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Abstract Planar catadioptric stereo (PCS) vision sensors consist of a pinhole
camera and two or more planar mirrors. PCS systems have recently received an in-
creasing attention in computer vision and have a promising applicability in robotics,
since the use of mirrors allows to obtain a stereo view without the need of exact
multi-camera synchronization and stereo calibration. The paper presents a rigorous
analytical treatment of the imaging geometry of PCS sensors and introduce new
multiple view properties that are instrumental in addressing the camera localization
problem. Original results on mirror calibration are also provided. Extensive simu-
lation and real-data experiments conducted with an eye-in-hand robot illustrate the
theory and show the effectiveness of the proposed designs.

1 Introduction

1.1 Motivation and related works

Stereoscopic vision has been playing a key role in many fields, such as, e.g,
3-D imaging for entertainment and mapping, medicine, industrial robotics, aug-
mented reality [13, 11]. Standard stereo sensors are composed of two coupled pin-
hole cameras and are generally expensive and difficult to calibrate. In addition, the
limited field of view considerably limits their application range. To alleviate this
problem, several works in the robotics and computer vision literature have recently
proposed the use of catadioptric vision sensors [18, 4, 21, 15], which, combining
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Fig. 1 PCS experimental
setup composed of a pinhole
camera mounted on the end-
effector of a manipulator and
two planar mirrors.

Pinhole camera

Planar mirrors

both refracting (lens) and reflecting (mirrors) elements, naturally enlarge the field
of view of classic pinhole cameras.
By using mirror reflections of a scene, stereo images can be capturedwith a single

camera (catadioptric stereo). This paper focuses on a special class of single camera
stereo systems called PCS sensors, consisting of a pinhole camera and two, or more,
planar mirrors [8, 19]. Single camera stereo has several advantages over traditional
two-camera stereo: first of all, only a single set of internal camera calibration pa-
rameters needs to be determined. Second, no additional software or hardware is
needed for exact camera synchronization [10]. The necessity of possibly large and
unwieldy planar mirrors makes PCS systems not suited for mobile robotics. How-
ever, these sensors find a natural application in industrial robotics: in fact multiple
planar mirrors disposed in the workspace can be used to improve the pose accu-
racy of an eye-in-hand robotic arm performing high precision assembling and close
manipulation tasks.
Several PCS sensors have been designed and implemented in the last few years

(see, e.g., [20, 3]) and preliminary results on the geometry, calibration and 3-D
scene reconstruction from reflective symmetry have been presented in [5, 6, 17].
The set of constraints to be satisfied in order to obtain rectified stereo images from
a catadioptric system has been studied in [7]. An affine approximation for epipolar-
based PCS rectification has been recently proposed in [22].
From the previous overview,we see that although some research has been done in

this field, the specific properties of PCS systems have been addressed only sparsely
in the literature and a systematic theory on PCS sensors has yet to be established.
In particular, the case of a moving camera in a fixed mirrors scenario and the multi-
ple view geometry associated with it, have not been explored so far.

1.2 Contributions

The original contribution of this paper is threefold:

• We provide a rigorous analytical treatment of the imaging geometry of PCS sen-
sors composed of a pinhole camera and two planar mirrors (see Fig. 1) and intro-
duce new algebraic results on the multiple view geometry for the case of static
and moving cameras (multi-view PCS).
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• On the grounds of these novel results, we address the image-based camera local-
ization problem and present original methods for mirror calibration (i.e., com-
putation of the angle between the mirrors).

• We present extensive simulation and real-data experiments conducted with an
eye-in-hand robot, in order to illustrate the theory and show the effectiveness of
the proposed designs in real scenarios.

A preliminary version of this paper appeared in [16], compared to which we pro-
vide here new theoretical results as well as a more extensive experimental validation.

1.3 Organization

Section 2 reviews the basic theory related to perspective projection through planar
mirrors and introduces the reflective epipolar geometry. Section 3 deals with the
single and multiple view geometry for PCS sensors. Section 4 addresses a solution
to the mirror calibration and image-based camera localization problems. Simulation
and real-data experiments are reported in section 5. In section 6, the main contri-
butions of the paper are summarized and possible avenues of future research are
highlighted.

2 Planar mirrors and perspective projection

In this section we review the imaging properties of catadioptric systems with a sin-
gle planar mirror [5]. The basic concepts of virtual point, reflection transformation
and virtual camera projection equivalence are introduced. The original notion of
reflective epipolar geometry is presented at the end of the section.

2.1 The virtual point and the reflection transformation

Let us consider the setup reported in Fig. 2(a) where a perspective camera 〈c〉 is in
front of a planar mirror Π with normal vector nπ . A 3-D point X� [x y z]T is sup-
posed to be in front of the mirror as well (X̃ indicates its extension in homogeneous
coordinates). For the sake of clearness, hereafter we will refer to the simplified setup
in Fig. 2(a): however, the results of this section are valid for generic camera-mirror
arrangements. Note that the perspective image u (pixels) of X after its reflection by
the planar mirrorΠ can be calculated as the direct projection on 〈c〉 of the so-called
virtual point X[π ].

Proposition 1 (Perspective projection). Let us consider the setup of Fig. 2(a) in
which a planar mirror with normal vector nπ is distant dπ from the camera 〈c〉.
Then the perspective projection ũ � [u v 1]T (pixels) of a generic 3-D point X that
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Fig. 2 (a) Reflection through the planar mirror Π and the virtual point X[π]; and (b) the virtual
camera 〈v〉.

is mirrored by Π is given by,

λ ũ=K [I 0]D[π ] X̃ with λ ∈ R
+, (1)

where K is the calibration matrix of the camera and D[π ] is the reflection transfor-
mation about the mirror nπ , defined as,

D[π ] =

[
S[π ] 2dπ nπ
0T 1

]
, (2)

where S[π ] = I−2nπnTπ .

Proof. The perspective projection ũ of the virtual point X̃
[π ]
is given by,

λ ũ=K [I 0]X̃
[π ]

. (3)

From geometrical considerations in Fig. 2(a), we see that,

X[π ] = X+2d nπ . (4)

Since d = dπ +XTnπ , then (4) can be rewritten as,

X[π ] = (I−2nπnTπ )X+2dπ nπ . (5)

By introducing the matrix D[π ] defined in (2), Equation 5 becomes,
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X̃
[π ]

= D[π ] X̃ . (6)

Substituting (6) in (3), we obtain Equation 1. ��
Note that S[π ] ∈ O(3), det(S[π ]) = −1 and that (D[π ])−1 = D[π ].

2.2 The virtual camera and the projection equivalence

Proposition 1 of section 2.1 shows how the 3-D point X is mirrored by Π at u onto
the image plane of the camera 〈c〉. Analogously to the concept of virtual point,
we can introduce the geometrically intuitive notion of virtual camera 〈v〉 (dashed in
Fig. 2(b)), whose reference frame is simply reflected with respect to 〈c〉. The proof
of the next proposition follows directly from the observation that,

Xv = X[π ], (7)

where Xv is the point X in 〈v〉.
Proposition 2 (Projection equivalence). Let u be the perspective projection in 〈c〉
of a 3-D point X after its reflection by Π. Then,

u= u[π ], (8)

being u[π ] the perspective projection of X onto the image plane of the virtual
camera 〈v〉.
Proposition 2 states that the perspective projection u of X[π ] coincides with the per-
spective projection u[π ] ofXv. In other words, the camera projections of the reflected
points correspond to the virtual camera projections of the real points.

2.3 Reflective epipolar geometry

In this section we study the imaging geometry relating cameras 〈c〉 and 〈v〉. Note
that this is different from [5, section 3.1], where the epipolar geometry between the
virtual cameras is investigated.

Proposition 3 (Reflective epipolar constraint). Let us consider the setup in Fig. 3
and let dπ and nπ be the distance and the normal of the mirrorΠ measured from 〈c〉,
respectively. Let ũr, ũπ ∈ R

3 be the homogeneous representation of the projection
of a 3-D point in the image plane of the views 〈c〉 and 〈v〉, respectively. Then, the
reflective epipolar constraint is given by,

ũTπ E
[π ] ũr = 0,
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Fig. 3 Reflective epipolar
geometry.
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where the reflective essential matrix,

E[π ] = 2dπ [nπ ]×,

being [nπ ]× the skew-symmetric matrix associated with the vector nπ .

Proof. Let X and Xv be the 3-D coordinates of a point in the camera frames 〈c〉
and 〈v〉, (see Fig. 3). X and Xv are related by the following rigid-body transforma-
tion,

Xv = S[π ]X+2dπnπ , (9)

readily derived by substituting (7) into (5). If the internal camera calibration matrix
K is the identity, then Xv = λπ ũπ , X= λr ũr and (9) can be rewritten as follows,

λπ ũπ = λr S[π ] ũr +2dπnπ , (10)

where λπ , λr ∈ R
+ are unknown depths. Simple matrix manipulations on (10), lead

directly to the epipolar constraint,

ũTπ (2dπ [nπ ]×S[π ]) ũr = 0.

By definition,

E[π ] � 2dπ [nπ ]× S[π ] = 2dπ [nπ ]×(I−2nπ nTπ ) = 2dπ [nπ ]×.

��
Note that the vector nπ can be readily recovered (up to a scale factor), from the

right null-space of E[π ]. If the camera calibration matrix
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K=

⎡⎢⎣ fx s u0
0 fy v0
0 0 1

⎤⎥⎦,

where fx, fy (pixels) denote the focal length of the camera along the x and y di-
rections, s is the skew factor and (u0, v0) (pixels) are the CCD’s principal point
coordinates, we can introduce the reflective fundamental matrix F[π ],

F[π ] �K−T E[π ]K−1. (11)

Since F[π ] is skew-symmetric (in fact we have, F[π ] + (F[π ])T = 2dπ(K−T [nπ ]×K−1
−K−T [nπ ]×K−1) = 0), the left and right null-space of F[π ] are equal. As such, the
epipoles are equal,

ẽ = ẽπ .

Note that since F[π ] has only 2 DOF (that correspond to the position of the epipole ẽ),
at least 2 pairs of corresponding points are necessary to determine F[π ]. Since ẽ= ẽπ
the epipolar lines in the real and virtual view coincide and the epipole can be re-
garded as a vanishing point, being the intersection of 3-D parallel lines (the lines
joining the real and virtual points) projected onto the image plane.

Remark 1. Note that the imaging geometry relating cameras 〈c〉 and 〈v〉 corresponds
to that existing between two cameras undergoing a pure translational motion.

3 Single and multiple view geometry for PCS sensors

3.1 Single view geometry

In this section we assume that a camera 〈c〉 observes a set of 3-D points reflected
by two planar mirrors (see Fig. 4). In this case two corresponding virtual cameras
〈v1〉 and 〈v2〉 exist and suitable geometries relating 〈c〉 with both 〈v1〉 and 〈v2〉
can be defined. The generalization to multiple mirrors is straightforward and it will

be not discussed herein. Let be given the image points u[1]
i , u

[2]
i , i ∈ {1, . . . ,n} in

〈c〉, projections of a set of n ≥ 8 3-D points Xi reflected onto the mirrors n1 and
n2, respectively. Note that while the subscript i is the point index, the superscript
inside the brackets will always refer to the mirror number through which that vector
is reflected (for the sake of simplicity, we will henceforth neglect the subscript π
in the mirrors parameters). Given the two-mirror setup reported in Fig. 4, let D[1]

and D[2] be the corresponding reflection transformations. The following expression
holds true,

D[2]D[1] =

[
RD tD
0T 1

]
,

where,
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Fig. 4 The camera 〈c〉 and the
virtual cameras 〈v1〉 and 〈v2〉.
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RD � I+4(nT1 n2)n1n
T
2 −2n1nT1 −2n2nT2 ,

tD � 2d1n1−2(d1(nT1 n2)+d2)n2.

Note that (RD, tD) only depends on the mirror setup (i.e., n1, n2 and d1, d2), and
not on the observed scene. On the other hand, let Hv2

v1 be the homogeneous transfor-
mation matrix representing the rigid body motion between the frames 〈v1〉 and 〈v2〉.
It is easily found that (see Fig. 4),

Hv2
v1 �

[
R t
0T 1

]
= D[1]D[2], (12)

where (R, t) is the rigid bodymotion between 〈v1〉 and 〈v2〉. Owing to proposition 2,
the points u[1]

i and u[2]
i in 〈c〉 are corresponding in both the virtual cameras 〈v1〉

and 〈v2〉, (see Fig. 4). This implies the existence of the epipolar geometry relating
〈v1〉 and 〈v2〉, i.e., ũ[2]T

i F ũ[1]
i = 0. The fundamental matrix F can be estimated

from a set of (at least) 8 image points and the epipoles e1 and e2 are obtained as the
right and left null-spaces of F [9]. Moreover, given the camera calibration matrix
K, from F we can compute the essential matrix E � [t]×R. Once E is known, a
decomposition [9] can be carried out to finally compute the matrixR and the vector t
(up to a scale factor).
Fig. 5 shows the epipolar lines (white) relative to pairs of corresponding points

in the real and virtual views, on a sample image. Fig. 5(a) reports the epipolar lines
between the virtual cameras 〈v1〉 and 〈v2〉: the baseline lies far above the edge of
the image. As shown in [6], all corresponding epipolar lines intersect at the image
projectionm of the mirrors screw axis (i.e., the 3-D line of intersection between the
mirrors). Figs. 5(b), 5(c) show the epipolar lines between 〈v1〉 and 〈c〉, and between
〈v2〉 and 〈c〉, respectively.
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Fig. 5 Epipolar lines (white) on a sample image: (a) between 〈v1〉 and 〈v2〉; (b) between 〈v1〉
and 〈c〉; and (c) between 〈v2〉 and 〈c〉.

3.2 Multiple view geometry

In this section we address the case of a moving camera that observes a set of
3-D points Xi reflected by two mirrors, from two views 〈c1〉 and 〈c2〉 (see Fig. 6).
Let HR � Hc2

c1 be the homogeneous transformation matrix relating 〈c1〉 and 〈c2〉,
and H

v
[2]
2

v
[2]
1

, H
v
[2]
2

v
[1]
2

, H
v
[1]
2

v
[1]
1

, H
v
[2]
1

v
[1]
1

(with a slight abuse of notation since differently from

section 3.1 the subscript of v refers herein to the camera number), the four homoge-

neous matrices encoding the relative pose between the virtual views. Finally, letD[1]
c1

and D[2]
c1 denote the reflection transformations about the two mirrors, written in 〈c1〉.

We are now ready to introduce the following proposition, which establishes a link

between HR and H
v
[2]
2

v[1]2
.

Proposition 4 (Multiple cameras mirroring). The following equation holds true,

H
v
[2]
2

v[1]2
=H−1

R D[1]
c1 D

[2]
c1 HR (13)
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Fig. 6 Multiple view
geometry for the cameras
〈c1〉 and 〈c2〉.
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[1]
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v
[1]
1
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[1]
2
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Proof. From (12) we have that,

D[1]
c1 D

[2]
c1 =Hv

[2]
1

v
[1]
1

. (14)

Premultiplying and postmultiplying (14) by H−1
R and HR, respectively, we obtain,

H−1
R H

v
[2]
1

v
[1]
1

HR =H−1
R D[1]

c1 D
[2]
c1 HR. (15)

From an inspection of Fig. 6, it is easy to verify that the following equalities
hold true,

HR =Hv
[1]
2

v
[1]
1

=Hv
[2]
2

v
[2]
1

, (16)

i.e., the rigid motion between 〈c1〉 and 〈c2〉 is equal to the rigid motion between
〈v[1]1 〉 and 〈v[1]2 〉, and between 〈v[2]1 〉 and 〈v[2]2 〉. Using (16) and (14) into (15), we
obtain,

H−1
R H

v[2]1
v[1]1
HR = H

v[2]1
v[2]2
H
v[2]1
v[1]1
H
v[2]2
v[2]1

= H
v[2]1
v[2]2
H
v[1]2
v[1]1
H
v[2]2
v[1]2

= H−1
R HRH

v[2]2
v[1]2

= H
v[2]2
v[1]2

,

and (13) is thus proved. ��
Remark 2. Note that Equation 13 allows one to estimate the rigid motion HR also
when the epipolar geometry between 〈c1〉 and 〈c2〉 is not well-defined (small base-
line case). In fact the epipolar geometry between the virtual cameras is always well-
defined by construction.
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4 Mirror calibration and image-based camera localization

In this section we address the mirror calibration and image-based camera localiza-
tion problems using the PCS properties presented in sections 2 and 3. Proposition 5
in the next section will be instrumental for proposition 8 in section 4.2.

4.1 Mirror calibration

Consider the setup in Fig. 4 and assume that at least n ≥ 2 points can be directly
observed by 〈c〉 at ui, i ∈ {1, . . . ,n}. If the same set of points is also reflected by
the mirrors n1 and n2 at u

[1]
i and u[2]

i (white dots), then two reflective fundamental
matrices F[1] and F[2] do exist and can be computed from the corresponding pairs

(u[1]
i ,ui) and (u[2]

i ,ui), respectively (cf. proposition 2). From F[1] and F[2], we can
then determine the epipoles e1 and e2 as their right null-spaces (black dots). Since
the direction of each epipole e j is always parallel to n j, j ∈ {1,2}, we then obtain
the following:

Proposition 5 (Mirror calibration with the epipoles). The angle θ between the
mirrors n1 and n2 is given by,

θ = arccos

(
(K−1 ẽ1)T (K−1 ẽ2)
‖K−1 ẽ1‖‖K−1 ẽ2‖

)
.

In the next proposition the epipoles between the virtual cameras are used to solve
the mirror calibration problem (see Fig. 7(a)). Let F[21] be the fundamental matrix

computed from the corresponding points (u[1]
i ,u[2]

i ) and let γ be the angle between
the virtual epipoles e[12] and e[21]. It is easy to verify that,

γ = arccos

(
(K−1 ẽ[12])T (K−1 ẽ[21])
‖K−1 ẽ[12]‖‖K−1 ẽ[21]‖

)
.

Proposition 6 (Mirror calibration with the virtual epipoles). The angle θ be-
tween the mirrors n1 and n2 is given by,

θ =
π− γ
2

.

Remark 3. It is worth emphasizing here that our calibration notion is different from
that considered in previous works (and notably in [6]). In fact, with “mirror cali-
bration” we mean the estimation of the angle between the mirrors, while in [6] the
authors mean the estimation the focal length of the camera and the orientation of the
mirrors screw axis.
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4.2 Image-based camera localization

This section deals with the estimation of the rigid motion (Rcw, tcw) of the camera 〈c〉
with respect to a world frame 〈w〉. Without loss of generality, we will assume that the
z-axis of 〈w〉 coincides with the mirrors screw axis and the x-axis lies on mirror n1.
Proposition 7 provides a method to estimate the matrix Rcw, while proposition 8
presents two methods for computing the projection of tcw on the plane defined by the
camera centers.
Consider the setup reported in Figs. 7(a) and 7(b). If at least two corresponding

points exist between 〈c〉 and 〈v1〉 and between 〈c〉 and 〈v2〉, then the fundamen-
tal matrices F[1] and F[2] exist. Let e1 and e2 be the epipoles having unitary norm
considered in proposition 5, zw(c) � e1× e2 and xw(c) � e1× zw(c).

Proposition 7 ( Rcw estimation). For every rigid-motion (Rcw, tcw), the following
equation holds true,

Rcw =

⎡⎣ 0 0 −1
0 1 0
−1 0 0

⎤⎦[nΓ (c) e1 a(c)
]−1

(17)

Proof. Due to the assumption that the x-axis of 〈w〉 lies on n1, then for every pose
of 〈c〉 the world y-axis expressed in the camera frame 〈c〉 corresponds to e1. Conse-
quently, for every pose of 〈c〉, e1 and e2 lie on the same plane Γ defined by the three
camera centers having normal vector nΓ(w) = [0 0 1]T in 〈w〉 (see Fig. 7(a)), then,

zw(c) � e1× e2,

where zw(c) is the z-axis of the world reference frame expressed in the camera
frame 〈c〉. The world frame x-axis can be easily obtained as the cross product of
e1 and zw(c),

xw(c) � e1× zw(c).

Finally we have that, ⎡⎣−1 0 0
0 1 0
0 0 −1

⎤⎦ = Rcw [xw(c) e1 zw(c)],

from which (17) follows. ��
Note that, in absence of noise on the image points, Equation 17 provides us with

the exact Rcw. In the case of noisy data, the estimated R
c
w will not be, in general,

a rotation matrix. To overcome this problem, the correct rotation matrix should be
computed as UVT , where matrices U and V are obtained from the singular value
decomposition of the initial estimate of Rcw.
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℘(tcw)

tcw

nΓ

〈v1〉
〈v2〉

〈c〉
〈w〉

Γ

Σ

nΣ

(a)

n2

n1

e[21]

e[12]

〈c〉

〈v1〉

〈v2〉
nΣ

℘(tcw)

(Rcw, tcw)

(b)

Fig. 7 (a)℘(tcw) is the projection of tcw on the plane Γ ; and (b) computation of℘(tcw) using the
epipolar lines and Σ .

Remark 4. In section 3.2 we have seen that Equation 13 relates the pose of two
cameras 〈c1〉 and 〈c2〉 with the pose of their virtual counterparts. An analogous
equation, that will be instrumental in proving the second statement in proposition 8,
relates the pose of 〈c〉 and 〈w〉 with that of the virtual cameras 〈v1〉 and 〈v2〉. In fact,
as from Fig. 6, assuming that the camera frame 〈c1〉 is coincident with 〈w〉 and 〈c2〉
is coincident with 〈c〉, we get,

Hv2
v1 =Hw

c D
[1]
w D

[2]
w Hc

w. (18)

By inverting and then premultiplying (18) by Hc
w, we obtain the Sylvester equation

(with unknownHc
w),

Hc
wH

v1
v2 = D[2]

w D
[1]
w Hc

w, (19)

where D[1]
w and D[2]

w are the reflection transformations about the two mirrors written
in 〈w〉,

D[1]
w =

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , D[2]
w =

[
S[2]
w 0

0T 1

]
,

being n1 = [0 1 0]T and n2 = [−sinθ cosθ 0]T in 〈w〉.
Consider the setup in Fig. 7(a) and let℘(tcw) ∈ R

2 be the vector containing the
first two components of the projection of tcw on the plane Γ . In the next proposition
we present two methods for estimating the direction of℘(tcw), i.e., ℘(tcw)

‖℘(tcw)‖ . The first
one uses the fundamental matrix F[12] between the virtual cameras 〈v1〉, 〈v2〉 and
the second one the Equation 19. Let Σ be the plane defined by the mirrors screw
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axis and the center of 〈c〉, and let nΣ be the normal to Σ (see Fig. 7(b)). In the next
proposition Rz(γ) denotes a rotation about the z-axis by an angle γ .

Proposition 8 (Estimation of ℘(tcw)
‖℘(tcw)‖ ). The direction of℘(tcw) is given by,

℘(tcw)
‖℘(tcw)‖ =

tc∗w
‖tc∗w ‖ , (20)

where,
(i)

tc∗w = [a(1) a(2)]T , (21)

with a= Rz(−90◦)nΣ , nΣ (1) > 0, or alternatively,
(ii)

tc∗w =
[
a(1)(1−n22(2)) + n2(1)n2(2)a(2)

2n22(1)
a(2)n2(1) − a(1)n2(2)

2n2(1)

]T
, (22)

with a=−Rcwtv1v2 , where n2 is the normal vector to the second mirror, written in 〈w〉.
Proof. Let us start by proving the part (i) of the statement. tcw and℘(tcw) lie on the
plane Σ with normal vector nΣ = [nΣ (1) nΣ (2) 0]T in 〈w〉. Since the corresponding
epipolar lines (computed from the fundamental matrix F[12]) all intersect at a single
image linem, projection of the screw axis, we have that,

nΣ = Rcw (KTm),

where KTm is the normal vector to Σ in 〈c〉. Since nΣ ⊥℘(tcw), it is then sufficient
to rotate nΣ of −90◦ around the z-axis in order to obtain tc∗w in (21).
To prove the second part of the statement, consider the Equation 19. Let Rcw be

given (computed, for example, using proposition 7) and D[2]
w , n2 be estimated using

one of the algorithms in section 4.1. Let Hv1
v2 also be given (see section 3.1). From

(19) we have that Rcwt
v1
v2 + tcw = S[2]

w S
[1]
w tcw. Collecting t

c
w on the left-hand side of the

equation, we get (I−S[2]
w S

[1]
w ) tcw = −Rcwtv1v2 , that is,⎡⎣ 2n22(1) −2n2(1)n2(2) 0

2n2(1)n2(2) 2(1−n2(2))2 0
0 0 0

⎤⎦ tcw = −Rcwtv1v2 ,

from which, after few manipulations, we obtain (22). Note that the normalization of
tc∗w in (20), removes the ambiguity due to the up to scale estimation of tv1v2 . ��
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5 Simulation and experimental results

5.1 Simulations

Simulation experiments have been conducted with the epipolar geometry tool-
box [14], in order to test the effectiveness of the algorithms presented in the previous
sections. The setup is composed of a pinhole camera with calibration matrix,

K=

⎡⎢⎣ 951.8 0 640.66

0 951.8 605.11

0 0 1

⎤⎥⎦ ,

and two planar mirrors with normal vectors n1 = [0.6 0.55 −0.57]T and n2 =
[−0.32 0.87 −0.37]T , corresponding to an angular displacement θ = 60◦. The cam-
era observes directly a total of 20 random points. For the sake of simplicity, we will
henceforth suppose that the correspondence matching problem is exact. In order
to solve the correspondence problem in practice, one might first use SIFT (scale-
invariant feature transform) [12] and, in a second phase, assign the points to each
mirror which has been uniquely identified by a colored landmark.
The rigid motion (Rcw, tcw) between the camera and world frame is,

Rcw = Rz(40◦)Ry(−20◦)Rx(30◦), tcw = [0.6 −2 −0.2]T m.

Four well-known fundamental matrix estimators [1], normalized 8-point algo-
rithm, iterative Sampson method, robust Torr’s M-estimator and LMedS, have been
compared in the simulation experiments. The M-estimator revealed the best com-
promise between estimation accuracy, computation load and robustness to uncorrect
correspondence matching due to outliers.
In Fig. 8, we ran 200 iterations of the proposed algorithms for increasing value

of the image noise standard deviation. Fig. 8(a) reports the mirror angle estima-
tion error |θ̂ −θ | for the algorithms in propositions 5 and 6. The algorithm that
uses the virtual epipoles is the most accurate with a maximum mean error of 1.5◦.
Fig. 8(b) shows the Rcw estimation error computed as the roll-pitch-yaw angle er-
rors (cf. proposition 7). We experienced a good robustness to noise of the proposed
method, with a maximummean error around 2◦. Fig. 8(c) finally reports the estima-
tion error,

ε(t̂cw) =
∥∥∥∥ ℘(t̂cw)
‖℘(t̂cw)‖ − ℘(tcw)

‖℘(tcw)‖
∥∥∥∥ ,

for the two algorithms in proposition 8: (i) screw axis and (ii) Sylvester equation.
From an inspection of Fig. 8(c), we observe that the second method is less sensitive
to noise since it does not rely on the direct computation of the epipoles. A maximum
mean error of 5 cm is achieved.
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Fig. 8 Simulations: (a) mirror angle estimation error |θ̂ − θ | for the algorithms in propositions 5
and 6; (b) Rcw estimation error for the algorithm in proposition 7; and (c) error ε(t̂

c
w) for the algo-

rithms in proposition 8.

5.2 Experiments

In order to test the robustness of proposed algorithms in real scenarios we per-
formed a series of experiments using the setup shown in Fig. 9. A Lumenera�

LU071C camera mounted on the end-effector of a 6 axes KUKA� KR 3 manipu-
lator, observes a structured scene directly and reflected through two planar mirrors.
The mirrored objects lie in a box of size 0.42× 0.3 m2.
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Fig. 9 Experimental setup: an
eye-in-hand robot observes a
structured 3-D scene directly
and reflected through two
planar mirrors.

(Rcw, tcw)

We exploited the high positioning accuracy of the KR 3 manipulator in order to
have precise ground truth reference measurements of position and orientation of the
camera. The calibration matrixK of the camera is the same as in the simulations1.
Fig. 10(a) shows themirror angle estimation error |θ̂−θ | for θ ∈{30◦, 45◦, 60◦}.

The values reported in Fig. 10(a) are the average of 5 experiments conducted for
each θ . In confirmation of the simulation results, the algorithm that exploits the vir-
tual cameras epipoles is the most accurate, with a maximummean error of about 6◦.
Fig. 10(b) reports the Rcw estimation error computed as the roll-pitch-yaw angle er-
rors, for the six rotational displacements reported in Table 1, (θ = 60◦). As already
pointed out in section 5.1, the proposed algorithm has a reduced sensitivity to noise:
the maximum error is less than 6◦. Finally, Fig. 10(c) depicts the estimation error
ε (̂t

c
w), for the six translational displacements reported in Table 1. As in the simu-

lation experiments, the algorithm based on the Sylvester equation exhibits the best
performance, with a maximum error of about 7 cm.

Table 1 Rotational and translational displacements considered in Figs. 10(b) and 10(c). The mirror
angle θ = 60◦.

Rcw tcw

Roll [deg.] Pitch [deg.] Yaw [deg.] [m]

a −4.00 −3.03 −37.07 [ 0.147 −0.824 0.377 ]T

b 8.16 −3.49 −43.13 [ 0.157 −0.824 0.610 ]T

c 13.99 −20.87 −40.57 [ 0.432 −0.960 0.532 ]T

d −6.38 −9.01 −51.60 [ 0.106 −0.613 0.408 ]T

e −3.63 −3.46 −43.73 [ 0.215 −0.824 0.552 ]T

f 7.74 −13.55 −35.60 [ 0.313 −0.960 0.535 ]T

1 The calibration matrix has been estimated with the camera calibration toolbox [2].
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Fig. 10 Experiments: (a) mirror angle estimation error |θ̂ − θ | for θ ∈ {30◦, 45◦, 60◦};
(b) Rcw estimation error for the rotational displacements reported in Table 1; and (c) error ε(t̂

c
w)

for the translational displacements reported in Table 1.

6 Conclusions and future work

The paper presents a systematic study of the imaging geometry of planar catadiop-
tric stereo vision sensors. New algebraic results on the multiple view geometry for
the case of static and moving cameras (multi-view PCS) are introduced. On the
basis of these new results, we addressed both the image-based camera localization
and mirror calibration problems. Extensive simulation and experimental results have
been presented in order to illustrate the theory and show the applicability of the pro-
posed algorithms in real scenarios.
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The extension of our results to multiple camera networks is a subject of fu-
ture research. Future investigations will also focus on the 3-D scene reconstruc-
tion problem and will show the connection between PCS sensors and the trifocal
geometry [9].
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