coordinated action of a group
of aerial robots, interacting with the surrounding environment. In the second half of
Chapter 5, we have considered the classical consensus protocol from a new angle and
proposed two original extensions. We have introduced the so-called deformed Laplacian
(a generalization of combinatorial Laplacian), and studied the stability properties of the
corresponding deformed consensus protocol in terms of real parameter s, by establish-
ing a connection with the well-known quadratic eigenvalue problem. Finally, we have
presented a new geometric framework which allows to easily handle state constraints
(e.g. arising from obstacles in the environment) in the discrete-time consensus problem,
while preserving, under certain assumptions, the consensus value.

In the next chapter, the main contributions of the HDR thesis are briefly stated and
possible avenues for future research are discussed.
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Chapter 6

Conclusion and future outlook

New ideas pass through three periods: 1) It can’t be done.
2) It probably can be done, but it’s not worth doing.
3) I knew it was a good idea all along!

Arthur C. Clarke

Abstract

This closing chapter contains a summary of the main contributions of this HDR thesis,
followed by a discussion about future research directions. This research activity will be
carried out at the MIS laboratory, University of Picardie Jules Verne.

6.1 Summary of contributions

Since my doctoral studies, the focus of my research activity has been on the coordi-
nation of groups of autonomous vehicles, with special emphasis on the formation

control problem, which I have investigated under different angles. This manuscript
embodies the evolution of my research interests over the last decade, and presents the
main results in a unified way. More specifically, the original contributions pertaining to
the two central chapters of this HDR thesis, can be summarized as follows:

Chapter 4 (“Formation control of mobile robots”) offers the following contributions:

• A new characterization of mobility for formations of unicycle robots specified by
distance-bearing constraints, is presented. By introducing the notion of “macro-
robot”, the classification by type according to the degree of mobility and steerability
proposed in (Campion et al. 1996), is extended to multi-robot systems.

• A new decentralized optimal strategy for cooperative adaptive cruise control with
guaranteed string stability, is proposed and validated via numerical experiments.
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202 6. Conclusion and future outlook

• The general notion of Laplacian function, which traces back its origin to physics
and network science (Michelitsch et al. 2019), is revisited in the light of multi-agent
systems theory, and its application to shape-based formation control is explored
for the first time.

Chapter 5 (“Coordinated control of multiple robots”) offers the following contributions:

• Original solutions to three classical multi-agent problems, featuring multiple UAVs
interacting with the surrounding environment, are presented (environmental mon-
itoring, active target tracking and 3D reconstruction) and validated with numeri-
cal simulations and hardware experiments in order to introduce a sufficient degree
of realism.

• New insights into the standard consensus protocol are provided. Notably, we have
shown how to handle more general Graph Shift Operators (deformed Laplacian)
and state constraints arising, for example, from the environment where the robots
evolve. The classical 2D rendezvous problem served as a benchmark.

6.2 Future research directions

A cooperative task is a task performed by a team of n autonomous robots in unison.
The robots should join forces to complete it, by relying on the on-board exteroceptive
sensors to detect the surrounding environment and on the information shared with
the teammates. As mentioned in Chapter 2, rendezvous, formation control, flocking,
patrolling/surveillance, coverage, containment control (encirclement, entrapment and
escorting missions alike), manipulation and transport, collaborative localization and
SLAM, are typical examples of cooperative tasks for multi-robot systems.

While collision avoidance is an essential prerequisite, a cooperative task is typi-
cally subject to a number of additional physical, geometrical and logical constraints
(see Fig. 6.1):

1. The robots have limited sensing and communication capabilities. This means that
the knowledge of the world around them is local and incomplete: in fact, they
can only perceive the environment in their immediate vicinity and send/receive
messages to/from the nearest neighbors. Moreover, communication latency may
cause the robots to be less responsive. Hence, there is the need for distributed
estimation and control algorithms which do not rely on a single vulnerable coor-
dination unit.
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Figure 6.1: In a standard 2D formation control problem, geometric constraints (relative dis-
tances and/or angles) are imposed on the robots. The robots may also have restricted mobility
(e.g. unicycle or car-like robots) and limited communication/sensing capabilities.

2. The robots may have restricted mobility (e.g. underactuation or nonholonomic con-
straints). As a consequence, certain directions of instantaneous motion are forbid-
den.

3. The workload should be equally balanced among the robots and a task assignment
(or allocation) problem should be solved beforehand or in real time, during the
mission. Collaborative behaviors should be promoted and the idle time of each
robot should be minimized.

4. The coordination strategy should be scalable, i.e. insensitive to robots joining or
leaving the team, resilient, i.e. able to quickly recover from unexpected external
perturbations (e.g. a wind gust, a kick or other mishaps), and robust to distur-
bances (perception and actuation noise).

5. The multi-robot system should always be safe (or dependable), i.e. the associated
state vector should always remain within a given set, where integrity is preserved.
In other words, as long as the state vector lies in this set, we have the guarantee
that no instability phenomena occur and that obstacle/inter-robot collisions are
avoided.

6. The cooperative task may include temporal/logic constraints which specify the order
of execution of a sequence of actions or events (e.g. action A should precede ac-
tion B, and it should not take more than T seconds). Moreover, in certain applica-
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tions, asynchronous communication between the robots (in contrast to conventional
synchronous operation), is the only option.

7. The robots have stringent requirements in terms of energy storage. Battery-powered
wheeled robots have an autonomy of a few hours, while the flight endurance
of electric multi-rotor UAVs is typically up to 25 minutes (in general, in aerial
robotics, researchers are faced with “Size Weight and Power” or SWaP constraints).
This strongly restricts the class of missions that the robots can carry out.

8. Multi-robot systems may exhibit different sources of heterogeneity, which depend
on different factors:

• Type of locomotion: ground robots (wheeled, legged, tracked slip-skid), aerial
robots (fixed-wing, rotary-wing, lighter-than-air), surface and underwater
robots.

• Role within the team (e.g. leader-follower, master-slave or shepherd-sheep
models, hierarchical and hybrid structures).

• Budget and available physical resources (e.g. computational power, sensing
capabilities, battery capacity, communication range/bandwidth).

Unfortunately, the constraints mentioned above have been taken into account sepa-
rately in the past, and only sparse results exist. For example, Problem 1 has been
addressed by using the well-known consensus protocol (Mesbahi and Egerstedt 2010,
Olfati-Saber et al. 2007), and Problem 2 has been widely studied in the robotics and
control literature, especially within the formation-control framework (Egerstedt and
Hu 2001, Tabuada et al. 2005, Consolini et al. 2008, Dong and Farrell 2008). For the
task allocation problem (Problem 3), there is a rich body of work in the literature, see
e.g. (Berman et al. 2009, Notomista et al. 2019), while network resilience, robustness
and scalability (Problem 4) have only been the subject of recent research, see for exam-
ple (LeBlanc et al. 2013, Guerrero-Bonilla et al. 2017) and (Franceschelli and Frasca 2020)
for the so-called “open” multi-agent systems. Safety (Problem 5) has been taken into
account via different approaches in the literature, the most popular being artificial po-
tential fields, (reciprocal) velocity obstacles, constrained optimization (Alonso-Mora
et al. 2019), and more recently control Lyapunov functions and control barrier func-
tions (Wang et al. 2017, Ames et al. 2019). While the problem of asynchronous com-
munication is well known, see (Cao et al. 2008) and (Boyd et al. 2006, Aysal et al. 2009)
for gossip algorithms, there is scant research pertaining to temporal/logic constraints
(Problem 6) in a multi-robot setting, see (Colledanchise and Ögren 2018, Lindemann
et al. 2019) and the references therein. Likewise, as per Problem 7, only few results exist
for a single car-like robot (Tokekar et al. 2014), and single (Morbidi et al. 2016, Zhang
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et al. 2021) or multiple (Kemal Ure et al. 2014, Trotta et al. 2018) quadrotor UAVs. Finally,
heterogeneous robot teams with agents belonging to different classes (Problem 8), have
been recently considered in (Santos et al. 2018) for coverage control and in (Schillinger
et al. 2018) for task allocation, but there are no results for generic cooperative multi-
robot tasks.

From the previous discussion, we observe that:

• A general formulation encompassing the eight (conflicting) requirements mentioned
above, is still missing. The nature and complexity of this formulation has yet to
be established: for example, it is unclear how the mobility constraints conciliate
and interrelate with the sensing, communication and safety constraints, and which
constraint is more “critical” to task achievement. It would be interesting to cast a
cooperative multi-robot task as a general nonlinear hierarchical optimal control
problem, but it is not evident how to separate perception from action, and how to
obtain a fully distributed solution using a principled approach, in general.

• Problem 1 has been widely studied in the literature, but a fundamental question
still remains unanswered. In fact, while distributed algorithms exist for comput-
ing generalized (or Hölder) means (Bauso et al. 2006, Cortés 2008) or solving lin-
ear equations (Wang et al. 2019), little is known about the general family of tasks
(or more generally, mathematical operations), which lend themselves to a dis-
tributed implementation. We hope to break the decade-long drought of progress
and shed new light on this family of tasks: this would provide crucial insights into
distributed control and open new avenues for future research.

Other related problems which I am poised to investigate further in the near future,
are the following:

1. The emerging field of graph signal processing (Sandryhaila and Moura 2014, Or-
tega et al. 2018, Ortega 2022), with its ramifications in image processing (Cheung
et al. 2018, Cheung and Magli 2021) and machine learning (Graph Neural Net-
works, GNNs (Gama et al. 2020, Ruiz et al. 2020, Wu et al. 2021)), has strong con-
nections with consensus theory (see Figs. 6.2(a),(b)). Several fundamental concepts
(such as convolution, filtering or Fourier transform) have been generalized, and
the mathematical tools developed in this field allow to process data defined over
irregular domains (Shuman et al. 2016). However, their application to robotic net-
works is still in its infancy (Segarra, Marques and Ribeiro 2017), see also Sect. 4.3.3.
GNNs excel in predicting and analyzing graphs, and they have met with more suc-
cess. They have been recently applied to several classical problems in distributed
control: path planning (Li et al. 2020, Li, Lin, Liu and Prorok 2021, Yu et al. 2023),
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(a) (b) (c) (d) (e)

Figure 6.2: Future research directions: (a), (b) Books on graph signal and graph spectral image
processing; (c) Prophesee EVK4-HD event camera; (d) Ricoh Theta Z1 dual-fisheye camera;
(e) Mixed human-robot team warehousing (image courtesy of XPO Logistics).

target tracking (Zhou, Sharma, Li, Prorok, Ribeiro, Tokekar and Kumar 2022, Tzes
et al. 2023), coverage control (Gosrich et al. 2022, Sharma et al. 2023, Agarwal et al.
2024, submitted), flocking (Tolstaya et al. 2020, Kortvelesy and Prorok 2021, Gama
et al. 2022, Marino et al. 2023) and collaborative perception (Zhou, Xiao, Zhou and
Loianno 2022). In most of these works, the authors trained a neural network with
examples from a centralized controller in order to learn a distributed control law
for the robots (which is much more difficult to devise, in general).

It is highly desirable to cross-fertilize ideas and build a bridge between robotics,
control and signal theory, in order to design new local, asynchronous decision-
making policies for the Perception-Action-Communication (PAC) loop (cf. Fig. 2.8).

2. New sensing modalities have recently emerged, opening up new opportunities
for robotic research. For example, event-based cameras (Gallego et al. 2022) hold
great promise for the coordination of agile multi-robot systems evolving in envi-
ronments with challenging light conditions1 (see Fig. 6.2(c)). In fact, these bio-
inspired sensors capture visual information with low latency and minimal redun-
dancy (they produce 10 to 1000 times less data), are less prone to motion blur than
traditional cameras, and they correctly operate in high-dynamic-range scenes (Xie
et al. 2017), which ushered in their widespread use today. For these reasons, the
Robotic Perception group has submitted four research projects on the subject of
(omnidirectional) event cameras in 2020-2023: the Evento project (funded by the
Agence de l’Innovation de Défense and the UPJV), the ANR CERBERE project,

1www.prophesee.ai/event-based-evaluation-kits
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the ANR DEVIN project and the ANR-FWF (France-Austria) EVELOC project (see
Sect. 1.1.5 for more details). The first two projects are about halfway through, and
the last two will start in January 2024. In particular, the goal of DEVIN project
is to design new coordination algorithms for drone neutralization with a swarms
of aerial robots equipped with event cameras, which is perfectly aligned with my
personal research program.

The robotic community has also recently welcomed the advent of compact twin-
fisheye cameras for spherical vision (Caron and Morbidi 2018, Benseddik et al. 2020,
Delmas et al. 2023). Their small form factor (Ricoh Theta Z1 camera2 only weighs
182 grams, see Fig. 6.2(d)) and low power consumption, make them very attractive
for micro drones, and their miniaturization potential has yet to fully exploited, e.g.
for use on-board insect-like robots (McGuire et al. 2019, Ndoye et al. 2023).

3. Human operators are increasingly confronted with teams of autonomous robots
to perform a given task, especially in assembly lines, automated warehouses and
industrial logistics (Sabattini et al. 2017, Ackerman 2022). While mixed human-
robot teams are becoming increasingly popular, it is still poorly understood which
is the most effective and intuitive means of communication between people and
robots (see Fig. 6.2(e)). In particular, further research is needed to determine which
sensory channel (visual, auditory (Che et al. 2020), kinaesthetic (Franchi et al. 2012,
Scheggi et al. 2014), or a combination thereof) is the most appropriate, and which is
the optimal stimulation frequency/intensity. HMIs (Human Machine Interfaces)
tailored to meet the needs of multi-robot systems with a human-in-the-loop, still
wait to be discovered.

To put the new knowledges into practice and validate the developed methods, I plan
to adopt the same application scenario of the ScanBot project (Morbidi et al. 2018-2021),
i.e. cooperative 3D reconstruction of large-scale environments with a heterogeneous
team of ground and aerial robots. In fact, this problem is rich and general, it is in
line with the scientific objectives of the Robotic Perception group of the MIS laboratory
(cf. e-Cathédrale program (Mouaddib et al. 2019, Mouaddib 2015-2025) and EVELOC
project). Moreover, it is well suited to highlight the challenges and opportunities of the
proposed research program.

With the benefit of hindsight, a few words about rigidity theory (Asimow and Roth
1979, Tay and Whiteley 1985) applied to multi-robot formations, are finally in order
here (see Fig. 6.3). In Chapter 5 of my Ph.D. thesis (Morbidi 2009), I pointed out that
this theory held great promise in multi-agent systems, and it had not been applied to

2https://ricohtheta.eu
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Figure 6.3: Rigid and nonrigid formations: The formation shown in (a) is not rigid, since it can be
deformed by a smooth motion without affecting the distance between the agents (black disks)
connected by edges. The formations shown in (b) and (c) are rigid, since they cannot be de-
formed. In particular, the formation in (b) is minimally rigid, because the removal of any edge
renders it nonrigid (Anderson et al. 2008).

formations of nonholonomic robots yet. The foundational work of Eren, Olfati-Saber
and coworkers (Eren et al. 2002, Olfati-Saber and Murray 2002), provided the basis for
a systematic theory (Cao et al. 2006, Yu et al. 2007, Anderson et al. 2008, Krick et al.
2009), and a vast literature stemmed from it (Zelazo, Franchi, Bülthoff and Robuffo
Giordano 2015, Stacey and Mahony 2018, Lin et al. 2022). Fifteen years later, this seminal
work continues to inform and inspire, and the field is now mature (Queiroz et al. 2019,
Ahn 2020). However, in spite of the resurgence of interest sparked by bearing rigidity
theory (Zhao and Zelazo 2019, Arrigoni and Fusiello 2019, Michieletto et al. 2021) –
in contrast to classical distance rigidity theory – the pace of publications has considerably
slowed down in recent years. Nevertheless, the potential is far from being exhausted,
and several promising research directions have yet to be investigated: for example, the
3D case, cf. (Schiano et al. 2016, Erskine et al. 2024), has not been as extensively explored
as the 2D case, and robots with restricted mobility are seldom considered.
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Moser, R., Schoeneich, P. and Mondada, F.: 2012, Highly Compact Robots for Inspection of
Power Plants, J. Field Robot. 29(1), 47–68.

CarMaker, IPG Automotive: 2023. [web]: https://ipg-automotive.com/en/

products-solutions/software/carmaker.

Caron, G. and Morbidi, F.: 2018, Spherical Visual Gyroscope for Autonomous Robots Using the
Mixture of Photometric Potentials, in Proc. IEEE Int. Conf. Robot. Automat., pp. 820–827.

Casbeer, D., Kingston, D., Beard, R., Mclain, T., Li, S. and Mehra, R.: 2006, Cooperative forest fire
surveillance using a team of small unmanned air vehicles, Int. J. Syst. Sci. 37(6), 351–360.

Charrow, B., Liu, S., Kumar, V. and Michael, N.: 2015, Information-theoretic mapping using
Cauchy-Schwarz Quadratic Mutual Information, in Proc. IEEE Int. Conf. Robot. Automat.,
pp. 4791–4798.

Chaslot, G.-B.: 2010, Monte-Carlo Tree Search, PhD thesis, Maastricht University.

Che, Y., Okamura, A. and Sadigh, D.: 2020, Efficient and Trustworthy Social Navigation via
Explicit and Implicit Robot-Human Communication, IEEE Trans. Robot. 36(3), 692–707.

214



BIBLIOGRAPHY 215

Chen, L., Mei, J., Li, C. and Ma, G.: 2020, Distributed Leader-Follower Affine Formation Maneu-
ver Control for High-Order Multiagent Systems, IEEE Trans. Automat. Contr. 65(11), 4941–
4948.

Chen, X., Qi, H., Qi, L. and Teo, K.: 2004, Smooth convex approximation to the maximum eigen-
value function, J. Global Optim. 30(2), 253–270.

Cheung, G. and Magli, E. (eds): 2021, Graph Spectral Image Processing, Wiley-ISTE.

Cheung, G., Magli, E., Tanaka, T. and Ng, M.: 2018, Graph Spectral Image Processing, Proc. IEEE
106(5), 907–930.

Chipade, V. and Panagou, D.: 2023, Aerial Swarm Defense Using Interception and Herding
Strategies, IEEE Trans. Robot. 39(5), 3821–3837.

Choi, J., Oh, S. and Horowitz, R.: 2009, Distributed learning and cooperative control for multi-
agent systems, Automatica 45(12), 2802–2814.

Chung, T., Burdick, J. and Murray, R.: 2006, A decentralized motion coordination strategy for
dynamic target tracking, in Proc. IEEE Int. Conf. Robot. Automat., pp. 2416–2422.

Chung, T., Gupta, V., Burdick, J. and Murray, R.: 2004, On a Decentralized Active Sensing
Strategy using Mobile Sensor Platforms in a Network, in Proc. 43rd IEEE Conf. Dec. Contr.,
pp. 1914–1919.

Chung, W. and Iagnemma, K.: 2016, Wheeled Robots, in B. Siciliano and O. Khatib (eds), Hand-
book of Robotics, 2nd edn, Springer, chapter 24, pp. 575–594.

Clark, J. and Fierro, R.: 2007, Mobile robotic sensors for perimeter detection and tracking, ISA
Trans. 46(1), 3–13.

Clavien, L., Lauria, M. and Michaud, F.: 2018, Estimation of the instantaneous centre of rotation
with nonholonomic omnidirectional mobile robots, Robot. Autonom. Syst. 106, 47–57.

Colaneri, P., Geromel, J. and Locatelli, A.: 1997, Control Theory and Design: an RH2 and RH∞
Viewpoint, Academic Press.
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