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Abstract. Due to their wide panoramic field of view, paracatadioptdmeras
are becoming ubiquitous in many robotic applications. Alleilnging problem
consists in using these vision sensors as a visual compegdgstto exploit the
image data solely to provide an estimate of their rotatiomation when mounted
on a mobile/humanoid robot. Existing visual compass alors are difficult to
implement in real scenarios since they assume known camaébaation param-
eters and known geometry of image features (e.g. corregpardetween points
or parallelism among between lines).

In this paper we present a new multi-view property for pai@diaptric cameras
called disparity-circles constrainfnd we use it to design a visual compass al-
gorithm to estimate the—axis camera rotation angle. The proposed algorithm
only uses the image projection of 3-D parallel lines and itable for real-time
implementation. Those 3-D lines that are parallel are shimaAye automatically
detectable via a RANSAC implementation of the algorithmalR#ata experi-
ments conducted with a paracatadioptric camera mounted makéle robotic
platform prove the robustness of the proposed approach.

1 Introduction

Inthe last few years we witnessed a growing interest in autayus robot navigation for
which is essential the correct estimation of the robot poserftation and translation).
However, some of the most widely used on-board sensorg $tdfa many limitations.
For example, standard GPSs have a substantial error (of ofd€d m) and require
line of sight to the satellite constellation, which rules operation in many indoor,
underwater and also urban environments. IMUs (Inertial $deament Units) provide
an estimate of axes rotation angles through double integrat sensed accelerations.
This means that even small errors will be integrated ovee tmd then result in large
localization error over long paths.

Due to the above limitations, passive vision sensors reptesn appealing alter-
native: they are cheap and provide information of the surdimg environment richer



than other traditional devices (e.g. laser range findemsars). In this paper, we are
interested inparacatadioptric camerasonsisting in a coupling between a parabolic
mirror (catoptric) and a refractivedioptric) lens [4]. Due to this coupling, their field
of view is wider than standard pinhole cameras so that a highmber of features
can be observed. It is worth highlighting herein that, diestliese sensors have been
extensively studied in the literature [2, 8], several newrgetric properties have yet
to be discovered: in particular, all those related to thetinvigw observation of other
features than points, e.g., lines (common in many man-madeoaments) [1].

A challenging problem consists in using paracatadiop&imeras as wisual com-
pass that is to provide an estimate of the camera rotational anofiom the image
data solely, when mounted on a mobile/humanoid robot. Mapjieations can benefit
from a visual compass strategy, e.g., autonomous navigationknown environments
of single and multiple robots [16, 19], visual servoing [SLAM [5], real-time genera-
tion of 3-D models using mobile cameras [7], etc. A visual paiss algorithm has been
proposed in [12] and uses lines in a single pinhole view tdapanishing points.
However, camera calibration parameters are assumed knuharainitialization stage
is needed to estimate the camera orientation with respebetscene. Another visual
compass algorithm for calibrated pinhole camera has begpoped in [17] and it al-
lows one to retrieve full 3-axis orientation from the obsgiwn of a high number of
image points. A correspondence-free approach to the catipntof camera orienta-
tion has been proposed in [13]. Nevertheless, the inteamaéca calibration parameters
are supposed known and the algorithm (at its present stagej} suitable for real-time
implementation.

As an original contribution, in this paper we present a neangetrical property,
calleddisparity-circles constraintwhich relates two paracatadioptric views of (at least)
two 3-D parallel lines. This property is the core of a visuampass algorithm which
uses image data solely for retrieving the axis rotation angle of a paracatadioptric
camera with respect to a reference view (e.g., the first aeddiiame). The algorithm
only exploits 3-D parallel lines, does not need any prior loe ¢tamera orientation, is
fully uncalibrated and suitable for real-time implemeittat We integrated RANSAC to
make the algorithm able to automatically select which liaesparallel in 3-D (inliers)
and to robustly estimate the camera rotation angle.

The rest of the paper is organized as follows. Section 2 ptedmsic results and
algorithms used through the paper. In Section 3, the digpeiricle constraint is in-
troduced and the visual compass algorithm is presentedil&iion and experimental
results are reported in Section 4, to show the effectiveardshe practical applicabil-
ity of the proposed approach. In Section 5, we provide somelading remarks and
highlight the main contributions of the paper.

2 Basics on paracatadioptric projection and circle fitting

In what follows we briefly review the basics on paracatadiotrojection of 3-D lines.
These lines project to arcs of circles in the image plane.h#a tllustrate and compare
some of the existing methods to extract from the arcs thenpatexs of the entire circle
in the paracatadioptric image plane.



parabolic mirror

Fig. 1. The interpretation plane through the mirror focus ceend the 3-D linel intersects
the mirror at a curve that is orthographically projectedoathie image plane in a circlé with
centerc and radius-.

2.1 Paracatadioptricimage of a 3-D line

Fig. 1 reports the imaging model of a paracatadioptric caméth the mirror focus at
O. Every scene poif® ¢ IR® is projected onto the mirror surfaceXte IR* throughO
and, finally, via an orthographic projection onto the imatgmpZ atu. The projection
from P to u is analytically described by a nonlinear functipn R* — IR* [8,18] that
depends on both the camera calibration parameters and tre geometry.

Let £ be a 3-D line observed by the paracatadioptric camera.iffteepretation
planeis defined as the plane throughand the mirror focu®) and has normal vector
n = [n, n, n]7 (in the mirror frame aO).

Proposition 1. (Paracatadioptric image of a line [10]) Suppose given théupeof
Fig. 1, in which a lineL is observed by a paracatadioptric cameranlf # 0, then
the line £ is projected onto an imagarcle C with centerc (pixels) given by:

cl [Cu] _ [uo —2afo(ns/nz)

ey vo — 2afa(ny/n:) |’

and radius (pixels)
r=2afo(l/n,),

whereq is the focal mirror parametefu, vo) the optical center and,, the focal length
of the camera (pixels).

As note in Prop. 1, a singular case can occur when the line fwrdgected is per-
pendicular to the camera plane of motian (= 0). This occurrence will be however
automatically discarded by our visual compass algorithm.



2.2 Circle fitting algorithms

We illustrate here some basics for the extraction afrcles in the image plane, corre-
sponding to the projection of 3-D lines.

As a first preprocessing step, the image is filtered with a Ktediiter so that the
edges are preserved. A Canny edge detector is then appliebtam potential line
points. In the second step, we run an edge eroding followeal dyaining strategy, to
extract only the connected pixels along the strongest edgkshe above strategy are
available in MATLAB and OpenCV). To enhance robustness vieaekonly those arcs
whose perimeter is greater than a certain threshold (ingiead sample from them
somecontrol points{u; };.”:1 with m > 3. We assume that our points are not affected
by outliers. We are herein interested in evaluating thequarénces of three circle fitting
methods for the estimation of the parameter veptd¥ [cu ¢, 7T ofacircleC (i.e.,
its centerc and radius’).

The first method consists in minimizing tlégebraic cost functiof9], i.e. a mea-
sure of the distance of the circle form the control points:

m

((c—uj)T(c—uj)—TQ)Q. Q)

J=1

The estimated vector parameterandr are computed in closed-form as:

1 m
c=-—-A"'b where b2 Z(u?ui - ug-ruj)(u;C —u;)
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Fig. 2. Circle fitting comparison. (a) A line is detected in the imadene. A set ofm = 10
control points is used to fit the circle. (b) Computation time



and

m

r= %Z(c—uj)T(c—uj). (3)
j=1

Due to its simple formulation, this first method is fast andsttsuitable to real-time
implementations. This kind of algebraic method can be #&#ftby the so-calletiigh-
curvature bias probleni20] (i.e., high curvature points are less-informative ¢orve
estimation): however, this is not critical in our algorithgimce each point on a circle
has the same curvature. Anyhow, the minimization basedg®badic cost function has
the drawback of being not invariant w.r.t. euclidean transfations (e.g., translations,
rotations, etc.).

To address this problem, a slight variation of (1) includegétial image poinhor-
malization stepall the image control point§u;}' ; are first translated to the origin
by their centroid. The above linear algebraic method is tygplied. Finally, the im-
age points are de-normalized. Note that data normalizéiafways addressed as an
essential step [11] and should be not considered optional.

Another strategy for circle fitting consists in minimizinggaometric cost functian
In the case of curve fitting, the orthogonal distadg¢éetween a pointi; and the fitted
circle C is the smallest Euclidean distance among all distanceseegtw; and the
points on the curve. For a circlé; can be measured along the radius direction and can
thus be simply written as:

di(e,r)’> = (le—ujfla—r)*  Vji=1,...m. (4)

The geometric distance minimization problem in (4) can b@eg@ched using nonlinear
minimization techniques (e.g., Levenberg-Marquardt).

In order to find the best fitting algorithm for our visual corspatrategy, we imple-
mented all the above presented methods. Our tests have bdemped in MATLAB
on a 2.2 GHz Intel core 2 Duo processor, with 4 GB of RAM. Theedittircles are
reported in Fig. 2(a). While all the methods give the samiadjttin fact the minimiza-
tion of (1) and of (4) clearly leads to the same result in treeaz circles), however the
computational load is different. The algebraic method witihmalization is the fastest
one (see Fig. 2(b)). In fact, data normalization inducestebeonditioning when using
SVD in the linear algorithm. Due to the real-time requiremsasf our application, we
then selected thinear fitting methodvith data normalization

To conclude note that, as the camera/robot moves, the ddteictles can be tracked
in the image plane using a line tracking software, like Vi$2][

3 Uncalibrated visual compass algorithm

In this section we present our visual compass algorithmhfeestimation of the camera
rotation anglg) about thez—axis. The algorithm is based on the ndigparity circles
constraint does not assume any a priori knowledge of the camera cadib@arameters
and only uses the circles automatically detected on theémane (see Sect. 2.2). The
automatic selection of image circles corresponding to Zakaltel lines has been made
possible by integrating RANSAC estimation with the dispadircles constraint.
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Fig. 3. Paracatadioptric visual compas) Two paracatadioptric cameras are rotated by an angle
0 about thez-axis and observe two parallel lin€s andL; (b)-(c) The two lines are projected

in each image plan& andZ’, at two circle pair{C1,C2) and(C1, C3), respectively. From the
circle centers we can compute the vecigys andes; that are used to retrieve the angle

3.1 Disparity-circles constraint

Suppose given two paracatadioptric views of two paralteddiC, and L. (Fig. 3(a)).
Let the mirror frames be centered@hand(O’. Owing to Prop. 1, the lineg; and £,
project in each view at two circle pair&;,C2) in the first view and(C{,C}) in the
second view, respectively (Figs. 3(b)-(c)). Without lo$generality, we will assume
that the world frame is coincident with the paracatadieptmirror frame inO’, which

we will refer to asreference For the purposes of our work we will suppose that a rigid
body motion(R. ¢, t) occurs between the two views, beiRg » a2 x 2 rotation about
the z-axis of an anglé.

Theorem 1 (Disparity-circles constraint).Consider the setup in Fig. 3 where tber-
rentparacatadioptric camera aD is rotated of an anglé € [—7/2, ©/2] about its
z—axis with respect to theeferencecamera atO’. Two 3-D parallel linesC; and £
are projected in the two image plan&sandZ’, in two circles(Cy, C2) and (C}, C5),



respectively (see Figs. 3(b)-(c)). Let their centers (irefs) bec,, c2 andc}, ¢}, re-
spectively. Under the previous assumptions, the followopgation holds true:

8/21 = Rz,e €21 (5)

beinges; £ ¢y — c; andel, = ¢}, — c.

Proof: See the Appendix.

Remark 1 (Extension to circles).In the case of, parallel linesZ;, i = 1, ..., n, the
disparity-circles constraint (5) can be generalized ds\id:

Yy = RZ,OX (6)

where the columns of the matricesandy are composed by all the possible (non
repetitive) combinations of vectoes;, and efjk between the centers of thecircles

onZ andZ’, respectively. Hencex, y € R%XP, with p = g . Note that (6) corre-

sponds to thérocrustes problemvhich has an elegant closed form solution given by
R.y = VUT where[U, X, V] = SVD(M) beingM = >?_| x;y!. This solution
could be used to initialize an iterative estimation methed.( Levenberg-Marquardt)
for improving the estimation dR .. 4.

Algorithm 1 resumes the main steps of @isual compass algorithimased on con-
dition (6).

The proposed visual compass algorithm has an attractiveegeizal interpretation
sketched in Figs. 4(a)-(b): first, take two paracatadioptiéws in two different poses
(a z—axis camera rotation and a translation occur between th&etpnd, fit a circle
to each line and then superimpose them as in Fig. 4(c). Cantpatcenter of the four
circlesc, cj, ¢; andc,: after the computation of the centers of the two circles, the
angled between the lines] ¢, andc;c; is exactly thez—axis rotation anglé between
the two cameras.

Algorithm 1 Uncalibrated Paracatadioptric Visual Compass Algorithm

1: Let be given aeferenceparacatadioptric imagé’ taken atO’ and a set of, 3-D parallel
linesL;,i=1,...,n.

2: InZ’, use the linear circle fitting method with data normalizatisee Sect.2.2) to detect
all the centers:; of the n circlesC,. From the circle centers compute the vegyofrecall
Remark 1).

3: Let be given aurrent paracatadioptric imagé taken atO, rotated byR ., » and translated
of t.

4: InZ, use the linear fitting method of Sect.2.2 to detect all th@arsc; of then circlesC;.
From the circle center determine the vector

5: Determine the matrid = 37 x;y/, and do[U, &, V] = SVD(M). The camera rota-
tion matrix is given by

R.,=VU".




Camera 2 Camera 1

Fig. 4. lllustration of the visual compass algorithriwo roto-translated views (a) and (b) of two
parallel lines are superimposed and circles are fitted ttirthe (c). Circle centers are joined with
segments to obtain the angléetween the two views (a) and (b).

3.2 Robust visual compass

RANSAC (RANdom SAmple Consensus) [6] is an iterative mettmestimate the
parameters of a model from random samples of a minimal seataf @he centers of
two circles, for the case of the disparity circle constraifihe model to be satisfied in
the visual compass is the disparity circle constraint (3)pse scalar parameter to be
estimated is the camera angleA basic assumption in RANSAC is that the data are
composed of a sufficient number of “inliers” (i.e., data whatfe model) and “outliers”
(i.e., data who do not). RANSAC works properly if the inliene more than the 50

of all the data.

Our RANSAC implementation of the visual compass algorittoands the number
of data verifying (5) up to a specified threshold and finall@aies the best consensus.
At the end of the iterations, RANSAC also provides a clasdifon of data into inliers
and outliers. In our case this is particularly appealingsiat the end of all the iterations
the circles will beautomaticallyclassified into “parallel” and “non-parallel/singular”,
where “singular” corresponds to the case of vertical ediges;. = 0 (see Sect.2.1).



Finally note that, for: circles, the (maximum) number of iterations made by RANSAC

will equal the number of possible (non-repetitive) asstmies of circle pairs among the
2

two imagesZ andZ’, i.e. (g

Some concluding remarks are in order at this point.

— The proposed visual compass algorithmigalibratedin the sense that it does not
require any prior knowledge of the internal camera pararaéie., both lens and
mirror parameters).

— At leasttwo 3-D parallel linesare sufficient for computing. Note that the exis-
tence of parallel lines is a reasonable assumption in mamymmede environments
(e.g. streets, rooms, corridors). Image circles corredipgnto 3-D parallel lines
are automatically detected by the RANSAC implementatiothefvisual compass
algorithm.

— The visual compass algorithm, which makes use ofiieparity-circles constraint
to estimate the camera rotation anglées computationally sound and suited for
realt-time implementation.

— The algorithm still works whemo translational displacemerxists, i.e., only a
pure rotation occurs between the two views. Other existiragegies, like the ones
that estimate and decompose the essential matrix, faikindke of zero translation.

4 Experiments

4.1 Simulation results

All the simulation results reported in this section, haverbebtained using the Epipolar
Geometry Toolbox (EGT) for MATLAB [15]. We implemented thaified catadioptric
model by Geyer and Daniilidis [8] to simulate the paracaipttic camera projection,
modeled as a projection to a sphere and then to a plane (se&(&)Yy

In the first simulation experiment, the visual compass étlgor is applied to the
nominal case (i.e., no image noise) with four parallel lidgs L., £4 and L5, while
L3 is perpendicular to the camera plane of motion. All thesedliare imaged in two
paracatadioptric views i andO’ (see Fig. 5(a)). The camera i» has been placed
with R, g andt = [7, 7, 0]7, with § = /4. Without loss of generality, we assumed
thatO’ coincides with the origin of the reference frame. The RANSALsion of the
visual compass algorithm provides an exact estimate-of7 /4. This means that the
algorithm has been able to discard the outlier (i.e., thgeption of £3). Figure 5(b)
reports the resultingssociation matrixthe columns and rows of this matrix contain the
indexeqi, j) and(¢', j') of all the possible associations between the cir@es’;) and
(Ci,C}) in the current and reference images. As a measure of aseaci@tr each pair
associatiorti, j)-(i’, j/) we simply counted the number of times the angle estimated by
this pair has been voted by the other pairs (the “consensugil) the other possible
associations (or RANSAC iterations). In Fig. 5(b), differgradations of grey have
been employed: a black area corresponds to a high consémesushigh association,
while a white area to an absence of association. For instahtiee intersectiofil, 2) —
(1/,2") a high association is obtained (black area) meaning thatitbles(C,, C;) and



(C1,Ch) are highly associated (i.e. they are indeed parallel in 3a)the other hand,
all the associations involving the lin&; give asmallassociation, meaning that this line
is not parallel to the other ones and must be ruled out.

In order to test the robustness of our algorithm to noisy dataadded gaussian
noise with standard deviatianto the image. Fig. 6 reports the mean and the standard
deviation of the estimation err¢g# — 6|, over a set of 250 realization of the same ex-
periment, for a fixedr and number of control points. Note that we used an increasing
number (from 3 to 7) of image control points (used for theleifitting algorithm), and
o from 0 to 3 pixels. From Fig. 6, we see that the higher the number of obptints,
the lower are the mean and standard deviation errors. Mergwe observe that an in-
crease of noise power does not correspond to an exponertiabise of the estimation
error. These results show that our algorithm is robust teynoieasurements and thus
applicable in real scenarios.

4.2 Experimental results

This section reports the results obtained by running owalisompass algorithm with
real data taken from a paracatadioptric camera mounted arbdemobot ActivMedia
PIONEER 2X-DE. The robot motion is shown in Fig. 8(a). As tbhbat moves from
location{1} to {4}, our aim is to compute the relative camera orientatirith respect
to a Reference image. For the sake of clearness, Fig. 8(ajssihe silhouette of the
robot both in the initial and Reference position.

The detected circles in the initial frame are shown in Fig)7ZAmong these, note
that L3 is orthogonal to the other lines. After the first run of theaaithm, only the
lines£; andL5 have been selected by the algorithm as the minimum two pirgyitie
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(2.4)
(2,5)

(3,4)

(1,4)
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(3,5) ‘

Com . u

(1, 2) (¥, 3T, 4YY,5X2,3)(2,4) 2,53, 4) 3,5 4,5)
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Fig. 5. Simulation results(a) Two parallel linesC; and L» are viewed by two paracatadioptric
cameras irO andO’. The camera ii® is translated by and rotated about theaxis of an angle
0 = = /4; (b) Association matrix: dark grey corresponds to a higloeisgion index while light
grey to low association.
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best estimate (i.e., as inliers, plotted in white in Fig.)y(bhese lines are used during
all the experiment to estimate the angleFigure 8(b) shows the estimated anglin
correspondence with the robot waypoigts-{4}. As expected, if4} the estimated
robot orientation is near zero because the robot is aligridtihe Reference view.

5 Conclusion and future works

In this paper we have presented a new multi-view propertgddisparity-circles con-
straint valid for paracatadioptric cameras and used it to desigrsaavicompass al-
gorithm for the computation of the—axis camera rotation angle. The algorithm does
not require any knowledge of the internal camera calibngpi@rameters, is suitable for
real-time implementation and only uses the image projeatio3-D parallel lines. A
RANSAC implementation of the algorithm makes it able to audtically detect those
lines that are parallel in 3-D. Extensive simulation reshkive shown the effectiveness
of the proposed paracatadioptric visual compass and itgcappity in real scenarios.
Experimental results with a mobile robotic platform areogisesented. Future works
will deal with the extension of this algorithm to full-axisientation retrieval.



Fig. 7. Experimental resultg(a) Detected circles in the first frame; (b) Lide and L. give the
best estimate and lin€; discarded as outlier.

A Appendix: Proof of Theorem 1

Proof. The interpretation planes through and £, (with respect ta0’), have normal
vectorsn £ [n}, nf, n}.]" andnj £ [nh, nh, ns.]" given by:

n ~ Xy x X (7)
nj ~ X9y X Xy ®
Between any poinX’w) on L, and the poian’l(j) on Ly, the followings hold true:
X9y = Xi(o) +doy 9)
X5y = X +day, (10)
60

501

40t

201

iteration

Fig. 8. Experimental resultga) The mobile robot moves from the initial locati¢h} to {4} ({4}
is aligned with the Reference view); (b) Estimation of thgla with respect to the Reference
view.



beingd’, £ X’Q(l) — X/, the vector in0’, defined as the translation frofh to L.
Substituting (9) and (103 in (8) we obtain:

ny ~ (X o) +dsy) x (X +dy)
~ X2y x Xy + (X — Xig)) x doy
and beingh; £ X' (2) — Xiq (Fig. 3()), it results that (8) can be also written as:
nj ~ (X/1(2) X X/1(1)) + (b x dy). (11)

Let us now consider the expressionaf andn, w.r.t. O. Analogously to (9) and (10)
we haVeXQ(Q) = X1(2) + doy andXQ(l) = Xl(l) + do;. Note thatdy; = Rzedél
andh,; = Rzeh;, therefore

ny ~ (X2 x Xy(1)) + RZ (b x dj)). (12)

Let us define:
Mg _ Mig
n2z Nniz

€21 £ Cy —C1 =7 noy iy (13)
na. nis
. o X1(2) ><X1(1) . .. .
Sincen; = Lomes ik then we can substitute it into (12) and obtain
ny ~ m A+ RI,p/ (14)

with A £ || X;(2) x Xy(1)|| andp’ £ h} x dj,. Owing to (14) we simply obtain:
Moz ~ M1y + Pl cosf + p), sin 6
Ny ~ Aniy — pl, sin 6 + pj, cos f (15)

/
N2z ~ )\nlz +pz'

Substituting (15) in (13), after some simple manipulatjaree obtains

! cos@ +p! sin@ — pc,
€21 ~ lpw Py s p=e ] (16)

—plsin 6 + p; cos 0 — pl.c,
The computation ofi, can be derived analogously, and hence it results that:
/ !
Py — D.Cy
e’zlwll ) /]' (17)
py - pzcy
Now, it is immediate to see thaf. ~ ¢, cosf + ¢} sinf andc, ~ ¢} cosf — ¢} sin6.

Using these into (16) and comparing the obtained express$ion with e),, we finally
obtain:

ea1(1) ~ ehy (1) cos @ + e5;(2) sin @
€21(2) ~ €5, (2) cosf — ehy (1) sin 6

from which (5) follows directly.
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