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Abstract— This paper reviews in a condensed form the main
tools and results of the geometric approach developed in the
last forty years. Because of the vastness of the subject, this
tutorial does not pretend to be exhaustive, and more emphasis
will be given to selected topics and to the related computational
tools. The authors hope their effort to provide a unified view of
geometric control theory may be profitable to awake renewed
interest in this research field.

I. I NTRODUCTION

Forty years after the introduction of the concepts of con-
trolled and conditioned invariance by Basile and Marro [4],
the area of systems and control theory known asGeometric
Approach[8], [35], [33] still attracts a great deal of interest.

However, nowadays more than ever the research in this
field seems to be mostly confined to extremely specialised
niches. Very few courses in systems and control engineering
around the world include geometric notions, even though
these have proved to be extremely profitable in delivering
a fresh perspective into several classical problems. Indeed,
geometry has the potential of offering a very intuitive insight
into the properties of systems, that can be hardly achieved
with other approaches. In fact, geometric concepts can be
easily understood taking advantage of graphical representa-
tions of state and output trajectories evolving on suitably
defined subspaces; for example, the concepts of controlled
and conditioned invariant subspaces, which are the pillars
upon which the geometric control theory has been built over
the past decades, can be grasped in depth by resorting to an
intuitive interpretation in terms of the properties of the state
trajectories.

The huge potential of the geometric approach to enhance
intuition in solving very difficult analysis and synthesis
problems has been greatly underestimated by the control
community. In fact, the tools of geometric control theory
have been mostly employed not to facilitate insight into the
structure of systems and into the solution of fundamental
problems, but to create a parallel set of definitions and
notions that, while extremely elegant and abstract, cannot
be captured without a long and time consuming preliminary
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study. In addition, in most cases far too much emphasis
has been given to rigour and formalism – thus covering
the inherent simplicity of geometric tools with unnecessarily
heavy mathematics – whereas too little efforts have been
devoted to make geometric ideas accessible to the wider
community.

This tutorial paper has the ambition of filling this gap, by
providing an extremely simplified and intuitive presentation
of the basic notions on which geometric control theory relies
and a short review of the use of the geometric approach tools
to classify, analyse and solve a number of control problems.
In fact, some problems already addressed and solved in
the literature using a rigorous mathematical formalism can
be profitably revisited within the geometric framework to
provide an alternative and intuitive insight, more suited to
establish connections between apparently different problems.
In addition and no less importantly, the tools of the ge-
ometric approach benefit of a very efficient computational
environment.

In this paper, rigour will not be sacrificed: however special
care will be devoted to present the results in an accessible
and didactic form. The algebra of matrices will be largely
employed, as bases of subspaces, to convey the deep ab-
stract significance of the geometric approach. This will also
help keep the theoretical exposition of geometric concepts,
notions and ideas significantly closer to their computational
implementation.

In this respect, the GA toolbox [19] provides a suite
of Matlab functions and routines that allow an immediate
application of the developed theory.

To conclude, it is worth emphasizing that the goal of this
tutorial paper is not to provide a historical perspective of the
main achievements of geometric control in last four decades.
However, where possible, a short historical account on the
major breakthroughs will be presented.

The rest of the paper is organized as follows. In Sec-
tion II some preliminary definitions are given. In Section
III some geometrically-stated system properties are pre-
sented. Section IV reviews geometrically-solved regulation
problems. Section V is devoted to H2-optimal control and
filtering. Finally, in Section VI some concluding remarks are
given.

Notation: The symbolRn×m is used to denote the space
of n×m real constant matrices. The image and the null-
space of matrixM ∈R

n×m are respectively denoted by
imM and kerM . Denote byMT and byM† the transpose
and the Moore-Penrose pseudo-inverse ofM , respectively.
The symbolId stands for thed× d identity matrix. The
symbolCg denotes either the open left-half complex plane
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C
− in the continuous time or the open unit discC◦ in the

discrete time. The symbolC0 denotes the imaginary axis in
the continuous time and the unit circle in the discrete time.
The symbolσ(A) denotesthe spectrum of the square matrix
A. If σ(A) ⊂ Cg, matrix A is said to bestable. The symbol
⊕ denotes thedirect sumof subspaces. Given a linear map
A : X −→ Y andZ ⊆ Y, the inverse mapA−1 Z denotes
the set of all the points inX whose image according toA
belongs toZ, i.e.,A−1 Z = {x ∈ X |Ax ∈ Z}.

II. GEOMETRIC APPROACH: FOUNDATIONS

The geometric approach deals with subspaces. Properties
of systems are expressed in terms of linear spaces, and the
most important analysis and synthesis algorithms are based
on operations on them, including sum, intersection, direct
and inverse linear transformation, orthogonal complementa-
tion, etc. Consider a linear time-invariant (LTI) systemΣ,
with input u ∈ R

p, statex ∈ R
n and outputy ∈ R

q. For
the sake of generality and to achieve a better insight into the
meaning of some geometric features of the state trajectories,
we will consider both continuous-time systems

ẋ(t) = Ax(t) +B u(t),
y(t) = C x(t),

(1)

anddiscrete-time systems

x(k+1) = Ax(k) +B u(k),
y(k) = C x(k).

(2)

Thesesystems are often referred to as thetriples (A,B,C).
MatricesB and C are assumed to be of maximum rank.
Systems (1) and (2) are said to beinternally stable if
σ(A)⊂Cg. The overall theory presented here is grounded
on three very intuitive notions:controlled invariance,con-
ditioned invarianceand invariant zeros.Duality plays an
important role in unifying these concepts and it will be
frequently used throughout the paper. Before introducing
these concepts, we first need to recall some properties of
the so-calledinvariant subspaces.

A. Invariant subspaces

Let X be a vector space andA : X →X a linear map. A
subspaceJ ⊆X is said to beA-invariant, if

AJ ⊆ J .

Consider the change of basis defined by the transformation
T = [T1 T2] with imT1 = J and T2 such thatT is
nonsingular. MatrixA′ =T−1AT can be written as

A′ =

[
A′

11 A′
12

0 A′
22

]
. (3)

TheA-invariant subspaceJ is said to beinternally stable
if σ(A′

11) ⊂ Cg andexternally stableif σ(A′
22) ⊂ Cg.

SubspaceJ is said to becomplementableif anotherA-
invariant Jc exists such thatJ ⊕Jc =X . Let us consider
again the change of basis defined byT . SubspaceJ is
complementable if and only if theSylvester equation

A′
11 X −X A′

22 = −A′
12

admits a solutionX. If so, a basis matrix ofJc is given by
Jc = J X +T2. The new transformationT = [T1 Jc] causes
A′

12 =0 in (3).
It is easily proved that the sum and the intersection of

A-invariant subspaces isA-invariant; hence any subset of
the set of all theA-invariant subspaces contained in a given
subspaceC is closed under sum and the set of all theA-
invariant subspaces containing a given subspaceB is closed
under intersection. Hence, the supremum of the former set is
the sum of all theA-invariant subspaces contained inC, and
is denoted byJ ∗

↑ ; similarly, the infimum of the latter set is
the intersection of all theA-invariant subspaces containing
B, and is denoted byJ ∗

↓ .
If A :Fn →F

n (whereF is R or C) the subspaceJ ∗
↑ can

be computed with the sequence

J1 = C,
Ji = C ∩A−1 Ji−1, (i = 2, 3, . . .),

(4)

andJ ∗
↓ with the sequence

J1 = B,
Ji = B +A Ji−1, (i = 2, 3, . . .),

(5)

Both the above sequences converge in a finite number of
steps (at mostn).

B. Controlled invariant subspaces

Given a linear mapA : X →X and a subspaceB⊆X , a
subspaceV ⊆X is (A,B)-controlled invariantif the follow-
ing inclusion holds

AV ⊆ V + B.

Controlled invariant subspaces have the following properties:
1) The sum of any two(A,B)-controlled invariant sub-

spacesis (A,B)-controlled invariant.
2) Let B= imB andC= kerC. A state trajectoryx(·) of

the continuous or discrete-time LTI systemΣ can be
made invisible at the output by means of a suitable
control action if and only if the initial statex(0)
belongs to an(A,B)-controlled invariant subspace
containedin C.

3) For any(A,B)-controlled invariant subspaceV there
exists a matrixF (called a friend of V) such that
(A+BF )V ⊆ V. If, furthermore, a matrixF exists
such thatV is an internally stable and/or an externally
stable(A+BF )-invariant,V is said to beinternally
stabilizableand/orexternally stabilizable, respectively.

Property 1 implies that the set of all the controlled
invariant subspaces contained in a given subspaceC ⊆X
admits a supremum, that coincides with their sum. It can
be computed with the sequence

V1 = C,
Vi = C ∩A−1 (Vi−1 + B), (i = 2, 3, . . .),

(6)

that converges in a finite number of steps. Referring to the
systemΣ (continuous or discrete-time), the sequence (6)
converges toV∗, the maximal(A,B) controlled invariant
subspace contained inC, that is the locus of all the possible
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state trajectories ofΣ invisible at the output. For this reason,
V∗ is calledthe maximal output-nulling controlled invariant
subspace ofΣ, [1].

A state trajectory that crosses a controlled invariant sub-
spaceV can be maintained on it using a suitable control
action that can always be expressed as a static state-to-input
feedback. SinceV ⊆V∗ ⊆C, the segment of trajectory onV
is invisible at the output.

C. Conditioned invariant subspaces

Conditioned invariant subspaces are dual to controlled
invariant subspaces. Given a linear mapA : X →X and
a subspaceC ⊆X , a subspaceS ⊆X is (A, C)-conditioned
invariant if

A (S ∩ C) ⊆ S.

Conditioned invariant subspaces enjoy the following proper-
ties:

1) The intersection of any two(A, C)-conditioned invari-
ant subspaces is(A, C)-conditioned invariant.

2) The state trajectories of the discrete-time systemΣ
that originate atx(0)= 0 can be made invisible at the
output for a certain number of stepsρ while lying
on a given subspaceS if and only if S is an (A, C)-
conditioned invariant subspace containingB.

3) For any(A, C)-conditioned invariant subspaceS there
is a matrix G (called a friend of S) such that
(A+GC)S ⊆ S. If, furthermore, a matrixG exists
such thatS is an externally stable and/or an internally
stable (A+GC)-invariant subspace,S is said to be
externally stabilizableand/or internally stabilizable,
respectively.

Property 1 implies that the set of all the conditioned in-
variant subspaces containing a given subspaceB⊆X admits
an infimum, that coincides with their intersection. It can be
computed with the sequence

S1 = B,
Si = B +A (Si−1 ∩ C), (i = 2, 3, . . .),

(7)

that converges to it in a finite number of stepsρ. Referring
to the systemΣ, the sequence (7) yieldsS∗, which is the
minimal (A, C) conditioned invariant subspace containingB,
that for discrete-time systems is the maximal subspace of
the state space reachable from the origin in at mostρ steps
with trajectories that have all the states except the last one
invisible at the output. SubspaceS∗ is also calledthe minimal
input-containing conditioned invariant subspace ofΣ.

Property 2 has no counterpart in the continuous-time case
unless control functions, that are usually considered to be
piecewise continuous, are extended to include distributions.
This aspect is beyond the scope of this work and is therefore
omitted. A state trajectory of a discrete-time system starting
from the origin can be maintained on a subspaceS for a
certain number of steps with a suitable control action if and
only if S is a conditioned invariant subspace containingB.

D. Reachable subspace onV∗ and invariant zeros ofΣ

Still referring toΣ, consider the previously defined max-
imal output-nulling subspaceV∗ and define the subspace
R∗ ⊆V∗ as the maximum subspace reachable from the origin
with state trajectories completely belonging toV∗. It has
been shown in [25] that

R∗ = V∗ ∩ S∗.

HenceR∗ can be computed by using again the sequences
(6) and (7). Note thatR∗ is (A,B)-controlled invariant.
In fact, it is easily proved that the intersection of(A,B)-
controlled invariant subspaces contained inC and (A, C)-
conditioned invariant subspaces containingB is (A,B)-
controlled invariant. While any state inR∗ is completely
reachable from any other state inR∗ with state trajectories

V∗ R∗

unstable
zero

stable
zero

X

Fig. 1. R∗ and some trajectories corresponding to invariant zeros.

invisible at the output, the trajectories onV∗ corresponding
to initial states not belonging toR∗ are strictly constrained
to be linear combinations of modes of the typetmk−1 eζit,
calledfixed modes. The values ofζi, in general complex, are
called theinvariant zerosof Σ and the maximum value of
the integermk is said themultiplicity of ζi, see Fig. 1.

Let F be a friend ofV∗. Consider the change of basis
defined by the transformationT = [T1 T2 T3] with imT1 =
R∗, im[T1 T2] = V∗ andT3 such thatT is nonsingular. The
new matricesA′ =T−1(A + BF )T , B′ =T−1B, C ′ =CT

can be written as

A′ =




A′
11 A′

12 A′
13

0 A′
22 A′

23

0 0 A′
33


 , B′ =




B′
1

0
B′

3


 ,

C ′ =
[
0 0 C ′

3

]
. (8)

The invariant zeros ofΣ correspond to the eigenvalues
of matrix A′

22. Both the pairs(A′
11, B

′
1) and (A′

33, B
′
3)

are stabilizable if such isΣ. The self-bounded controlled
invariant subspacesof Σ are defined, in the new basis, as
the sum ofR∗ with the invariant subspaces ofA′

22, [7], [31].
The system is said to be ofminimum phaseif all its invariant
zeros are inCg. Hence, the invariant zeros ofΣ are the
internal unassignable eigenvalues ofV∗ and will be referred
to with the symbolZ(V∗) or Z(Σ). By extension, we will
denote withZ(V) the internal unassignable eigenvalues of
any controlled invariant subspaceV. If V is self-bounded,
i.e., satisfiesR∗ ⊆V ⊆V∗, Z(V) is a subset of the invariant
zeros ofΣ.
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E. Extension to quadruples

For the sake of simplicity, the geometric concepts in-
troduced in the previous sections have been defined for
LTI systems represented by a triple(A,B,C), without any
feedthrough matrixD. However, these ideas can easily be ex-
tended to systems represented by a quadruple(A,B,C,D),
i.e., ruled by

ẋ(t) = Ax(t) +B u(t),
y(t) = C x(t) +Du(t),

(9)

and
x(k+1) = Ax(k) +B u(k),

y(k) = C x(k) +Du(k),
(10)

in the continuous and discrete-time case, respectively.
In these cases, output-nulling subspaces and their friends

are defined as pairs (V, F ) such that (A+BF )V ⊆V
andV ⊆ ker(C +DF ). Likewise, input-containing subspaces
and their friends are defined as pairs (S, G) such that
(A+GC)S ⊆S andS ⊇ im(B+GD).

Thecomputation of the maximum output-nulling subspace
V∗ and the minimum input-containing subspaceS∗ is still
possible with algorithms (6) and (7) applied to a suitably
extended system. Refer to the overall systemΣ̂ shown in

+

+

D

u
(A,B,C)

y z
Σe

Σ̂

Fig. 2. An artifice to reduce a quadruple to a triple.

Fig. 2, whereΣe is a set of integrators in the continuous-
time case or a set of unit delays in the discrete-time case. It
can be described by the extended statex̂ and extended triple
(Â, B̂, Ĉ) defined as

x̂ =

[
x

u

]
, Â =

[
A 0
C 0

]
, B̂ =

[
B

D

]
, Ĉ =

[
0 Iq

]
. (11)

Let us compute the output nullinĝV∗ with basis matrixV̂
for systemΣ̂ and the corresponding friend̂F with (6), and
denote with

V̂ =

[
V1

V2

]
, F̂ =

[
F1 F2

]
,

their partitions according to (11). Owing to the structure of
Ĉ, it turns out thatV2 =0 and F2 =0 and the maximum
output nulling subspace of the quadruple(A,B,C,D) is
V∗ = imV1 and thatF1 is a corresponding friend adapted
to its basis matrixV1.

A similar procedure applies toS∗. The definitions ofR∗

and invariant zeros in Section II-D are still valid, provided
that they are referred to the subspacesV∗ andS∗ defined in
this section.

III. G EOMETRICALLY-STATED SYSTEM PROPERTIES

In the next two sections, the properties of controllability,
observability, left and right invertibility and relative degree,
will be expressed in geometric terms.

A. Controllability and observability

The concepts ofcontrollability and observability were
introduced in the early 60s to state mathematical conditions
connected with the existence and uniqueness of Kalman
regulators and filters. Kalman himself pointed out that the
reachable subspaceR of an LTI systemΣ is the mini-
mum A-invariant subspace containingB = imB and the
unobservable subspaceU the maximumA-invariant subspace
containedin C = kerC, [14]. These were the first system
properties stated in geometric terms, and the related control-
lability and observability subspaces can be computed with
the recursive algorithms (5) and (4), respectively.

Recall that if Σ is completely reachable (i.e.,R=X ),
the eigenvalues ofA + BF are completely assignable by
a suitable choice ofF . If Σ is completely observable
(i.e., U = {0}), the eigenvalues ofA + GC are completely
assignable by a suitable choice ofG. This is the pole
assignability property of static state feedback and static
output injection.

B. Left invertibility, right invertibility, and relative degree

Consider the continuous-time LTI system (1) or (9) with
x(0)= 0 and assume that its input functionu(t) is bounded
and piecewise continuous. We introduce the following defi-
nitions.

1) The system is said to beleft invertible if, given
any admissible output functiony(t), t∈ [0, t1], t1 > 0,
there is a unique corresponding input functionu(t),
t∈ [0, t1) producingthat output functiony(t).

2) The system is said to beright invertible if there is
an integerρ≥ 1 such that, given any output function
y(t), t∈ [0, t1], t1 > 0 with piecewise continuousρ-th
derivative and such thaty(0)= 0, . . . , y(ρ− 1)(0)= 0,
there is at least one input functionu(t), t∈ [0, t1)
producing that output functiony(t). The minimum
value ofρ satisfying the above statement is called the
relative degreeof the system.

Consider the discrete-time LTI system (2) or (10) with
x(0)= 0 and assume that its input functionu(t) is bounded.

1) The system is said to beleft invertible if, given any
admissible output functiony(k), k∈ [0, k1], k1 ≥n,
there is a unique corresponding input functionu(k),
k∈ [0, k1) producingthat output functiony(k).

2) The system is said to beright invertible if there is an
integerρ≥ 1 such that, given an output functiony(k),
k∈ [0, k1], k1 ≥ ρ such that y(k)= 0, k∈ [0, ρ−1],
thereis at least one input functionu(k), k∈ [0, k1 − 1]
producing that output functiony(k). The minimum
value ofρ satisfying the above statement is called the
relative degreeof the system.

The geometric necessary and sufficient conditions for left
and right invertibility of both continuous and discrete-time
systems are simple when expressed in terms ofV∗ andS∗:

• Left invertibility:

V∗ ∩S∗ = {0}.
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• Right invertibility:

V∗ +S∗ =X .

• Relative degree:
For a right invertible system without feedthrough the
relative degree is the minimal value ofρ such that
V∗ +Sρ =X where Si (i=1, 2, . . .) is provided by
sequence (7). For systems with feedthrough this still
holds but referred to a suitably extended system, like the
one shown in Fig. 2 (note that in this case the computed
relative degree has to be reduced by one).

IV. GEOMETRICALLY-SOLVED REGULATION PROBLEMS

In this section we introduce some basic control problems
and present necessary and sufficient constructive conditions
for their solvability. For the sake of brevity the proofs are
omitted: the interested reader can find them in specialized
books [8], [35].

A. Disturbance decoupling

When the output of a system must be decoupled from an
input signal we must distinguish three cases

1) (inaccessible) disturbance decoupling
2) measurable signal decoupling
3) previewed signal decoupling

This distinction is basic for a correct statement and solution
of the corresponding control problem. Feedback is strictly
required only in the first case, since the second and third
case are solvable with feedforward, possibly applied to a
system which has been pre-strengthened with feedback.

1) Inaccessible disturbance decoupling by state feedback:
The disturbance decoupling problem by state feedback is the
basic problem of the geometric approach. It was studied in
[9] and [36] as one of the earliest applications of these new
concepts.

Consider the continuous-time LTI systemΣ with two
inputs shown in Fig. 3, described by

ẋ(t) = Ax(t) +B u(t) +H h(t),
y(t) = C x(t),

(12)

whereu denotes the manipulable input andh the disturbance
input. LetB= imB, H= imH andC=kerC. The (inacces-
sible) disturbance decoupling problem is stated as follows:
Determine, if possible, a state feedback matrixF such that
the disturbanceh has no influence on the outputy. In

u

h
y

x

Σ

F

Fig. 3. The inaccessible disturbance decoupling problem.

spite of its apparent simplicity, the disturbance decoupling

problem was not completely solved at the outset. The system
with state feedback is described by

ẋ(t) = (A+BF )x(t) +H h(t),

y(t) = C x(t).

It behaves as requested if and only if its reachable set byh,
i.e., the minimum(A+BF )-invariant subspace containing
H, is contained inC. Denote byV∗

(B,C) the maximum output-
nulling (A,B)-controlled invariant subspace contained inC.
Since any(A+BF )-invariant subspace is(A,B)-controlled
invariant, the inaccessible disturbance decoupling problem
has a solution if and only if

H ⊆ V∗
(B,C). (13)

This is a necessary and sufficientstructural conditionand
does not ensure internal stability. If stability is required,
we have the inaccessible disturbance decoupling problem
with stability. Stability is conveniently handled by using
the self-bounded controlled invariant subspaces, introduced
in Section II-D. Recall that any(A,B)-controlled invariant
subspaceV which is self-bounded with respect toV∗

(B,C)

satisfies the relation

R∗
(B,C) ⊆ V ⊆ V∗

(B,C),

and the set of all the self-bounded controlled invariant
subspaces is closed with respect to both sum and intersection:
it is therefore possible to define the minimum self-bounded
controlled invariant subspaces containingH, provided that
(13) holds. This is the reachable subspace with both inputs
u andh, that clearly containsH. It is defined as

Vm = V∗
(B,C) ∩ S∗

(C,B+H). (14)

The change of basis shown in (8) also holds forVm

instead ofV∗ with the stabilizability property of(A′
33, B

′
3).

Hence there is a state feedbackFm achieving disturbance
decoupling and making the overall system stable if and only
if Vm is internally stabilizable. Thus, the necessary and
sufficient conditions for the solvability of the disturbance
decoupling problem with stability are both the structural
condition (13) and the followingstabilizability condition:

Vm internally stabilizable, (15)

that is equivalent to

Z(Vm) ⊆ Cg. (16)

Since Z(Vm) is a part of Z(V∗
(B,C)), phase minimality

ensures stabilizability.
2) Measurable signal decoupling:This problem can be

stated as follows:Determine, if possible, a static or dynamic
compensator such that the measurable signalh has no
influence on outputy. The system is still ruled by (12).
This problem appears as a slight extension of the previous
inaccessible disturbance decoupling problem, but indeed it
is very different and opens out to many types of solution.
The first solution considered in the literature, based on state
feedback and static feedforward, is illustrated in Fig. 4. The
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+
+

u

h
y

x

Σ

F

G

Fig. 4. Measurable signal decoupling with state feedback.

structural necessary and sufficient condition for its solvability
[11], is

H ⊆ V∗
(B,C) + B. (17)

In fact if (17) holds, by assuming as matrixG in Fig. 4
a projection ofHh on V∗

(B,C) alongB, the action of input
h is driven onV∗

(B,C), hence it is invisible at the output.
It can be proved that the stabilizability condition for this
problem is again given by (15) or (16), provided that (17)
is satisfied [8]. However, the block scheme shown in Fig. 4
is not the most convenient for achieving decoupling of a
measurable signal since it requires full access to the state.
Let us consider instead the layout shown in Fig. 5 whereΣc

is a replica of the system with feedback shown in Fig. 4. It is
worth noting that the dynamics ofΣc can be restricted toVm,
that is an internally stable(A+BFm)-invariant subspace
containingthe projection ofHh on Vm alongB. However

h

u Σ

Σc

y

Fig. 5. Measurable signal decoupling with a feedforward compensator.

in this caseΣ must be stable. But, if it is unstable, feedback
can be avoided as shown in Fig. 6. IfΣ is stabilizable

+
+

h

u Σ

Σc
Σs

y

ym

−ym

xs =0

Fig. 6. Using both a compensator and a stabilizer.

from u and detectable from a suitable measurable output
ym (possibly coinciding withy, but, in general, provided
by a second output matrixC1), Σ can be stabilized with a
feedback unitΣs which can be maintained at zero by the
pre-compensator since this reproduces the state evolution
(hence the output) ofΣ, restricted toVm. If ym = y this
connection is not necessary. The stabilizer is based on the
state feedback matrixFs such thatA+BFs is strictly stable
and the output injectionGs such thatA+GsC1 is strictly
stable, i.e.,Σs : (A+ BFs +GsC1 , −Gs , Fs). The input
matrix −Gs is referred to both inputs. Note that the output
of the stabilizer is identically zero, since its inputs due to
the action ofh on Σ andΣc cancel each other.

Now let us consider the dual problem of the measur-
able signal decoupling with feedforward control architec-
ture: the so-called unknown-input observation. Consider the
continuous-time LTI systemΣ with two outputs shown in
Fig. 7 and described by

ẋ(t) = Ax(t) +B u(t),
e(t) = E x(t),
y(t) = C x(t).

(18)

The unknown-input observation problem of a linear func-
tion of the state (possibly the whole state) is stated as
follows: Design a stable feedforward unit that, connected
to the outputy, provides an exact estimation of the output
e. This problem was the object of very early investigation

+
+

u
e

y

−e

Σ

Σo

η

Fig. 7. Unknown-input observer of a linear function of the state.

in [3], [5]. More recently, owing to its connection with the
fault detection problem, it has been the subject of hundreds
of papers relying on convoluted matrix manipulations, but
duality with the measurable signal decoupling problem has
never been adequately recognized.

The overall system in Fig. 7 is clearly the dual of measur-
able signal decoupling considered in Fig. 5 (the summing
junction on the right is only explanatory), so the design
of an unknown-input observer can be considered a very
standard problem in the geometric approach context. Obvi-
ously, the necessary and sufficient conditions to build a stable
unknown-input observerΣo are still (13), (15) for the dual
of system (18), obtained with the substitutionsAT → A,
BT → C, CT → B, ET → H. However, if an equivalent
set of geometric conditions directly referred to the system
matrices in (18) is sought after, we have that the structural
condition is

S∗
(C,B) ∩ C ⊆ E ,

with C= kerC, E = kerE, and the stability condition is

SM externally stabilizable,

whereSM is defined as

SM = S∗
(C,B) + V∗

(B,C ∩E). (19)

Also in this case, a stabilizer can be used if the system

+

+

u e

Σ

Σo
Σs

η

d

y

−e

u1

Fig. 8. Unknown-input observer with a stabilizer.

is unstable, as shown in Fig. 8. By duality, the outputη is
independent of bothu andd (any disturbance acting on the
stabilizer).
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3) Previewed signal decoupling and delayed state esti-
mation: It has been previously pointed out that a sufficient
condition for stability in the above disturbance and measur-
able signal decoupling problems is phase minimality ofΣ.
If Σ is not minimum-phase, however, it is still possible to
obtain decoupling ifh is known in advance by a certain
amount of time (several times the maximum time constant
of the unstable zeros). In this case the necessary structural
condition is still (17), while the stabilizability condition is

Z(Vm) ∩ C0 = ∅.

In Fig. 9(a), h denotes the previewed signal andhp its

hp
delay

h

u Σ

Σc

y

a)

+

+

u
e

y

ed

−ed

delay

Σo

Σ η

b)

Fig. 9. (a) Previewed decoupling; (b) Delayed unknown-input observation.

unstable zeroVm

Bū
Hh̄

stable zero

α

−α

Fig. 10. Preaction along the unstable zeros.

value t0 seconds in advance, so thathp(t)=h(t+ t0). The
feedforward unitΣc includes a convolutor, also called afinite
impulse response(FIR) system. Refer to Fig. 10 and suppose
that a single impulse is applied at inputh, i.e., assume
h(t)= h̄ δ(t), causing an initial stateHh̄ at time zero. Since
H⊆Vm +B owing to (17), this initial state can be projected
on Vm alongB, and decomposed into three components: a
component onR∗

(B,C), a component on the subspace ofVm

corresponding to strictly stable zeros, and a component on
the subspace ofVm corresponding to strictly unstable zeros.
While the former two (stateα) can be driven to the origin
along stable trajectories onVm, the latter, that corresponds
to unstable motions onVm, can be nulled by a preaction on
u prior to its occurrence (in the time interval[−t0, 0]), thus
cancelling it att=0 (state−α). This is obtained by means
of the aforementioned FIR system, where the convolution
profile corresponding to the control action along the unstable
zeros, computed backward in time, is suitably stored.

The overall system in Fig. 9(a) is dualized as shown in
Fig. 9(b), thus obtaining an unknown-input observer with
delay. The FIR system included inΣc to steer the system
along the unstable zeros is simply dualized by transposing
its convolution profile at each time instant.

B. Disturbance decoupling by dynamic output feedback

Let us now focus on the following extension to the inac-
cessible disturbance decoupling problem with state feedback
considered in Section IV-A.1. Consider the continuous-time

h e

yu Σ

Σc

Fig. 11. Disturbance decoupling by dynamic output feedback.

LTI systemΣ with two inputs and two outputs shown in
Fig. 11 and described by

ẋ(t) = Ax(t) +B u(t) +H h(t),
y(t) = C x(t),
e(t) = E x(t),

whereu denotes the manipulable input andh the disturbance
input. LetB= imB, H= imH, C=kerC andE =kerE. Σc

denotes a feedback dynamic compensator, described by

ż(t) = N z(t) +M y(t),
u(t) = Lz(t) +K y(t).

The disturbance decoupling problem by dynamic output
feedback is set as follows:Design, if possible, a dynamic
compensator(N,M,L,K) such that the disturbanceh has
no influence on the regulated outpute and the overall system
is stable.

This problem is of key importance in control. The struc-
tural conditions for its solution were investigated in [3], [16]
and stated in precise terms in [30], while conditions including
stability were first stated in [34] and restated in terms of
self-bounded controlled invariant subspaces and their duals
in [10], [8]. The structural condition is

S∗
(C,H) ⊆ V∗

(B,E). (20)

Let us recall definition (14) ofVm, the minimum self-
bounded controlled invariant ofΣ containingH, and def-
inition (19) of SM , its dual. The stabilizability conditions
are

SM externally stabilizable,
VM = Vm +SM internally stabilizable.

(21)

Conditions (20), (21) are constructive, since they trace the
way to build a full-order unknown-input observer providing
information to makeVM a locus of state trajectories due to
h while stabilizing the overall system.
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C. Model following

The model following problem has a long history in control
theory. In the geometric framework, it was first addressed in
[26] and refined in [12], [18]. Model following is a particular
case of measurable signal decoupling, and its solution in this
context is straightforward and appealing. The use of self-
bounded controlled invariant subspaces and the geometric
interpretation of invariant zeros has made the most recent
contributions very complete. In fact, they consider both feed-
forward and feedback architectures, and the nonminimum-
phase case. In what follows, the theory developed in [22] will
be briefly reviewed. With reference to Fig. 12, the model

+

_h

u y

ym

ŷΣΣc

Σm

Σ̂

Fig. 12. Model following.

following problem can be stated as follows:Determine, if
possible, a dynamic feedforward compensatorΣc such that
the output of the systemΣ strictly follows (is equal to) the
output of a given modelΣm. The block diagram shown in
Fig. 12 is equivalent to that in Fig. 5, provided the model is
considered as part of the controlled system.

Assume thatΣ is described by the triple(A,B,C) and
Σm by the triple (Am, Bm, Cm). The overall system̂Σ is
thendescribed by

Â =

[
A 0
0 Am

]
, B̂ =

[
B

0

]
, Ĥ =

[
0

Bm

]
, Ĉ =

[
C −Cm

]
.

Both the system and the model are assumed to be stable,
square, left and right invertible. The structural condition
expressed by inclusion (17) is satisfied if

ρ(Σ) ≤ γ(Σm), (22)

i.e., if the relative degreeρ of Σ is less or equal to the
minimum delayγ of Σm. The minimum delay of a triple
(A,B,C) is defined as the minimum value ofi such that
C Ai B is nonzero. Hence the structural condition is satisfied
if a model is chosen with a sufficiently high minimum delay.
Consider the stabilizability condition (16). IfΣ and Σm

have no coincident invariant zeros, it can be shown that the
internal eigenvalues of̂Vm are the union of the invariant
zeros ofΣ and the eigenvalues ofAm, so that in general
model following with stability is not achievable ifΣ is
nonminimum-phase. Hence the stabilizability condition to be
considered together with (22) is

Z(Σ) ⊆ Cg. (23)

Condition (23) can be evaded by properly replicating
in Σm the unstable zeros ofΣ. This can be achieved,
for instance, by assuming a modelΣm consisting of q
independent single-input single-output systems all having
the unstable invariant zeros ofΣ as zeros, so that these

+

+
_

_

Σ

Σm

Σc
r h u

ŷ

y

ym

Fig. 13. Model following with feedback.

are cancelled as internal eigenvalues ofV̂m. This allows to
achieve both input-output decoupling and internal stability,
but restricts the model choice. IfΣ is nonminimum phase,
perfect or almost perfect following of a minimum phase
model may also be achieved ifh is previewed by a significant
time interval t0, as pointed out in Section IV-A.3. In the
geometric approach context, the model following problem
with feedback, corresponding to the block diagram shown in
Fig. 13, is also easily solvable. As in the feedforward case,
bothΣ andΣm are assumed to be stable andΣm to have at
least the same relative degree asΣ. Replacing the feedback

+

+
_

_

Σ

Σm

Σc
r h u

ŷ

y

ym

Fig. 14. A structurally equivalent connection.

+

+

_

+

Σ

Σm

Σc
h

r

u

ŷ

Σ
′
m

Fig. 15. Another structurally equivalent connection.

connection with that shown in Fig. 14 does not affect the
structural properties of the system. However, it may affect
stability. The new block diagram represents a feedforward
model following problem. In fact, note thath is obtained as
the difference ofr (applied to the input of the model) andym
(the output of the model). This corresponds to the parallel
connection ofΣm and a diagonal static system with gain−1,
that is invertible, having zero relative degree. Its inverse is
Σm with a feedback connection through the identity matrix,
as shown in Fig. 15. Let the model consist ofq independent
single-input single-output systems all having the unstable
invariant zeros ofΣ as zeros. Since the invariant zeros of
a system are preserved under state feedback connection,
a feedforward model following compensator designed with
reference to the block diagram in Fig. 15 does not include
them as poles. It is also possible to include multiple internal
models in the feedback connection shown in the figure (this is
well known in the single input/output case), that are repeated
in the compensator, so that bothΣ′

m and the compensator
may be unstable. In fact, zero output in the modified system
may be obtained as the difference of diverging signals.
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However, stability is recovered when going back to the
original feedback connection illustrated in Fig. 13.

D. Noninteraction, fault detection and isolation

Another problem that in the geometric approach con-
text was originally approached with state feedback (even
though using measurable exogenous signals), is noninteract-
ing control.

The noninteracting control problem is stated as follows:
Given an LTI systemΣ whose output is partitioned by blocks
(y1, y2, . . .), derive a controller with the same number of
inputs (α1, α2, . . .) such thatαi allows complete reachability
of outputyi while maintaining at zero all the other outputs.

Only two output blocksy1 andy2 will herein be consid-
ered for the sake of simplicity. ThereforeΣ is described by

ẋ(t) = Ax(t) +B u(t),
y1(t) = C1 x(t),
y2(t) = C2 x(t).

This problem was first approached by Wonham and Morse
in their first paper on geometric approach [36]. The solution
was based on state feedback and static feedforward units, and
was probably suggested by the measurable signal decoupling
layout with static feedforward and feedback shown in Fig. 4.
Achieving the most complete noninteraction with this tech-
nique is more restrictive than with other methods since, in
general, the same state feedback cannot transform any two
controlled invariant subspaces into simple(A+BF )-invariant
subspaces. This drawback can be overcome by extending
the state with a suitable bank of integrators as proposed by
Wonham and Morse in their second paper [27].
An alternative solution, inspired by the measurable signal

+

+

α1

α2

Σ1

Σ2

Σ
u

y1

y2

Fig. 16. Noninteracting control with dynamic feedforward units.

decoupling by means of a dynamic feedforward unit whose
layout is shown in Fig. 5, was proposed in [6]. Refer to
Fig. 16 and suppose now that the controlled systemΣ is
stable. Letyi ∈R

qi andCi = kerCi (i=1, 2). The maximum
subspace that can be reached from the origin while being
invisible at outputy2 is R∗

(B,C2)
and the maximum subspace

that can be reached from the origin while being invisible
at output y1 is R∗

(B,C1)
. These subspaces are internally

stabilizable (or, more exactly, pole assignable) controlled
invariant subspaces whose dynamics can be reproduced in
the feedforward unitsΣ1 and Σ2. Hence noninteraction is
possible if and only if

C1 R
∗
(B,C2)

= R
q1 ,

C2 R
∗
(B,C1)

= R
q2 .

There is a certain degree of freedom in the choice of
inputsα1 andα2. They can be assumed of full dimension,
i.e., corresponding to input matrices spanning the whole

subspacesR∗
(B,C2)

and R∗
(B,C1)

. On the other hand, since
only dynamic reachability is required, owing to the well
known Heymann lemma [13], they can also be assumed to
be scalar without affecting the solvability of the problem. It
is not necessary that the controlled systemΣ be stable, but,
similarly to the measurable disturbance decoupling problem,
only stabilizability and detectability are required. The overall
block diagram for this case, similar to that in Fig. 6, is shown
in Fig. 17.
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u
Σ
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−ym Σs
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Fig. 17. Using a stabilizer in feedforward noninteracting control.
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Fig. 18. Nulling a measurable output.

Note that the stabilizer shown in Fig. 17 is not influenced
by the inputsα1 and α2 since the measured outputym
(from whichΣ is detectable) can be nulled by a signal−ym
generated in the feedforward units, where a replica of the
state evolution produced byα1 and α2 is available. This
idea is illustrated in Fig. 18.

u1

u2
Σ

y Σ1

Σ2

α1

α2

um

Fig. 19. A block diagram for fault detection and isolation.

Let us now consider the block diagram in Fig. 19, which
clearly is the dual of that in Fig. 18. The model ofΣ is

ẋ(t) = Ax(t) +Bm um(t) +B1 u1(t) +B2 u2(t),
y(t) = C x(t),

whereum refers to a measurable input, while bothu1 and
u2 are assumed to be inaccessible. Thefault detection and
isolation (FDI) problem is stated as follows:Given an LTI
systemΣ having an inaccessible input partitioned into blocks
(u1, u2, . . .), derive an observer with the same number of
scalar outputs (α1, α2, . . .) such thatαi is different from zero
if any component ofui is different from zero while all the
other outputs are maintained at zero.
A geometric solution to this problem was first proposed in
[23] and restated in improved terms in [24].

V. GEOMETRIC APPROACH TOH2-OPTIMAL REGULATION

AND FILTERING

The study of the Kalmanlinear-quadratic regulator(LQR)
is the central topic of most courses and textbooks on ad-
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vanced control systems. See, for instance, the books [15],
[2], [17].

Recently, a special attention has been devoted toH2-
optimal control, which is substantially a reformulation of
the LQR as a standard and well settled problem of the
geometric approach (e.g., disturbance decoupling with output
feedback). Feedthrough is not present in general, so that
the standard Riccati equation-based solutions are not im-
plementable and the existence of an optimal solution is not
ensured. Contributions on this subject are [32] and [29]. The
computational tools used to solve the H2-optimal problem
are linear matrix inequalities (LMI), supported by a “special
coordinate basis” that points out the geometric features of
the systems at hand.

An alternative approach is to treat the singular and cheap
problems, where feedthrough is not present, by directly
referring to the LTI system obtained by differentiating the
Hamiltonian function, which can be considered as a generic
dynamic system, with all the previously described features.
This approach, developed in [21], [28], is herein briefly
recalled.

A. Disturbance decoupling in H2-norm

The H2-norm of a continuous-time LTI systemΣ repre-
sented by the differential equations (1) is defined as

‖Σ‖2 =

√
trace

(∫ ∞

0

g(t) gT(t) dt
)
,

whereg(t) denotes the impulse response of the system.
Likewise, for a discrete-time LTI systemΣ represented by

the difference equations (2), the H2-norm is

‖Σ‖2 =

√√√√ trace
( ∞∑

k=0

g(k) gT(k)
)
,

where the impulse responseg(k) is defined like in the
continuous-time case, but referring to the autonomous system
x(k+1)=Ax(k), y(k)=C x(k).

The continuous-time case will be primarily considered
herein. Only the main distinguishing differences will be
added on for the discrete-time case.

The standardlinear quadratic regulator problem(LQR)
is stated as follows:Given a stabilizable LTI system whose
state evolution is described by

ẋ(t) = Ax(t) +B u(t) , x(0) = x0,

determine a control functionu(·) such that the corresponding
state trajectory minimizes theperformance index

J =

∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t) + 2x(t)TS u(t)

)
dt,

(24)
where

[
Q S

ST R

]
is symmetric positive semidefinite.If R> 0

(positive definite), the problem is said to beregular and
its solution is standard, ifR≥ 0 (positive semidefinite) the
problem is said to besingular, while if R=0 the problem
is said to becheap.

It is well known that the regular LQR problem is solved
by a state feedbackF , independent of the initial statex0.

The equivalence of the minimum H2-norm disturbance re-
jection problem and the classical Kalman regulator problem
is a simple consequence of the expression of the H2-norm
in terms of the impulse response of the triple(A,B,C). In
fact, there exist matricesC andD such that

[
CT

DT

] [
C D

]
=

[
Q S

ST R

]
. (25)

Consider the two-input system (12) with also a possible
feedthrough, i.e.,

ẋ(t) = Ax(t) +B u(t) +H h(t),

y(t) = C x(t) +Du(t),
(26)

whereC andD are defined in (25), see Fig. 3. System (26)
is assumed to be left-invertible, not necessarily stabilizable,
and with no zeros on the imaginary axis. It is easily seen
that in our case the H2-norm is the square root of (24) for
the system(A+BF,H,C +DF ) described by

ẋ(t) = (A+BF )x(t) , x(0) = H,

y(t) = (C +DF )x(t),
(27)

wherestate and output are now matrices instead of vectors,
so that it is minimized for anyH by the Kalman feedback
matrix F .

The LQR problem is solvable with the standard geometric
tools. According to the classical optimal control approach,
consider theHamiltonian function

M(t) = x(t)TQx(t) + u(t)TRu(t) + 2x(t)TS u(t)

+p(t)T
(
Ax(t) +B u(t)

)
,

and set the state, costate equations and stationary condition
as

ẋ(t) =
∂M(t)

∂p(t)
, ṗ(t) = −

∂M(t)

∂x(t)
, 0 =

∂M(t)

∂u(t)
.

We derive the followingHamiltonian system

ẋ(t) = Ax(t) +B u(t) , x(0)=hi,

ṗ(t) = −2Qx(t)−ATp(t)− 2S u(t),

0 = 2STx(t) +BTp(t) + 2Ru(t),

(28)

wherehi denotesa generic column ofH, that can be re-
written in the more compact form as

˙̂x(t) = Â x̂(t) + B̂ u(t) + Ĥ h(t),

0 = Ĉ x̂(t) + D̂ u(t),
(29)

with

x̂ =

[
x

p

]
, Ĥ =

[
H

0

]
,

Â =

[
A 0

−2Q −AT

]
, B̂ =

[
B

−2S

]
,

Ĉ =
[
2ST BT

]
, D̂ = 2R.
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Equations (29) can be considered as referring to an LTI
dynamic system whose output is constrained to be at zero.
It follows that minimizing the H2-norm of system (27)
is equivalent to the perfect decoupling problem for the
quadruple(Â, B̂, Ĉ, D̂), that admits a solution if and only
if there is an internally stable(Â, B̂)-controlled invariant
subspacêV∗, output-nulling for the overall extended system
whose projection on the state space of the original system,
defined as

P V̂∗ =

{
x ∈ X :

[
x

p

]
∈ V̂∗

}
,

contains the image of the matrix initial stateH. It can
be proved that the internal unassignable eigenvalues ofV̂∗

having nonzero real parts are stable-unstable by pairs. Hence
a solution of the LQR problem is obtained through the
following steps:

1) computeV̂∗;
2) compute a matrix̂F such that(Â+ B̂F̂ )V̂∗ ⊆ V̂∗;
3) computêVs, the maximum internally stable(Â+ B̂F̂ )-

invariant contained in̂V∗ (this is a standard eigenvalue-
eigenvector problem) and defineV∗

H2
asP V̂s;

4) if H∈V∗
H2

, the problem admits a solutionF that
is computable directly fromV∗

H2
, which is (A,B)-

controlled invariant.

The above procedure provides a state feedback matrixF

corresponding to the minimum H2-norm of the LTI system
with inputh and outputy. This immediately follows from the
previously recalled expression of the H2-norm in terms of the
impulse response. In fact, the impulse response corresponds
to the set of initial states defined by the column vectors of
matrix H.

Let us now briefly consider the extension to the discrete-
time case, corresponding to the two-input system

x(k + 1) = Ax(k) +B u(k) +H h(k),

y(k) = C x(k) +Du(k),
(30)

In this case the Hamiltonian function is

M(k) = x(k)TQx(k) + u(k)TRu(k) + 2x(k)TS u(k)

+ p(k + 1)T
(
Ax(k) +B u(k)

)
,

and the state, costate equations and stationary condition are

x(k + 1) =
∂M(k)

∂p(k + 1)
, p(k) =

∂M(k)

∂x(k)
, 0 =

∂M(k)

∂u(k)
,

i.e.

x(k + 1) = Ax(k) +B u(k), x(0)=hi,

p(k) = 2Qx(k) +AT p(k + 1) + 2S u(k),

0 = 2ST x(k) +BT p(k+1) + 2Ru(k).

Like in the continuous-time case, it is convenient to rewrite
this system in the compact form

x̂(k + 1) = Â x̂(k) + B̂ u(k) + Ĥ h(k),

0 = Ĉ x̂(k) + D̂ u(k),

with

x̂ =

[
x

p

]
, Ĥ =

[
H

0

]
,

Â =

[
A 0

−2A−T Q −A−T

]
, B̂ =

[
B

−2A−T S

]
,

Ĉ =
[
−2BTA−TQ+ 2ST BTA−T

]
,

D̂ = 2R− 2BTA−TS.

The drawback due toA−T when A is singular can be
overcome by using a stabilizing state feedback to be sub-
tracted to the final state feedback solving the problem. The
solution is obtained again with a geometric procedure, but,
unlike the continuous-time case, this time a dead-beat like
motion is also feasible andV∗

H2
covers the whole state space

of system (30) if(A,B) is stabilizable. Hence the problem
of minimizing the H2-norm fromh to y is always solvable
in the discrete-time case.

1) The Kalman regulator:The Kalman regulator is the
minimum H2 norm extension of the exact disturbance de-
coupling problem with stability considered in Section IV-A.

u

h

x

y

Σ

F

Fig. 20. Minimal H2-norm decoupling (Kalman regulator).

Referring to Fig. 20, recall that the H2 norm of a system
Σ : (A,B,C) is the mean power of the output signal when
the input is white noise with zero mean and unitary variance.
The problem of minimizing the H2 norm fromh to y has a
solution if and only if

H⊆V∗
H2

. (31)

Condition (31) replaces (13) and (16) for a minimal norm
solution. It always holds in the regular case (sinceV∗

H2
=R

n

in this case), but also applies to the singular and cheap
cases, where the dimension ofV∗

H2
is always reduced. Notice

that V∗
H2

is an internally stabilizable controlled invariant
subspace, but for synthesis purposes it may be replaced
with the minimum controlled invariant contained in it and
containingH by using (14) withV∗

H2
instead ofC, to reduce

the number of fixed modes.
2) The Kalman dual filter and the Kalman filter:Refer

now to the problems considered in Section IV-A.2, i.e.,
the measurable signal decoupling and the unknown-input
observation of a linear function of the state; let us consider
their H2-norm extensions, represented by the block diagrams
shown in Fig. 21.

The necessary and sufficient condition for the solution of
the H2-norm problem shown in Fig. 21(a) is

H⊆V∗
H2

+ B, (32)

similar to condition (17) for the exact decoupling. It directly
ensures stability and also holds in the singular and cheap
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Fig. 21. (a) Kalman dual filter; (b) Kalman filter.

cases. The block diagram in Fig. 21(b) refers to the Kalman
filter, which is here deduced by duality. The transpose of
the matrix on the right-hand side of (25) represents the
covariance matrix of a global white noise injected into the
state and the output ofΣ. The singular and cheap cases
correspond to incomplete or absent measurement noise (noise
injected at the output).

VI. CONCLUDING REMARKS

In this tutorial paper, we have provided a broad overview
of the main tools, problems and solutions of the geometric
approach. The presentation of the results and selection of the
arguments reflect the personal view of the authors. The main
goal of our work is not completeness: rather, we aimed at
offering a higher perspective of the key topics of geometric
control theory, in order to encourage discussion and stimulate
interest. To conclude, we wish to emphasize that research
on geometric control theory is not in its twilight. In fact,
a number of challenging open problems are still on the
table. It lacks, for instance, a general theory accounting for
input/state/output constraints. Preliminary steps have been
recently taken to address the spectral andJ-spectral factor-
ization problems from a geometric viewpoint [20].
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