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Abstract. Due to their wide panoramic field of view, paracatadioptric cameras
are becoming ubiquitous in many robotic applications. A challenging problem
consists in using these vision sensors as a visual compass, that is to exploit the
image data solely to provide an estimate of their rotationalmotion when mounted
on a mobile/humanoid robot. Existing visual compass algorithms are difficult to
implement in real scenarios since they assume known camera calibration param-
eters and known geometry of image features (e.g. correspondence between points
or parallelism among between lines).
In this paper we present a new multi-view property for paracatadioptric cameras
calleddisparity-circles constraintand we use it to design a visual compass al-
gorithm to estimate thez−axis camera rotation angle. The proposed algorithm
only uses the image projection of 3-D parallel lines and is suitable for real-time
implementation. Those 3-D lines that are parallel are shownto be automatically
detectable via a RANSAC implementation of the algorithm. Real-data experi-
ments conducted with a paracatadioptric camera mounted on amobile robotic
platform prove the robustness of the proposed approach.

1 Introduction

In the last few years we witnessed a growing interest in autonomous robot navigation for
which is essential the correct estimation of the robot pose (orientation and translation).
However, some of the most widely used on-board sensors suffer from many limitations.
For example, standard GPSs have a substantial error (of order of 10 m) and require
line of sight to the satellite constellation, which rules out operation in many indoor,
underwater and also urban environments. IMUs (Inertial Measurement Units) provide
an estimate of axes rotation angles through double integration of sensed accelerations.
This means that even small errors will be integrated over time and then result in large
localization error over long paths.

Due to the above limitations, passive vision sensors represent an appealing alter-
native: they are cheap and provide information of the surrounding environment richer



than other traditional devices (e.g. laser range finders, sonars). In this paper, we are
interested inparacatadioptric camerasconsisting in a coupling between a parabolic
mirror (catoptric) and a refractive (dioptric) lens [4]. Due to this coupling, their field
of view is wider than standard pinhole cameras so that a higher number of features
can be observed. It is worth highlighting herein that, despite these sensors have been
extensively studied in the literature [2, 8], several new geometric properties have yet
to be discovered: in particular, all those related to the multi-view observation of other
features than points, e.g., lines (common in many man-made environments) [1].

A challenging problem consists in using paracatadioptric cameras as avisual com-
pass, that is to provide an estimate of the camera rotational motion from the image
data solely, when mounted on a mobile/humanoid robot. Many applications can benefit
from a visual compass strategy, e.g., autonomous navigation in unknown environments
of single and multiple robots [16,19], visual servoing [3],SLAM [5], real-time genera-
tion of 3-D models using mobile cameras [7], etc. A visual compass algorithm has been
proposed in [12] and uses lines in a single pinhole view to exploit vanishing points.
However, camera calibration parameters are assumed known and an initialization stage
is needed to estimate the camera orientation with respect tothe scene. Another visual
compass algorithm for calibrated pinhole camera has been proposed in [17] and it al-
lows one to retrieve full 3-axis orientation from the observation of a high number of
image points. A correspondence-free approach to the computation of camera orienta-
tion has been proposed in [13]. Nevertheless, the internal camera calibration parameters
are supposed known and the algorithm (at its present stage) is not suitable for real-time
implementation.

As an original contribution, in this paper we present a new geometrical property,
calleddisparity-circles constraint, which relates two paracatadioptric views of (at least)
two 3-D parallel lines. This property is the core of a visual compass algorithm which
uses image data solely for retrieving thez−axis rotation angle of a paracatadioptric
camera with respect to a reference view (e.g., the first acquired frame). The algorithm
only exploits 3-D parallel lines, does not need any prior on the camera orientation, is
fully uncalibrated and suitable for real-time implementation. We integrated RANSAC to
make the algorithm able to automatically select which linesare parallel in 3-D (inliers)
and to robustly estimate the camera rotation angle.

The rest of the paper is organized as follows. Section 2 presents basic results and
algorithms used through the paper. In Section 3, the disparity circle constraint is in-
troduced and the visual compass algorithm is presented. Simulation and experimental
results are reported in Section 4, to show the effectivenessand the practical applicabil-
ity of the proposed approach. In Section 5, we provide some concluding remarks and
highlight the main contributions of the paper.

2 Basics on paracatadioptric projection and circle fitting

In what follows we briefly review the basics on paracatadioptric projection of 3-D lines.
These lines project to arcs of circles in the image plane. We then illustrate and compare
some of the existing methods to extract from the arcs the parameters of the entire circle
in the paracatadioptric image plane.
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Fig. 1. The interpretation plane through the mirror focus centerO and the 3-D lineL intersects
the mirror at a curve that is orthographically projected onto the image plane in a circleC with
centerc and radiusr.

2.1 Paracatadioptric image of a 3-D line

Fig. 1 reports the imaging model of a paracatadioptric camera with the mirror focus at
O. Every scene pointP ∈ IR3 is projected onto the mirror surface atX ∈ IR3 throughO
and, finally, via an orthographic projection onto the image planeI atu. The projection
fromP to u is analytically described by a nonlinear functionη : IR3 → IR2 [8,18] that
depends on both the camera calibration parameters and the mirror geometry.

Let L be a 3-D line observed by the paracatadioptric camera. Theinterpretation
planeis defined as the plane throughL and the mirror focusO and has normal vector
n = [nx ny nz]

T (in the mirror frame atO).

Proposition 1. (Paracatadioptric image of a line [10]) Suppose given the setup of
Fig. 1, in which a lineL is observed by a paracatadioptric camera. Ifnz 6= 0, then
the lineL is projected onto an imagecircleC with centerc (pixels) given by:

c ,

[

cu

cv

]

=

[

u0 − 2afα(nx/nz)
v0 − 2afα(ny/nz)

]

,

and radius (pixels)

r = 2a fα (1/nz) ,

wherea is the focal mirror parameter,(u0, v0) the optical center andfα the focal length
of the camera (pixels).

As note in Prop. 1, a singular case can occur when the line to beprojected is per-
pendicular to the camera plane of motion (nz = 0). This occurrence will be however
automatically discarded by our visual compass algorithm.



2.2 Circle fitting algorithms

We illustrate here some basics for the extraction ofn circles in the image plane, corre-
sponding to the projection ofn 3-D lines.

As a first preprocessing step, the image is filtered with a Median filter so that the
edges are preserved. A Canny edge detector is then applied toobtain potential line
points. In the second step, we run an edge eroding followed bya chaining strategy, to
extract only the connected pixels along the strongest edges. (All the above strategy are
available in MATLAB and OpenCV). To enhance robustness we extract only those arcs
whose perimeter is greater than a certain threshold (in pixels) and sample from them
somecontrol points{uj}

m

j=1 with m ≥ 3. We assume that our points are not affected
by outliers. We are herein interested in evaluating the performances of three circle fitting
methods for the estimation of the parameter vectorp , [cu cv, r]T of a circleC (i.e.,
its centerc and radiusr).

The first method consists in minimizing thealgebraic cost function[9], i.e. a mea-
sure of the distance of the circle form the control points:

m
∑

j=1

(

(c − uj)
T (c − uj) − r2

)2
. (1)

The estimated vector parametersc andr are computed in closed-form as:

c = −
1

2
A−1b where b ,

m
∑

i,j,k

(uT
i ui − uT

j uj)(uk − ui)

and A ,

m
∑

i,j,k

(uk − ui)(uj − ui)
T (2)
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Fig. 2. Circle fitting comparison. (a) A line is detected in the imageplane. A set ofm = 10
control points is used to fit the circle. (b) Computation times.



and

r =

√

√

√

√

1

m

m
∑

j=1

(c − uj)T (c − uj). (3)

Due to its simple formulation, this first method is fast and thus suitable to real-time
implementations. This kind of algebraic method can be affected by the so-calledhigh-
curvature bias problem[20] (i.e., high curvature points are less-informative forcurve
estimation): however, this is not critical in our algorithmsince each point on a circle
has the same curvature. Anyhow, the minimization based on algebraic cost function has
the drawback of being not invariant w.r.t. euclidean transformations (e.g., translations,
rotations, etc.).

To address this problem, a slight variation of (1) includes an initial image pointnor-
malization step: all the image control points{uj}

m
j=1 are first translated to the origin

by their centroid. The above linear algebraic method is thenapplied. Finally, the im-
age points are de-normalized. Note that data normalizationis always addressed as an
essential step [11] and should be not considered optional.

Another strategy for circle fitting consists in minimizing ageometric cost function.
In the case of curve fitting, the orthogonal distancedj between a pointuj and the fitted
circle C is the smallest Euclidean distance among all distances betweenuj and the
points on the curve. For a circle,dj can be measured along the radius direction and can
thus be simply written as:

dj(c, r)
2 = (‖c− uj‖2 − r)2 ∀ j = 1, ..., m. (4)

The geometric distance minimization problem in (4) can be approached using nonlinear
minimization techniques (e.g., Levenberg-Marquardt).

In order to find the best fitting algorithm for our visual compass strategy, we imple-
mented all the above presented methods. Our tests have been performed in MATLAB
on a 2.2 GHz Intel core 2 Duo processor, with 4 GB of RAM. The fitted circles are
reported in Fig. 2(a). While all the methods give the same fitting (in fact the minimiza-
tion of (1) and of (4) clearly leads to the same result in the case of circles), however the
computational load is different. The algebraic method withnormalization is the fastest
one (see Fig. 2(b)). In fact, data normalization induces a better conditioning when using
SVD in the linear algorithm. Due to the real-time requirements of our application, we
then selected thelinear fitting methodwith data normalization.

To conclude note that, as the camera/robot moves, the detected circles can be tracked
in the image plane using a line tracking software, like ViSP [14].

3 Uncalibrated visual compass algorithm

In this section we present our visual compass algorithm for the estimation of the camera
rotation angleθ about thez−axis. The algorithm is based on the newdisparity circles
constraint, does not assume any a priori knowledge of the camera calibration parameters
and only uses the circles automatically detected on the image plane (see Sect. 2.2). The
automatic selection of image circles corresponding to 3-D parallel lines has been made
possible by integrating RANSAC estimation with the disparity-circles constraint.
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Fig. 3.Paracatadioptric visual compass. (a) Two paracatadioptric cameras are rotated by an angle
θ about thez-axis and observe two parallel linesL1 andL2; (b)-(c) The two lines are projected
in each image planeI andI′, at two circle pairs(C1, C2) and(C′

1, C
′

2), respectively. From the
circle centers we can compute the vectorse′

21 ande21 that are used to retrieve the angleθ.

3.1 Disparity-circles constraint

Suppose given two paracatadioptric views of two parallel linesL1 andL2 (Fig. 3(a)).
Let the mirror frames be centered inO andO′. Owing to Prop. 1, the linesL1 andL2

project in each view at two circle pairs:(C1, C2) in the first view and(C′
1, C

′
2) in the

second view, respectively (Figs. 3(b)-(c)). Without loss of generality, we will assume
that the world frame is coincident with the paracatadioptric mirror frame inO′, which
we will refer to asreference. For the purposes of our work we will suppose that a rigid
body motion(Rz,θ, t) occurs between the two views, beingRz,θ a2×2 rotation about
thez-axis of an angleθ.

Theorem 1 (Disparity-circles constraint).Consider the setup in Fig. 3 where thecur-
rentparacatadioptric camera atO is rotated of an angleθ ∈ [−π/2, π/2] about its
z−axis with respect to thereferencecamera atO′. Two 3-D parallel linesL1 andL2

are projected in the two image planesI andI ′, in two circles(C1, C2) and (C′
1, C

′
2),



respectively (see Figs. 3(b)-(c)). Let their centers (in pixels) bec1, c2 andc′1, c
′
2, re-

spectively. Under the previous assumptions, the followingequation holds true:

e′21 = Rz,θ e21 (5)

beinge21 , c2 − c1 ande′21 , c′2 − c′1.

Proof: See the Appendix.

Remark 1 (Extension ton circles). In the case ofn parallel linesLi, i = 1, ..., n, the
disparity-circles constraint (5) can be generalized as follows:

y = Rz,θ x (6)

where the columns of the matricesx andy are composed by all thep possible (non
repetitive) combinations of vectorsejk and e′jk between the centers of then circles

on I andI ′, respectively. Hence,x, y ∈ R
2×p, with p =

(

n
2

)

. Note that (6) corre-

sponds to theProcrustes problemwhich has an elegant closed form solution given by
Rz,θ = VUT where[U,Σ,V] = SVD(M) beingM =

∑p

i=1 xiy
T
i . This solution

could be used to initialize an iterative estimation method (e.g., Levenberg-Marquardt)
for improving the estimation ofRz,θ.

Algorithm 1 resumes the main steps of ourvisual compass algorithmbased on con-
dition (6).

The proposed visual compass algorithm has an attractive geometrical interpretation
sketched in Figs. 4(a)-(b): first, take two paracatadioptric views in two different poses
(a z−axis camera rotation and a translation occur between them).Second, fit a circle
to each line and then superimpose them as in Fig. 4(c). Compute the center of the four
circlesc′1, c′2, c1 andc2: after the computation of the centers of the two circles, the
angleθ between the linesc′1c

′
2 andc1c2 is exactly thez−axis rotation angleθ between

the two cameras.

Algorithm 1 Uncalibrated Paracatadioptric Visual Compass Algorithm
1: Let be given areferenceparacatadioptric imageI′ taken atO′ and a set ofn 3-D parallel

linesLi, i = 1, ..., n.
2: In I′, use the linear circle fitting method with data normalization (see Sect.2.2) to detect

all the centersc′

i of the n circlesC′

i. From the circle centers compute the vectory (recall
Remark 1).

3: Let be given acurrent paracatadioptric imageI taken atO, rotated byRz,θ and translated
of t.

4: In I, use the linear fitting method of Sect.2.2 to detect all the centersci of then circlesCi.
From the circle center determine the vectorx.

5: Determine the matrixM =
Pp

i=1 xiy
T
i , and do[U,Σ,V] = SVD(M). The camera rota-

tion matrix is given by
Rz,θ = VU

T .
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Fig. 4. Illustration of the visual compass algorithm: two roto-translated views (a) and (b) of two
parallel lines are superimposed and circles are fitted to thelines (c). Circle centers are joined with
segments to obtain the angleθ between the two views (a) and (b).

3.2 Robust visual compass

RANSAC (RANdom SAmple Consensus) [6] is an iterative methodto estimate the
parameters of a model from random samples of a minimal set of data (the centers of
two circles, for the case of the disparity circle constraint). The model to be satisfied in
the visual compass is the disparity circle constraint (5), whose scalar parameter to be
estimated is the camera angleθ. A basic assumption in RANSAC is that the data are
composed of a sufficient number of “inliers” (i.e., data who fit the model) and “outliers”
(i.e., data who do not). RANSAC works properly if the inliersare more than the 50%
of all the data.

Our RANSAC implementation of the visual compass algorithm counts the number
of data verifying (5) up to a specified threshold and finally retains the best consensus.
At the end of the iterations, RANSAC also provides a classification of data into inliers
and outliers. In our case this is particularly appealing since at the end of all the iterations
the circles will beautomaticallyclassified into “parallel” and “non-parallel/singular”,
where “singular” corresponds to the case of vertical edges,i.e.nz = 0 (see Sect.2.1).



Finally note that, forn circles, the (maximum) number of iterations made by RANSAC
will equal the number of possible (non-repetitive) associations of circle pairs among the

two imagesI andI ′, i.e.

(

n
2

)2

.

Some concluding remarks are in order at this point.

– The proposed visual compass algorithm isuncalibratedin the sense that it does not
require any prior knowledge of the internal camera parameters (i.e., both lens and
mirror parameters).

– At least two 3-D parallel linesare sufficient for computingθ. Note that the exis-
tence of parallel lines is a reasonable assumption in many man-made environments
(e.g. streets, rooms, corridors). Image circles corresponding to 3-D parallel lines
are automatically detected by the RANSAC implementation ofthe visual compass
algorithm.

– The visual compass algorithm, which makes use of thedisparity-circles constraint
to estimate the camera rotation angleθ,is computationally sound and suited for
realt-time implementation.

– The algorithm still works whenno translational displacementexists, i.e., only a
pure rotation occurs between the two views. Other existing strategies, like the ones
that estimate and decompose the essential matrix, fail in the case of zero translation.

4 Experiments

4.1 Simulation results

All the simulation results reported in this section, have been obtained using the Epipolar
Geometry Toolbox (EGT) for MATLAB [15]. We implemented the unified catadioptric
model by Geyer and Daniilidis [8] to simulate the paracatadioptric camera projection,
modeled as a projection to a sphere and then to a plane (see Fig. 5(a)).

In the first simulation experiment, the visual compass algorithm is applied to the
nominal case (i.e., no image noise) with four parallel linesL1,L2,L4 andL5, while
L3 is perpendicular to the camera plane of motion. All these lines are imaged in two
paracatadioptric views inO andO′ (see Fig. 5(a)). The camera inO has been placed
with Rz,θ andt = [7, 7, 0]T , with θ = π/4. Without loss of generality, we assumed
thatO′ coincides with the origin of the reference frame. The RANSACversion of the
visual compass algorithm provides an exact estimate ofθ = π/4. This means that the
algorithm has been able to discard the outlier (i.e., the projection ofL3). Figure 5(b)
reports the resultingassociation matrix: the columns and rows of this matrix contain the
indexes(i, j) and(i′, j′) of all the possible associations between the circles(Ci, Cj) and
(C′

i, C
′
j) in the current and reference images. As a measure of association, for each pair

association(i, j)-(i′, j′) we simply counted the number of times the angle estimated by
this pair has been voted by the other pairs (the “consensus”)in all the other possible
associations (or RANSAC iterations). In Fig. 5(b), different gradations of grey have
been employed: a black area corresponds to a high consensus,i.e. a high association,
while a white area to an absence of association. For instance, at the intersection(1, 2)−
(1′, 2′) a high association is obtained (black area) meaning that thecircles(C1, C2) and



(C′
1, C

′
2) are highly associated (i.e. they are indeed parallel in 3-D). On the other hand,

all the associations involving the lineL3 give asmallassociation, meaning that this line
is not parallel to the other ones and must be ruled out.

In order to test the robustness of our algorithm to noisy data, we added gaussian
noise with standard deviationσ to the image. Fig. 6 reports the mean and the standard
deviation of the estimation error|θ̂ − θ|, over a set of 250 realization of the same ex-
periment, for a fixedσ and number of control points. Note that we used an increasing
number (from 3 to 7) of image control points (used for the circle fitting algorithm), and
σ from 0 to 3 pixels. From Fig. 6, we see that the higher the number of control points,
the lower are the mean and standard deviation errors. Moreover, we observe that an in-
crease of noise power does not correspond to an exponential increase of the estimation
error. These results show that our algorithm is robust to noisy measurements and thus
applicable in real scenarios.

4.2 Experimental results

This section reports the results obtained by running our visual compass algorithm with
real data taken from a paracatadioptric camera mounted on a mobile robot ActivMedia
PIONEER 2X-DE. The robot motion is shown in Fig. 8(a). As the robot moves from
location{1} to {4}, our aim is to compute the relative camera orientationθ with respect
to a Reference image. For the sake of clearness, Fig. 8(a) shows the silhouette of the
robot both in the initial and Reference position.

The detected circles in the initial frame are shown in Fig. 7(a). Among these, note
thatL3 is orthogonal to the other lines. After the first run of the algorithm, only the
linesL1 andL2 have been selected by the algorithm as the minimum two providing the

-4

-2

0

2

4

6

8

10

-4
-2

0
2

4
6

8
10

12

0

2

4

6

Z
r

X
r

Ym

Y
r

Z
r

Y
r

X
r

Xm

Z
m

O

O′

L1

L2

L3L4

L5

(a)

(1,2)

(1,3)

(1,4)

(1,5)

(2,3)

(2,4)

(2,5)

(3,4)

(3,5)

(4,5)

(1′,2′)(1′,3′)(1′,4′)(1′,5′)(2′,3′)(2′,4′)(2′,5′)(3′,4′)(3′,5′)(4′,5′)

(b)

Fig. 5. Simulation results. (a) Two parallel linesL1 andL2 are viewed by two paracatadioptric
cameras inO andO′. The camera inO is translated byt and rotated about thez-axis of an angle
θ = π/4; (b) Association matrix: dark grey corresponds to a high association index while light
grey to low association.
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best estimate (i.e., as inliers, plotted in white in Fig. 7(b)). These lines are used during
all the experiment to estimate the angleθ. Figure 8(b) shows the estimated angleθ̂ in
correspondence with the robot waypoints{1}-{4}. As expected, in{4} the estimated
robot orientation is near zero because the robot is aligned with the Reference view.

5 Conclusion and future works

In this paper we have presented a new multi-view property calleddisparity-circles con-
straint valid for paracatadioptric cameras and used it to design a visual compass al-
gorithm for the computation of thez−axis camera rotation angle. The algorithm does
not require any knowledge of the internal camera calibration parameters, is suitable for
real-time implementation and only uses the image projection of 3-D parallel lines. A
RANSAC implementation of the algorithm makes it able to automatically detect those
lines that are parallel in 3-D. Extensive simulation results have shown the effectiveness
of the proposed paracatadioptric visual compass and its applicability in real scenarios.
Experimental results with a mobile robotic platform are also presented. Future works
will deal with the extension of this algorithm to full-axis orientation retrieval.
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A Appendix: Proof of Theorem 1

Proof. The interpretation planes throughL1 andL2 (with respect toO′), have normal
vectorsn′

1 , [n′
1x n′

1y n′
1z]

T andn′
2 , [n′

2x n′
2y n′

2z]
T given by:

n′
1 ∼ X′

1(2) × X′
1(1) (7)

n′
2 ∼ X′

2(2) × X′
2(1). (8)

Between any pointX′
2(i) onL2 and the pointX′

1(j) onL1, the followings hold true:

X′
2(2) = X′

1(2) + d′
21 (9)

X′
2(1) = X′

1(1) + d′
21, (10)
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Fig. 8.Experimental results: (a) The mobile robot moves from the initial location{1} to{4} ( {4}
is aligned with the Reference view); (b) Estimation of the angle θ with respect to the Reference
view.



beingd′
21 , X′

2(1) − X′
1(1) the vector inO′, defined as the translation fromL1 to L2.

Substituting (9) and (10) in (8) we obtain:

n′
2 ∼ (X′

1(2) + d′
21) × (X′

1(1) + d′
21)

∼ X′
1(2) × X′

1(1) + (X′
1(2) − X′

1(1)) × d′
21

and beingh′
1 , X′

1(2) − X′
1(1) (Fig. 3(a)), it results that (8) can be also written as:

n′
2 ∼ (X′

1(2) × X′
1(1)) + (h′

1 × d′
21). (11)

Let us now consider the expression ofn1 andn2 w.r.t. O. Analogously to (9) and (10)
we haveX2(2) = X1(2) + d21 andX2(1) = X1(1) + d21. Note thatd21 = RT

z,θd
′
21

andhi = RT
z,θh

′
i, therefore

n2 ∼ (X1(2) × X1(1)) + RT
z,θ(h

′
1 × d′

21). (12)

Let us define:

e21 , c2 − c1 = γ





n2x

n2z

− n1x

n1z

n2y

n2z

−
n1y

n1z



 . (13)

Sincen1 =
X1(2)×X1(1)

‖X1(2)×X1(1)‖
, then we can substitute it into (12) and obtain

n2 ∼ n1λ + RT
z,θp

′ (14)

with λ , ‖X1(2) × X1(1)‖ andp′ , h′
1 × d′

21. Owing to (14) we simply obtain:

n2x ∼ λn1x + p′x cos θ + p′y sin θ

n2y ∼ λn1y − p′x sin θ + p′y cos θ (15)

n2z ∼ λn1z + p′z.

Substituting (15) in (13), after some simple manipulations, one obtains

e21 ∼

[

p′x cos θ + p′y sin θ − p′zcx

−p′x sin θ + p′y cos θ − p′zcy

]

. (16)

The computation ofn′
2 can be derived analogously, and hence it results that:

e′21 ∼

[

p′x − p′zc
′
x

p′y − p′zc
′
y

]

. (17)

Now, it is immediate to see thatcx ∼ c′x cos θ + c′y sin θ andcy ∼ c′y cos θ − c′x sin θ.
Using these into (16) and comparing the obtained expressionof e21 with e′21, we finally
obtain:

e21(1) ∼ e′21(1) cos θ + e′21(2) sin θ

e21(2) ∼ e′21(2) cos θ − e′21(1) sin θ

from which (5) follows directly.
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