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Geometric Control Theory for Linear Systems: a Tutorial

Giovanni Marro, Fabio Morbidi, Lorenzo Ntogramatzidi®©omenico Prattichizzo

Abstract— This paper reviews in a condensed form the main study. In addition, in most cases far too much emphasis
tools and results of the geometric approach developed in the has been given to rigour and formalism — thus covering
last forty years. Because of the vastness of the subject, this yhq innerent simplicity of geometric tools with unnecessarily
tu_torlal o_loes not pretend to_be exhaustive, and more emp_hasns heavy mathematics — whereas too little efforts have been
will be given to selected topics and to the related computational = h ;
tools. The authors hope their effort to provide a unified view of ~devoted to make geometric ideas accessible to the wider
geometric control theory may be profitable to awake renewed community.
interest in this research field. This tutorial paper has the ambition of filling this gap, by
providing an extremely simplified and intuitive presentation
of the basic notions on which geometric control theory relies

Forty years after the introduction of the concepts of conand a short review of the use of the geometric approach tools
trolled and conditioned invariance by Basile and Marro [4]to classify, analyse and solve a number of control problems.
the area of systems and control theory knowrGa®metric In fact, some problems already addressed and solved in
Approach[8], [35], [33] still attracts a great deal of interest.the literature using a rigorous mathematical formalism can

However, nowadays more than ever the research in tHie profitably revisited within the geometric framework to
field seems to be mostly confined to extremely specialisqutovide an alternative and intuitive insight, more suited to
niches. Very few courses in systems and control engineerimgtablish connections between apparently different problems.
around the world include geometric notions, even though addition and no less importantly, the tools of the ge-
these have proved to be extremely profitable in deliveringmetric approach benefit of a very efficient computational
a fresh perspective into several classical problems. Indeeshvironment.
geometry has the potential of offering a very intuitive insight In this paper, rigour will not be sacrificed: however special
into the properties of systems, that can be hardly achievedre will be devoted to present the results in an accessible
with other approaches. In fact, geometric concepts can laad didactic form. The algebra of matrices will be largely
easily understood taking advantage of graphical representmployed, as bases of subspaces, to convey the deep ab-
tions of state and output trajectories evolving on suitablgtract significance of the geometric approach. This will also
defined subspaces; for example, the concepts of controllbelp keep the theoretical exposition of geometric concepts,
and conditioned invariant subspaces, which are the pillaretions and ideas significantly closer to their computational
upon which the geometric control theory has been built ovemplementation.
the past decades, can be grasped in depth by resorting to ain this respect, the GA toolbox [19] provides a suite
intuitive interpretation in terms of the properties of the statef Matlab functions and routines that allow an immediate
trajectories. application of the developed theory.

The huge potential of the geometric approach to enhanceTo conclude, it is worth emphasizing that the goal of this
intuition in solving very difficult analysis and synthesistutorial paper is not to provide a historical perspective of the
problems has been greatly underestimated by the contmkin achievements of geometric control in last four decades.
community. In fact, the tools of geometric control theoryHowever, where possible, a short historical account on the
have been mostly employed not to facilitate insight into thenajor breakthroughs will be presented.
structure of systems and into the solution of fundamental The rest of the paper is organized as follows. In Sec-
problems, but to create a parallel set of definitions antion Il some preliminary definitions are given. In Section
notions that, while extremely elegant and abstract, cannbt some geometrically-stated system properties are pre-
be captured without a long and time consuming preliminargented. Section IV reviews geometrically-solved regulation

problems. Section V is devoted to,+dptimal control and
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C~ in the continuous time or the open unit di€¢ in the admits a solutionX. If so, a basis matrix of7. is given by

discrete time. The symbdl, denotes the imaginary axis in J.=J X + T». The new transformatiof’ = [T} J.] causes

the continuous time and the unit circle in the discrete timed}, =0 in (3).

The symbolo(A) denoteghe spectrum of the square matrix It is easily proved that the sum and the intersection of

A. If 0(A) C Cy4, matrix A is said to bestable. The symbol A-invariant subspaces id-invariant; hence any subset of

@ denotes thalirect sumof subspaces. Given a linear mapthe set of all theA-invariant subspaces contained in a given

A: X — Y andZ C ), the inverse mapi~! Z denotes subspace is closed under sum and the set of all tHe

the set of all the points it whose image according td  invariant subspaces containing a given subsée closed

belongs toZ, i.e, A ' Z={z € X|Az € Z}. under intersection. Hence, the supremum of the former set is

the sum of all thed-invariant subspaces containeddnand

is denoted by7;; similarly, the infimum of the latter set is
The geometric approach deals with subspaces. Propertig intersection of all thed-invariant subspaces containing

of systems are expressed in terms of linear spaces, and eand is denoted by7;".

most important analysis and synthesis algorithms are basedf A:F" — F" (whereF is R or C) the subspacg/; can

on operations on them, including sum, intersection, diregle computed with the sequence

and inverse linear transformation, orthogonal complementa-

tion, etc. Consider a linear time-invariant (LTI) system 1 = G . ) (4)

with input v € RP, statex € R™ and outputy € R9. For Ji = CNAT Jiey, (i=23,...),

the sake of generality and to achieve a better insight into thend 7* with the sequence

meaning of some geometric features of the state trajectories,

Il. GEOMETRIC APPROACH FOUNDATIONS

we will consider both continuous-time systems S = B, ) (5)
J = B+AJ .,  (i=23..),
z(t) = Ax(t)+ Bu(t), ) o
yt) = Calt) (1) Both the above sequences converge in a finite number of

steps (at most).

anddiscrete-time systems ] .

1 Al 4 Bulk B. Controlled invariant subspaces

2 —?k’; ; Cigk% + Bu(k), (2) Given a linear mapd : X — X and a subspacBC &, a

4 ’ subspace’ C X is (A, B)-controlled invariantif the follow-
Thesesystems are often referred to as thiples (A, B,C). ing inclusion holds
Matrices B and C are assumed to be of maximum rank.
Systems (1) and (2) are said to lwternally stable if AVCV+B.

o(A) CCy. The overall theory presented here is groundegontrolled invariant subspaces have the following properties:

on three very intuitive notionscontrolled invariance,con- 1) The sum of any twq A, B)-controlled invariant sub-
ditioned invarianceand invariant zeros.Duality plays an spacess (A B)-controll7ed invariant.

important role in unifying these concepts and it will be 5y | ot 5—im B andC = kerC. A state trajectoryz(-) of
frequently used throughout the paper. Before introducing the continuous or discrete-time LTI systel can be
these concepts, we first need to recall some properties of made invisible at the output by means of a suitable
the so-callednvariant subspaces. control action if and only if the initial state:(0)
A. Invariant subspaces belongs to an(A, B)-controlled invariant subspace
containedin C.
3) For any (A, B)-controlled invariant subspace there
exists a matrix F' (called afriend of V) such that
AT CJ. (A+BF)V C V. If, furthermore, a matrixF' exists
such thatV is an internally stable and/or an externally
stable (A + BF)-invariant, V is said to beinternally
stabilizableand/orexternally stabilizable, respectively.
Property 1 implies that the set of all the controlled
Y [ Ay Al } . (3) invariant subspaces contained in a given subspacet
0 Ay admits a supremum, that coincides with their sum. It can

The A-invariant subspacg’ is said to beinternally stable P& computed with the sequence
if 0(A};) C C, andexternally stableif o(A5,) C C,. Vi = C,

Subspace7 is said to becomplementabléf another A- Vi = CNA ' (V.1 +B), (i=2,3,...), (6)
invariant 7. exists such that7 & J.=X". Let us consider
again the change of basis defined By Subspace” is
complementable if and only if th8ylvester equation

Let X be a vector space and: X — & a linear map. A
subspace7 C X is said to beA-invariant, if

Consider the change of basis defined by the transformation
T = [Ty Ts] with imTy = J and T» such thatT is
nonsingular. MatrixA’ =T-*AT can be written as

that converges in a finite number of steps. Referring to the
system . (continuous or discrete-time), the sequence (6)
converges toV*, the maximal(A, B) controlled invariant
Ay X — X ALy, = —Al, subspace contained @ that is the locus of all the possible
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state trajectories af} invisible at the output. For this reason,D. Reachable subspace i and invariant zeros ok
V* is calledthe maximal output-nulling controlled invariant Still referring to X, consider the previously defined max-

subspace of, [1]. imal output-nulling subspac®&* and define the subspace

A state trajectory .that. CTOSSEs a cgntrolled .|nvar|ant SUbF* C V* as the maximum subspace reachable from the origin
space) can be maintained on it using a suitable contro,

. . . with state trajectories completely belonging W. It has
action that can always be expressed as a static state-to-ingUL 1 shown in [25] that
feedback. Sinc& C V* CC, the segment of trajectory ov

is invisible at the output. R* =V*NS*.

C. Conditioned invariant subspaces HenceR* can be computed by using again the sequences

Conditioned invariant subspaces are dual to Controlle@) and_(7_). NOFe that™ is (A,B)-_controlle_d nvariant.
invariant subspaces. Given a linear mdp: X — X and In fact, it is easily proved that the intersection @i, 5)-

a subspace C X, a subspacé C X is (A,C)-conditioned controlled invariant subspaces containedCirand (A4, C)-
invariant if ’ - ’ conditioned invariant subspaces containiigis (A, B)-

controlled invariant. While any state iR* is completely
A(SNC)CS. reachable from any other state Ri* with state trajectories

Conditioned invariant subspaces enjoy the following proper-
ties: unstable
: zero

1) The intersection of any tw@A, C)-conditioned invari-
ant subspaces is4, C)-conditioned invariant.

2) The state trajectories of the discrete-time systém
that originate atz(0) =0 can be made invisible at the
output for a certain number of stepswhile lying
on a given subspac§ if and only if S is an (4,C)-
conditioned invariant subspace containifig

3) For any(A, C)-conditioned invariant subspackethere
is a matrix G (called a friend of S) such that invisible at the output, the trajectories 0if corresponding
(A+GC)S C S. If, furthermore, a matrixG' exists to initial states not belonging tR* are strictly constrained
such thatS is an externally stable and/or an internallyto be linear combinations of modes of the tyfye:—! %,
stable (A + GC)-invariant subspaceS$ is said to be calledfixed modes. The values ¢f, in general complex, are
externally stabilizableand/or internally stabilizable, called theinvariant zerosof ¥ and the maximum value of
respectively. the integermy, is said themultiplicity of ¢;, see Fig. 1.

Property 1 implies that the set of all the conditioned in- L€t I" be a friend ofy*. Consider the change of basis
variant subspaces containing a given subspaceY admits defined by the transformatioh = [73 75 T3] with imT; =
an infimum, that coincides with their intersection. It can bé®”, iIm[T1 T>] = V* and T3 such thatl" is nonsingular. The

can be written as

R*

stable
zZero

Fig. 1. R* and some trajectories corresponding to invariant zeros.

S = B
’ : @) Ay AL, A B]
S, = B+A(S;_ ne), =2,3,...), 11 12 13 1
i + ( 1 ) (Z ) A = 0 A/22 A/23 7 B = 0 ’
that converges to it in a finite number of stepsReferring 0 0 Al B
to the system>, the sequence (7) yieldS*, which is the ¢ =100 C]. 8)

minimal (A4, C) conditioned invariant subspace containifig
that for discrete-time systems is the maximal subspace of The invariant zeros o correspond to the eigenvalues
the state space reachable from the origin in at mosteps of matrix A},. Both the pairs(A},, B;) and (A%, BS)
with trajectories that have all the states except the last osee stabilizable if such i€. The self-bounded controlled
invisible at the output. Subspaéé is also calledhe minimal invariant subspacesf ¥ are defined, in the new basis, as
input-containing conditioned invariant subspace 0f the sum ofR* with the invariant subspaces df,,, [7], [31].
Property 2 has no counterpart in the continuous-time ca3éne system is said to be afinimum phasé all its invariant
unless control functions, that are usually considered to kmeros are inC,. Hence, the invariant zeros af are the
piecewise continuous, are extended to include distributionmternal unassignable eigenvalues\of and will be referred
This aspect is beyond the scope of this work and is therefote with the symbolZ(V*) or Z(X). By extension, we will
omitted. A state trajectory of a discrete-time system startindenote withZ()) the internal unassignable eigenvalues of
from the origin can be maintained on a subsp&céor a any controlled invariant subspade If V is self-bounded,
certain number of steps with a suitable control action if ande., satisfiesR* CV CV*, Z(V) is a subset of the invariant
only if S is a conditioned invariant subspace containifig zeros ofX.
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E. Extension to quadruples A. Controllability and observability

For the sake of simplicity, the geometric concepts in- The concepts ofcontrollability and observability were
troduced in the previous sections have been defined fgmtroduced in the early 60s to state mathematical conditions
LTI systems represented by a triple, B, C'), without any connected with the existence and uniqueness of Kalman
feedthough matrixD. However, these ideas can easily be exregulators and filters. Kalman himself pointed out that the
tended to systems represented by a quadrgplé3,C, D), reachable subspac® of an LTI systemY is the mini-

i.e., ruled by mum A-invariant subspace containing = im B and the
i(t) = Ax(t)+ Bu(t), unobs_,erve_lble subspabtkthe maximumA-invariant_subspace
y(t) = Cux(t)+ Du(t), (9 containedin C = kerC, [14]. These were the first system
properties stated in geometric terms, and the related control-
and x(k+1) = Ax(k)+ Bu(k) lability and observability subspaces can be computed with
yk) = Calk)+ Du(k)’, (10)  the recursive algorithms (5) and (4), respectively.

Recall that if ¥ is completely reachable (i.eR =2X),

in the continuous and discrete-time case, respectively. . .
. ' 7 . the eigenval A + BF ar mpletel ignabl
In these cases, output-nulling subspaces and their frlentolse elgenvalues ok + are completely assignable by

: . a“ suitable choice ofF. If ¥ is completely observable
are defined as pairs ¢ F) such that(A+BF)VYCV . - ;
andy Cker(C' + DF). Likewise, input-containing subspaces(l'e" U={0}), the eigenvalues ofl + G:C' are completely

N ) . assignable by a suitable choice 6&f. This is the pole
and their friends are defined as pairs §G) such that . I : .
(A+GC)SCS andS Dim(B+GD). assignability property of static state feedback and static

Thecomputation of the maximum output-nulling subspacémtpm Injection.

V* and the minimum input-containing subspage is still B Left invertibility, right invertibility, and relative degree
possible with algorithms (6) and (7) applied 1o a suitably Consider the continuous-time LTI system (1) or (9) with

extended system. Refer to the overall syst€nshown in #(0) =0 and assume that its input functiar?) is bounded

D and piecewise continuous. We introduce the following defi-
nitions.
u ++ y Z . . . . . .
(A,B,0) & Ze , 1) The sysf[em is said to bi?eft invertible if, given
any admissible output function(t), t € [0,¢4], t1 >0,

thereis a unique corresponding input functiart),
3 t €[0,¢1) producingthat output functiony(t).
2) The system is said to baght invertible if there is

. . ) , i an integerp > 1 such that, given any output function
Elg. 2, whereX, is a se; of mteg_rators in the co_ntmuous- y(t), te [0, 1], t1 >0 with piecewise continuous-th
time case or a set of unit delays in the discrete-time case. It o iative and such thag(0) =0, ..., y»~D(0)=0

can be described by the extended statnd extended triple there is at least one input function(t), ¢ € [0,t;)

(4, B,C) defined as producing that output functiony(¢). The minimum
.|z ~ A0 5 |[B ~ value of p satisfying the above statement is called the
r= M’ A= {C O}’ B= {D}’ ¢=[0 L]. ay relative degreeof the system.

Consider the discrete-time LTI system (2) or (10) with
2(0) =0 and assume that its input functiaitt) is bounded.

Fig. 2. An artifice to reduce a quadruple to a triple.

Let us compute the output nuIIinE]* with basis matrixi/
for systemY and the corresponding friengl with (6), and

denote with 1) The system is said to bleft invertible if, given any
~ v ~ admissible output functiory(k), k€[0,k1], k1 >n,
V= { Vo } , F=[FR B, thereis a unique corresponding input functiarik),

k€0, k1) producingthat output functiory (k).

The system is said to beght invertible if there is an
integerp > 1 such that, given an output functiaink),
k€[0,k1], k1 >p suchthat y(k)=0, ke€l0,p—1],
thereis at least one input functioa(k), k € [0, k1 — 1]
producing that output functiony(k). The minimum
value of p satisfying the above statement is called the
relative degreeof the system.

The geometric necessary and sufficient conditions for left
and right invertibility of both continuous and discrete-time
Ill. GEOMETRICALLY-STATED SYSTEM PROPERTIES systems are simple when expressed in term¥’ofind S*:
In the next two sections, the properties of controllability, , |eft invertibility:
observability, left and right invertibility and relative degree,
will be expressed in geometric terms. V' nsT={0}.

their partitions according to (11). Owing to the structure of 2)
C, it turns out thatV, =0 and I, =0 and the maximum
output nulling subspace of the quadrufld, B,C, D) is
V*=imV; and thatF} is a corresponding friend adapted
to its basis matrix/;.

A similar procedure applies t6*. The definitions ofR*
and invariant zeros in Section II-D are still valid, provided
that they are referred to the subspat¥sandS* defined in
this section.
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« Right invertibility: problem was not completely solved at the outset. The system
with state feedback is described by
Vi +ST=2X.
z(t) = (A+ BF)xz(t)+ Hh(t),
« Relative degree: y(t) = Cux(t).

For a right invertible system without feedthrough the _ o
relative degree is the minimal value of such that It behaves as requested if and only if its reachable set,by

V*4+S,=X where S; (i=1,2,...) is provided by i.e., the minimum(A + BF)-invariant subspace containing
sequence (7). For systems with feedthrough this stiftt, iS contained irC. Denote by, ., the maximum output-
holds but referred to a suitably extended system, like theulling (4, B)-controlled invariant subspace containedCin
one shown in Fig. 2 (note that in this case the computedince any(A + BF)-invariant subspace i§4, 5)-controlled

relative degree has to be reduced by One)_ invariant, the inaccessible disturbance deCOUpling prOblem
has a solution if and only if
IV. GEOMETRICALLY-SOLVED REGULATION PROBLEMS HC V(*B,C)' (13)

In this section we introduce some basic control problems 115 is a necessary and sufficiesituctural conditionand
and present necessary and sufficient constructive conditio§§es not ensure internal stability. If stability is required,

for their solvability. For the sake of brevity the proofs argye nave the inaccessible disturbance decoupling problem
omitted: the interested reader can find them in specializggh, stability. Stability is conveniently handled by using

books [8], [35]- the self-bounded controlled invariant subspaces, introduced
in Section 1I-D. Recall that anyA, B)-controlled invariant
subspace) which is self-bounded with respect tb(*B )

When the output of a system must be decoupled from agtisfies the relation
input signal we must distinguish three cases X *

PHE =19 st A1 . Riey SV EViBey

1) (inaccessible) disturbance decoupling . )

2) measurable signal decoupling and the sgt of all the self-bounded controlled_ |nvar|ar_1t
subspaces is closed with respect to both sum and intersection:
S ) . it is therefore possible to define the minimum self-bounded
This distinction is basic for a correct statement and solutiofyntrolied invariant subspaces containiig provided that

of the corresponding control problem. Feedback is strictlylg) holds. This is the reachable subspace with both inputs
required only in the first case, since the second and thitd 547, that clearly containg{. It is defined as
case are solvable with feedforward, possibly applied to a '

system which has been pre-strengthened with feedback. Vin = V(g ,e) N S(e.51w) (14)
1) Inaccessible disturbance decoupling by state feedback:-l-he change of basis shown in (8) also holds oy,

The_ disturbance decoupling pr_oblem by state feedback_ is tﬂ?stead ofv* with the stabilizability property of A%, BY,).
basic problem of the geometric approach. It was studied Wgce there is a state feedbakk, achieving disturbance
[9] and [36] as one of the earliest applications of these neWecoupling and making the overall system stable if and only
concepts. _ _ _ if V,, is internally stabilizable. Thus, the necessary and
_ Consider the continuous-time LTI systel with tWo g icient conditions for the solvability of the disturbance
inputs shown in Fig. 3, described by decoupling problem with stability are both the structural
#() = Ax(t)+ Bu(t)+ Hh), 12) condition (13) and the followingtabilizability condition:
y(t) = Cux(), V,., internally stabilizable, (15)
whereu denotes the manipulable input ahdhe disturbance that is equivalent to
input. LetB=imB, H=imH andC =kerC. The (inacces-
sible) disturbance decoupling problem is stated as follows: Z(Vn) € Cy. (16)
Determine, if possible, a state feedback matfbsuch that gince z(,,) is a part of Z(V¥4.), phase minimality
the disturbanceh has no influence on the outpyt In  ensures stabilizability. (50

A. Disturbance decoupling

3) previewed signal decoupling

A 2) Measurable signal decouplingThis problem can be
Y stated as followsDetermine, if possible, a static or dynamic
u by T compensator such that the measurable sighahas no
T influence on outputy. The system is still ruled by (12).
F J z This problem appears as a slight extension of the previous

inaccessible disturbance decoupling problem, but indeed it
is very different and opens out to many types of solution.
The first solution considered in the literature, based on state
spite of its apparent simplicity, the disturbance decouplinfeedback and static feedforward, is illustrated in Fig. 4. The

Fig. 3. The inaccessible disturbance decoupling problem.
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y Now let us consider the dual problem of the measur-
— able signal decoupling with feedforward control architec-
ture: the so-called unknown-input observation. Consider the
continuous-time LTI systent with two outputs shown in
Fig. 7 and described by

Fig. 4. Measurable signal decoupling with state feedback. a(t) = Ax(t)+ Bull),
e(t) = FEua(t), (18)
y(t) = Ca(t).
structural necessary and sufficient condition for its solvability The unknown-input observation problem of a linear func-
[11], is tion of the state (possibly the whole state) is stated as
HC V(*B’C) + B. (17) follows: Design a stable feedforward unit that, connected

to the outputy, provides an exact estimation of the output

In fact if (17) holds, by assuming as matrix in Fig.4 1 hroblem was the object of very early investigation

a projection of Hh on V{B;C) along B, the action of input

h is driven onV(y ., hence it is invisible at the output. u €

It can be proved that the stabilizability condition for this —1 X Y ++T n
problem is again given by (15) or (16), provided that (17) )

is satisfied [8]. However, the block scheme shown in Fig. 4 ° —e

is not the most convenient for achieving decoupling of a

measurable signal since it requires full access to the state. Fig. 7. Unknown-input observer of a linear function of the state.

Let us consider instead the layout shown in Fig. 5 where i, [3] [5]. More recently, owing to its connection with the

is a replica of the system with feedback shown in Fig. 4. It igy i detection problem, it has been the subject of hundreds
worth noting that the dynamics @i, can be restricted @y,  of papers relying on convoluted matrix manipulations, but

that is an internally stabl¢A + BF,,)-invariant subspace qality with the measurable signal decoupling problem has
containingthe projection ofl{h onV,, along 3. However . aver peen adequately recognized.

h The overall system in Fig. 7 is clearly the dual of measur-
)y Yy able signal decoupling considered in Fig.5 (the summing

I junction on the right is only explanatory), so the design

Zc of an unknown-input observer can be considered a very

standard problem in the geometric approach context. Obvi-

Fig. 5. Measurable signal decoupling with a feedforward compensator.ousW’ the _necessary and suff|C|er_1t conditions to build a stable
unknown-input observel, are still (13), (15) for the dual

in this caseX must be stable. But, if it is unstable, feedbackf system (18), obtained with the substitutiodd — A,

can be avoided as shown in Fig.6. Xf is stabilizable BT — C, CT — B, E" — H. However, if an equivalent

B y set of geometric conditions directly referred to the system
. D ? matripgs ip (18) is sought after, we have that the structural
L _I_:% condition is
Y ' j SiopNCCE,
_ﬂ\—> ES — with C =kerC, £ =kerE, and the stability condition is
=0 Sy externally stabilizable,
Fig. 6. Using both a compensator and a stabilizer. whereS,, is defined as
from v and detectable from a suitable measurable output Sm =Sk +Visene): (19)

ym (possibly coinciding withy, but, in general, provided g in this case, a stabilizer can be used if the system
by a second output matrig’;), 3 can be stabilized with a

feedback unitX, which can be maintained at zero by the N €

pre-compensator since this reproduces the state evolution U1 XY ol
(hence the output) ok, restricted toV,,. If y,, =y this E )y +
connection is not necessary. The stabilizer is based on the d Yo [—’ O |-e
state feedback matrik such thatA+ BFj is strictly stable — S

and the output injectiortz, such thatA+ G,C, is strictly

stable, i.e.y, : (A 4+ BF, +G.Cy, -G, Fs)- The input Fig. 8. Unknown-input observer with a stabilizer.

matrix —G, is referred to both inputs. Note that the outputis unstable, as shown in Fig.8. By duality, the outpuis
of the stabilizer is identically zero, since its inputs due tandependent of botl andd (any disturbance acting on the
the action ofh on ¥ andX. cancel each other. stabilizer).
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3) Previewed signal decoupling and delayed state esti- The overall system in Fig.9(a) is dualized as shown in
mation: It has been previously pointed out that a sufficienFig. 9(b), thus obtaining an unknown-input observer with
condition for stability in the above disturbance and measudelay. The FIR system included ¥, to steer the system
able signal decoupling problems is phase minimality>of along the unstable zeros is simply dualized by transposing
If ¥ is not minimum-phase, however, it is still possible toits convolution profile at each time instant.
obtain decoupling ifh is known in advance by a certain
amount of time (several times the maximum time constari. Disturbance decoupling by dynamic output feedback
of the unstable zeros). In this case the necessary structura| ot ys now focus on the following extension to the inac-
condition is still (17), while the stabilizability condition is  cagsiple disturbance decoupling problem with state feedback

Z(V,n) N Co = 0, considered in Section IV-A.1. Consider the continuous-time

h e
In Fig.9(a), » denotes the previewed signal ahg its w ] ) Ty
h
— - defay | y j
U Z Ec
e |
a) Fig. 11. Disturbance decoupling by dynamic output feedback.

LTI system X with two inputs and two outputs shown in

u S Fig. 11 and described by
Y Hj 7

@(t) = Axz(t)+ Bu(t)+ Hh(t),
L 20 ey y(t) = Cux(t),
b) e(t) = Eua(t),

whereu denotes the manipulable input ahdhe disturbance
Fig. 9. (a) Previewed decoupling; (b) Delayed unknown-input observatior?nput. LetB=imB, H =imH, C =kerC and€ =kerE. 3,
denotes a feedback dynamic compensator, described by

stable zero 2(t) = Nz(t)+ My(t),
w(t) = Lz(t)+ Ky(t).

The disturbance decoupling problem by dynamic output
feedback is set as followdesign, if possible, a dynamic
compensatof N, M, L, K) such that the disturbanck has
unstable zero no influence on the regulated outpuéind the overall system
is stable.

This problem is of key importance in control. The struc-
tural conditions for its solution were investigated in [3], [16]
value ¢, seconds in advance, so thiaf(t) = h(t+t,). The and stated in precise terms in [30], while conditions including
feedforward unifS.. includes a convolutor, also calledinite  stability were first stated in [34] and restated in terms of
impulse respons@-IR) system. Refer to Fig. 10 and supposeself-bounded controlled invariant subspaces and their duals
that a single impulse is applied at inpit i.e., assume in [10], [8]. The structural condition is
h(t)=hé(t), causing an initial statélh at time zero. Since

Fig. 10. Preaction along the unstable zeros.

H CV,, + B owing to (17), this initial state can be projected 3(*6,%) S Vise): (20)
on V,, along B, and decomposed into three components: a
component orRE*BC , @ component on the subspaceldf Let us recall definition (14) of,,, the minimum self-

corresponding to strictly stable zeros, and a component dounded controlled invariant of containing?, and def-
the subspace of,, corresponding to strictly unstable zeros.inition (19) of Sy, its dual. The stabilizability conditions
While the former two (statey) can be driven to the origin are
along stable trajectories oW, the latter, that corresponds

to unstable motions oW,,,, can be nulled by a preaction on

u prior to its occurrence (in the time intervitig, 0]), thus
cancelling it att =0 (state—«). This is obtained by means Conditions (20), (21) are constructive, since they trace the
of the aforementioned FIR system, where the convolutioway to build a full-order unknown-input observer providing
profile corresponding to the control action along the unstabiaformation to make),,; a locus of state trajectories due to
zeros, computed backward in time, is suitably stored. h while stabilizing the overall system.

Sy externally stabilizable,

Var = Von + Sy internally stabilizable. %1
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. r + h u Y

C. Model following — Y N )

The model following problem has a long history in control ‘ Y
theory. In the geometric framework, it was first addressed in y -

. - . . . m

[26] and refined in [12], [18]. Model following is a particular Em
case of measurable signal decoupling, and its solution in this
context is straightforward and appealing. The use of self- Fig. 13. Model following with feedback.

bounded controlled invariant subspaces and the geometric

interpretation of invariant zeros has made the most recent

contributions very complete. In fact, they consider both feecre cancelled as internal eigenvaluesiyf. This allows to
forward and feedback architectures, and the nonminimur@chieve both input-output decoupling and internal stability,
phase case. In what follows, the theory developed in [22] wilput restricts the model choice. ¥ is nonminimum phase,
be briefly reviewed. With reference to Fig. 12, the modePerfect or almost perfect following of a minimum phase

- . model may also be achievedifis previewed by a significant
! ¥y oo time intervalty, as pointed out in Section IV-A.3. In the
ZC 1 )y L geometric approach context, the model following problem
h } i with feedback, corresponding to the block diagram shown in
| Zm | Fig. 13, is also easily solvable. As in the feedforward case,
i 7 T J both X andX,,, are assumed to be stable axig, to have at
least the same relative degreedas Replacing the feedback
Fig. 12. Model following. r . _h U y
following problem can be stated as followBetermine, if - Zc 2 n

Y

possible, a dynamic feedforward compensaiirsuch that
the output of the systeli strictly follows (is equal to) the 3 Ym
output of a given modeL,,. The block diagram shown in m
Fig. 12 is equivalent to that in Fig.5, provided the model is
considered as part of the controlled system.
Assume that® is described by the tripl¢A, B, C) and
Y by the triple (4,,,, By, Cy,). The overall systenk is
thendescribed by
- A0 - B| - 0 A
i [A 0] e[l a2 emleca
Both the system and the model are assumed to be stable,

square, left and right invertible. The structural condition
expressed by inclusion (17) is satisfied if Fig. 15. Another structurally equivalent connection.

Fig. 14. A structurally equivalent connection.

Pp(2) < Y(Sm), (22) connection with that shown in Fig.14 does not affect the
structural properties of the system. However, it may affect
e., if the relative degreep of X is less or equal to the stapility. The new block diagram represents a feedforward
minimum delayy of ¥,,. The minimum delay of a triple model following problem. In fact, note thatis obtained as
(A, B,C) is defined as the minimum value @fsuch that tne difference of (applied to the input of the model) ang,
C A' B is nonzero. Hence the structural condition is saUsﬂer{he output of the model). This corresponds to the parallel
if a model is chosen with a sufficiently high minimum delay.connection of:,, and a diagonal static system with gain,
Consider the stabilizability condition (16). I£ and X, that is invertible, having zero relative degree. Its inverse is
have no coincident invariant zeros, it can be shown that the = with a feedback connection through the identity matrix,
internal eigenvalues ob,, are the union of the invariant a5 shown in Fig. 15. Let the model consistgindependent
zeros ofX and the eigenvalues ofl,,, so that in general gjngle-input single-output systems all having the unstable
model following with stability is not achievable it is jnvariant zeros oft as zeros. Since the invariant zeros of
nonminimum—phase. Hence the Stab|l|zab|l|ty condition to bg System are preserved under state feedback Connection,
considered together with (22) is a feedforward model following compensator designed with
Z(3) C C,. (23) reference to the _block diagrgm in Eig. 15 does_not _include
them as poles. It is also possible to include multiple internal
Condition (23) can be evaded by properly replicatingnodels in the feedback connection shown in the figure (this is
in X,, the unstable zeros oE. This can be achieved, well known in the single input/output case), that are repeated
for instance, by assuming a modg&l,, consisting ofg in the compensator, so that bokj, and the compensator
independent single-input single-output systems all havingay be unstable. In fact, zero output in the modified system
the unstable invariant zeros &f as zeros, so that thesemay be obtained as the difference of diverging signals.
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However, stability is recovered when going back to theubspaceﬂ*&cz) and Ripec,y- ON the other hand, since
original feedback connection illustrated in Fig. 13. only dynamic reachability is required, owing to the well
known Heymann lemma [13], they can also be assumed to
be scalar without affecting the solvability of the problem. It
Another problem that in the geometric approach conis not necessary that the controlled systErbe stable, but,
text was originally approached with state feedback (evesimilarly to the measurable disturbance decoupling problem,
though using measurable exogenous signals), is noninterastly stabilizability and detectability are required. The overall
ing control. block diagram for this case, similar to that in Fig. 6, is shown
The noninteracting control problem is stated as followsn Fig. 17.
Given an LTI systert whose output is partitioned by blocks
(y1,%2,...), derive a controller with the same number of
inputs (o, s, . . .) such thatn; allows complete reachability
of outputy; while maintaining at zero all the other outputs.
Only two output blocksy; andy. will herein be consid-

D. Noninteraction, fault detection and isolation

Y | 2s=0

ered for the sake of simplicity. Therefobe is described by —
a:(t) = A:c(t) +B u(t), Fig. 17. Using a stabilizer in feedforward noninteracting control.
yi(t) = Crz(t),
nit) = Casl) £ et :

This problem was first approached by Wonham and Morse N T QF)” Z Ym — 0

in their first paper on geometric approach [36]. The solution 2 22 @ %

was based on state feedback and static feedforward units, and —Ym

was probably suggested by the measurable signal decoupling

layout with static feedforward and feedback shown in Fig. 4. Fig. 18. Nulling a measurable output.

Achieving the most complete noninteraction with this tech- Note that the stabilizer shown in Fig. 17 is not influenced
nigue is more restrictive than with other methods since, iBy the inputsa; and a» since the measured outpyt,
general, the same state feedback cannot transform any tyygym which ¥ is detectable) can be nulled by a sighaj.,
controlled invariant subspaces into simpleBF')-invariant  generated in the feedforward units, where a replica of the

subspaces. This drawback can be overcome by extendiggie evolution produced by, and as is available. This
the state with a suitable bank of integrators as proposed Ryea is illustrated in Fig. 18.

Wonham and Morse in their second paper [27].

) . T . u o
An alternative solution, inspired by the measurable signal u; y El -
Oi) E Y1 Um Z N
— X | v Sy |-
[6%) + 77
<) 22

Fig. 19. A block diagram for fault detection and isolation.

Fig. 16. Noninteracti trol with d ic feedf d units. . . - .
9 oninteraciing control wifth dynamic feeciorvard tnits Let us now consider the block diagram in Fig. 19, which

decoupling by means of a dynamic feedforward unit whoselearly is the dual of that in Fig. 18. The model Bfis

layout is shown in Fig.5, was proposed in [6]. Refer to i(t) = Ax(t)+ B um(t) + Bruy(t) + Baus(t),
Fig.16 and suppose now that the controlled systénis y(t) = Ca(t),

stable. Lety; € R% andC; =kerC; (i =1,2). The maximum . .
Y (i ) I)Ql’hereum refers to a measurable input, while bath and

subspace that can be reached from the origin while bei d 1o be | ible. Thelt d ) d
invisible at outputys is RE‘B@ and the maximum subspace 2 are assumed to be inaccessible. t detection an

that can be reached from the origin while being invisibIéSOI"’V[Ion (FD.I) prob_lem IS st.ated. as foIIovy_SBwen_ an LTl
at output y; is Rise): These subspaces are interna"ysysternZ having an inaccessible input partitioned into blocks
sl

stabilizable (or, more exactly, pole assignable) controlle@‘l’lug’“')' derive an obser%/e;] W'th. tz_eﬁsamef number  of
invariant subspaces whose dynamics can be reproducedSfRIar OUtPULS (¢ a2, .. .) such thaty, is different from zero

the feedforward unite2; and X,. Hence noninteraction is if any component ofy; is different from zero while all the
possible if and only if other outputs are maintained at zero.

A geometric solution to this problem was first proposed in
CiRige, = R%, [23] and restated in improved terms in [24].

CyR? = R%,
(B,C1) V. GEOMETRIC APPROACH TOH5-OPTIMAL REGULATION

There is a certain degree of freedom in the choice of AND FILTERING
inputs a; and as. They can be assumed of full dimension, The study of the Kalmatinear-quadratic regulato(LQR)
i.e., corresponding to input matrices spanning the wholis the central topic of most courses and textbooks on ad-
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vanced control systems. See, for instance, the books [15],1t is well known that the regular LQR problem is solved
[2], [17]. by a state feedback’, independent of the initial state,.

Recently, a special attention has been devotedHie The equivalence of the minimumgkhorm disturbance re-
optimal control, which is substantially a reformulation ofjection problem and the classical Kalman regulator problem
the LQR as a standard and well settled problem of this a simple consequence of the expression of thenétm
geometric approach (e.g., disturbance decoupling with outpint terms of the impulse response of the triglé, B, C). In
feedback). Feedthrough is not present in general, so thaict, there exist matrice§ and D such that
the standard Riccati equation-based solutions are not im- T

! . o C Q S
plementable and the existence of an optimal solution is not { DT ] [ C D ] = [ ST R }
ensured. Contributions on this subject are [32] and [29]. The
computational tools used to solve the-Bptimal problem Consider the two-input system (12) with also a possible
are linear matrix inequalities (LMI), supported by a “speciafeedthrough, i.e.,
rdin is” th in h metric f r f

;:ﬁ:sdysltrisbz? ia;d{_ﬂ points out the geometric features o W) = Aw(t)+ Bu(t)+ Hh(t),

An alternative approach is to treat the singular and cheap y(t) = Cux(t)+ Dul?),

problems, where feedthrough is not present, by directijhere and D are defined in (25), see Fig.3. System (26)
referring to the LTI system obtained by differentiating thes assymed to be left-invertible, not necessarily stabilizable,
Hamiltonian function, which can be considered as a generig,4 with no zeros on the imaginary axis. It is easily seen
dynamic system, with all the previously described featuregn,t in our case the Hnorm is the square root of (24) for
This approach, developed in [21], [28], is herein brieflypa system(A + BF, H,C + DF) described by

(25)

(26)

recalled.
i(t) = (A+BF)a(t), =(0)=H,
: o 27
A. Disturbance decouplm_g in J-lngrm () = (C+DF)a(t), 27)
The H,-norm of a continuous-time LTI systefd repre- . )
sented by the differential equations (1) is defined as wherestate and output are now matrices instead of vectors,
so that it is minimized for anyd by the Kalman feedback
o matrix F.
_ T
1= = \/trace(/o 9(t)g'(t) dt)’ The LQR problem is solvable with the standard geometric

] tools. According to the classical optimal control approach,
whereg(t) denotes the impulse response of the system. qnsider thedamiltonian function

Likewise, for a discrete-time LTI systed represented by

the difference equations (2), the,#orm is M) = 2(t)"Qx(t) +u(t)"Ru(t) + 2x(t)"S u(t)
= +p(t)" (Az(t) + Bu(t)),
IZll2 = \l trace(Z 9(k) gT(k))’ and set the state, costate equations and stationary condition
k=0 as
where the impulse responseg(k) is defined like in the . OM (t) OM (1) OM (t)
continuous-time case, but referring to the autonomous system * t) = ap(t) pt) =~ dx(t)’ - u(t)

x(k+1)=Axz(k), y(k)=C z(k). . ) o
The continuous-time case will be primarily considered Ve derive the followingHamiltonian system

hg(rjeig. Orf1|y trr:e dr_nain distinguishing differences will be i(t) = Axz(t)+ Bu(t), =z(0)=h,,
added on for the discrete-time case. . o AT
The standardinear quadratic regulator problen{LQR) pt) = QTQm(t) fp(t) 25 u(t), (28)
is stated as followsGiven a stabilizable LTI system whose 0 = 25%(t)+ B'p(t) + 2 Ru(?),
state evolution is described by where h; denotesa generic column offf, that can be re-
i(t) = Az(t) + Bu(t), (0)= 0 written in the more compact form as
determine a control function(-) suc that the corresponding a(t) = fi’(t) + liu(t) + H h(t), (29)
state trajectory minimizes thegerformance index 0 = Cz(t)+ Du(t),
J = / (@) Q(t) + u®) Ru(t) + 22()"Su(t)) dt, W N o
’ (24) x_{p}’H_{O]’

whee | 4 ;J is symmetric positive semidefinité. R > 0

(positive definite), the problem is said to Wegular and

its solution is standard, iR >0 (positive semidefinite) the A= { A 0 ; } . B= [ B ] ,
problem is said to baingular, while if R =0 the problem R —2Q -4 R —25

is said to becheap. C=1[25 B"], D=2R
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Equations (29) can be considered as referring to an LTWith
dynamic system whose output is constrained to be at zero. 4= [ z } j [ H ]
It follows that minimizing the H-norm of system (27) ’ U
is equivalent to the perfect decoupling problem for the
quadruple(A, B, C, D), that admits a solution if and only 4 — { A_T O_T } , B = [ B } 7
if there is an internally stableéﬁ, g)—controlled invariant —2477Q -4
subspace’*, output-nulling for the overall extended system

whose projection on the state space of the original system, C=[-2B"A7"Q+28" B'AT],
defined as D=2R-2B'A°TS.
Py = {I cX - { €z } c 9*}7 The drawback due to4*.T.v.vhen A is singular can be
p overcome by using a stabilizing state feedback to be sub-

contains the image of the matrix initial stai. It can tracted to the final state feedback solving the problem. The
be proved that the internal unassignable eigenvalueﬁ*of solution is obtained again with a geometric procedure, but,

having nonzero real parts are stable-unstable by pairs. Her¢dlike the continuous-time case, this time a dead-beat like

a solution of the LQR problem is obtained through thdnotion is also feasible andy;, covers the whole state space
following steps: of system (30) if(A, B) is stabilizable. Hence the problem

of minimizing the H-norm from A to y is always solvable
in the discrete-time case.

1) The Kalman regulator:The Kalman regulator is the
minimum H, norm extension of the exact disturbance de-
coupling problem with stability considered in Section IV-A.

1) computeﬁ*;

2) compute a matri¥’ such that(A + BF)V* C V*;

3) compute),, the maximum internally stab(e@+ Ef)-
invariant contained in* (this is a standard eigenvalue-
eigenvector problem) and defing;, asPﬁs;

4) if HeVy,, the problem admits a solutio’ that WL, y
is computable directly fromVy; , which is (A, B)- U > .
controlled invariant.
. . :L'
The above procedure provides a state feedback matrix
corresponding to the minimumdhorm of the LTI system
with inputh and outputy. This immediately follows from the Fig. 20. Minimal H;-norm decoupling (Kalman regulator).

previously recalled expression of the4dorm in terms of the  Referring to Fig. 20, recall that the Hhorm of a system
impulse response. In fact, the impulse response correspongs (A, B, C) is the mean power of the output signal when

to the set of initial states defined by the column vectors ghe input is white noise with zero mean and unitary variance.

matrix H. . _ _ . The problem of minimizing the Hnorm fromh to y has a
Let us now briefly consider the extension to the discreteso|ytion if and only if

time case, corresponding to the two-input system

x(k+1) = Ax(k)+ Bu(k)+ Hh(k), N o
(30) Condition (31) replaces (13) and (16) for a minimal norm
y(k) = Ca(k)+Du(k), solution. It always holds in the regular case (siigg =R"
In this case the Hamiltonian function is in this case), but also applies to the singular and cheap
cases, where the dimension)df, is always reduced. Notice
M(k) = z(k)'Q (k) + u(k) Ru(k) + 22(k)"'Sw(k)  that v}, is an internally stabilizable controlled invariant
+p(k+1)"(Az(k) + Bu(k)), subspace, but for synthesis purposes it may be replaced
) ) ~with the minimum controlled invariant contained in it and
and the state, costate equations and stationary condition WhtainingH by using (14) withV7,. instead ofC, to reduce

HCVy,. (31)

OM (k) OM (k) OM (k) the number of fixed modes.
z(k+1) = k1) p(k) = Dz (k) = du(k) ’ 2) The Kalman dual filter and the Kalman filteRefer
_ P now to the problems considered in Section IV-A.2, i.e.,
I.e. the measurable signal decoupling and the unknown-input
w(k+1) = Ax(k)+ Bu(k), z(0)=h,, observation of a linear function of the state; let us consider

their Hy-norm extensions, represented by the block diagrams

— T
p(k) = 2 QTx(k) +A4 Tp(k: + 1) +2Su(k), shown in Fig. 21.
0 = 25%a(k)+ B pk+1) +2Ru(k). The necessary and sufficient condition for the solution of
Like in the continuous-time case, it is convenient to rewritéh® H:-norm problem shown in Fig. 21(a) is
this system in the compact form HCV; + B, (32)
z(k+1) = Ea?(k) + Eu(k) + H n(k), similar to condition (17) for the exact decoupling. It directly
0 Cz(k)+ Du(k), ensures stability and also holds in the singular and cheap
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h Y [10]
MWL ul ¥ e
x, |-
a)
[11]
w e n (12]
- X ¥ R 13]
= N
0 =
c b [14]
[15]
Fig. 21. (a) Kalman dual filter; (b) Kalman filter.

[16]

cases. The block diagram in Fig. 21(b) refers to the Kalmanz)
filter, which is here deduced by duality. The transpose of

the matrix on the right-hand side of (25) represents thig®l
covariance matrix of a global white noise injected into the

state and the output of. The singular and cheap cased19]
correspond to incomplete or absent measurement noise (noise
injected at the output). [20]

VI. CONCLUDING REMARKS 21]

In this tutorial paper, we have provided a broad overview
of the main tools, problems and solutions of the geometrigy)
approach. The presentation of the results and selection of the
arguments reflect the personal view of the authors. The main
goal of our work is not completeness: rather, we aimed @i3)
offering a higher perspective of the key topics of geometric
control theory, in order to encourage discussion and stimul
interest. To conclude, we wish to emphasize that researc
on geometric control theory is not in its twilight. In fact, [25]
a number of challenging open problems are still on th
table. It lacks, for instance, a general theory accounting for
input/state/output constraints. Preliminary steps have be&i]
recently taken to address the spectral dnspectral factor-

28
ization problems from a geometric viewpoint [20]. (28l
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