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A motivating example

Lessons learnt from the Gulf of Mexico blowout (April 10, 2010):
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A motivating example

Lessons learnt from the Gulf of Mexico blowout (April 10, 2010):

1 Difficult to predict the motion of an oil spill. The direction of sea currents,
wind intensity, evaporation rate, oil concentration are not precisely known

2 It is important to forecast when and where an oil spill will wash ashore
(huge impact on nature reserves, fisheries, tourism, etc.)
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Possible solution

Use a swarm of unmanned aerial vehicles (UAVs) for monitoring the oil spill
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Possible solution

Use a swarm of unmanned aerial vehicles (UAVs) for monitoring the oil spill

Previous approaches → detection and tracking of the boundary of the target

region [Casbeer et al., IJSC06], [Susca et al., TCST08], [Smith et al., IJRR10]

1 The boundary of the target region may be faint or fuzzy in real settings
and thus hard to detect and track

2 The events occurring at the center of the target region are ignored

3 The agents are fully actuated
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Key features of the proposed approach

The UAVs are nonholonomic vehicles
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Key features of the proposed approach

The UAVs are nonholonomic vehicles

The UAVs have limited sensing capabilities (i.e., they sense only a portion

of the environment)

The target region is described by an ensemble of particles

The “shape” of the swarm and the ensemble of particles is described using
geometric moments [Belta et al., TRO04]

Moments of the swarm ←→ MATCH ←→ Moments of the particles

Fully distributed algorithm
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Dynamic model of the UAVs

n UAVs flying at fixed altitude:






ṗix = vi cos θi

ṗiy = vi sin θi, i ∈ {1, . . . , n}

θ̇i = ωi

pi = [pix, piy]
T : position of agent i in the plane of motion

θi ∈ [−π, π): heading of agent i

[vi, ωi]
T , vi > 0: forward and angular velocity of agent i

.

pix

piy

θi
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Control design: preliminaries

Let
p = [pT

1 , . . . ,p
T
n ]

T ∈ IR2n
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The configuration of the agents is described by the swarm moment function:

f(p) =
1

n

n∑

i=1

φ(pi)

The moment-generating function φ : IR2 → IRℓ is defined as:

φ(pi) , [ pix, piy, p
2

ix, p
2

iy, pixpiy , p
3
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3
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Control design: preliminaries

Let
p = [pT

1 , . . . ,p
T
n ]

T ∈ IR2n

The configuration of the agents is described by the swarm moment function:

f(p) =
1

n

n∑

i=1

φ(pi)

The moment-generating function φ : IR2 → IRℓ is defined as:

φ(pi) , [ pix, piy, p
2

ix, p
2

iy, pixpiy , p
3

ix, p
3

iy, p
2

ixpiy, . . . ]
T

aaaaaaaaaaaaaaaaaaaaa
︸ ︷︷ ︸

1st and 2nd-order moments
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Control design: preliminaries

Goal: Move the agents so that their final arrangement minimizes the error

f(p) − f
⋆

The goal vector f⋆ defines the desired shape of the formation
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Control design: preliminaries

Goal: Move the agents so that their final arrangement minimizes the error

f(p) − f
⋆

The goal vector f⋆ defines the desired shape of the formation

For the time being, we assume:

f⋆ a priori known

f⋆ constant

We will relax these hypotheses later on . . .
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Nonlinear gradient controller

Consider the potential function:

Π(p) = (f(p)− f
⋆)T Γ (f(p)− f

⋆)

where Γ ∈ IR5×5 is an assigned symmetric positive-definite gain matrix
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Nonlinear gradient controller

Consider the potential function:

Π(p) = (f(p)− f
⋆)T Γ (f(p)− f

⋆)

where Γ ∈ IR5×5 is an assigned symmetric positive-definite gain matrix

Define the vector:

gi(t) , −∇pi
Π(p(t)) = −(Jφ(pi(t)))

T
Γ (f(p(t))− f

⋆)

where Jφ(·) ∈ IR5×2 is the Jacobian matrix of φ(·)

Set
αi(t) , proj(arg(gi(t))− θi(t))

Define the control input for agent i as:

vi(t) = v, ωi(t) = ραi(t)

where v is a positive constant and ρ is a positive gain
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Nonlinear gradient controller: geometric interpretation

.

[cos θi, sin θi]
T

−∇pi
Π(p)

Agent i

pi

The angular control forces the heading direction of agent i to align with the
antigradient of the potential function Π(p)
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Properties of the controller

a) For any ǫ > 0, there exists a sufficiently large gain ρ such that f(p) − f⋆

is uniformly ultimately bounded with an ultimate bound ǫ
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Properties of the controller

a) For any ǫ > 0, there exists a sufficiently large gain ρ such that f(p) − f⋆

is uniformly ultimately bounded with an ultimate bound ǫ

b) For i, j ∈ {1, . . . , n}, i 6= j, let

dθij(t) , proj(θi(t)− θj(t))

dωij(t) , ωi(t)− ωj(t)

Then, for any ǫθ, ǫω > 0 there exists a sufficiently large constant µ ∈ IR>0

satisfying

Γ[1, 1], Γ[2, 2] ≥ µ
∣
∣Γ[h, l]

∣
∣, h, l ∈ {1, . . . , 5}, (h, l) 6= {(1, 1), (2, 2)}

such that |dθij(t)|, |d
ω
ij(t)| are uniformly ultimately bounded with ultimate

bounds ǫθ, ǫω
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Illustrative example - 1

Trajectory of n = 4 agents implementing the gradient controller with:

v = 1, ρ = 0.5

f⋆ = [10, 5, 800, 100, 10]T

Γ = diag(1000, 1000, 0.1, 0.1, 0.1)
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Illustrative example - 2

Trajectory of n = 5 agents implementing the gradient controller with:

v = 1000, ρ = 1

f⋆ = [102, 3× 102, 1.7× 105, 0.7× 105, 1.3 × 105]T

Γ = diag(103, 103, 10−3, 10−3, 10−3)
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Distributed estimation

To compute the angular control, agent i needs to know p at each time instant
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Distributed estimation

To compute the angular control, agent i needs to know p at each time instant

⇒ The control is not implementable in a distributed fashion

We need suitable distributed algorithms to locally estimate :

1 The swarm moment function f(p)

2 The vector of desired geometric moments using the environmental data

We will call it f⋆env −→ environmental goal vector
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Distributed estimation

Let qk = [qkx, qky]
T be the position of the k-th of N particles describing the

occurrence of some event of interest in a set Q ⊂ IR2 and evolving according to

q̇ = Υ(q, t), q = [qT
1 , . . . ,q

T
N ]T

where Υ = [ΥT
1 , . . . ,Υ

T
N ]T is a vector field unknown to the agents
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Distributed estimation

Let qk = [qkx, qky]
T be the position of the k-th of N particles describing the

occurrence of some event of interest in a set Q ⊂ IR2 and evolving according to

q̇ = Υ(q, t), q = [qT
1 , . . . ,q

T
N ]T

where Υ = [ΥT
1 , . . . ,Υ

T
N ]T is a vector field unknown to the agents

Each agent is equipped with a limited-footprint sensor, hence it can measure
the x-, y-coordinates of only a subset of the N particles

Assumption: agent i processes only the Ni < N particles lying within the
Voronoi cell Vi that it generates, from which it computes the vector:

hi =
∑

qk: qk ∈ Vi

φ(qk)
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Distributed estimation

• Voronoi partition of the set Q

Q

Ni particles

Vi

Agent i
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Distributed estimation: PI estimators

In order to obtain local estimates of f(p) and of the environmental goal vector

f
⋆
env ,

1

N

N∑

k=1

φ(qk) =
1

N

n∑

i=1

hi

agent i runs a proportional-integral (PI) average consensus estimator
[Yang et al., TAC08], [Lynch et al., TRO08]:

ξ̇i = − γ ξi −
∑

j 6=i

σ(pi,pj) (ξi − ξj) +
∑

j 6=i

τ (pi,pj) (ηi − ηj) + γ






φ(pi)

hi

Ni






η̇i = −
∑

j 6=i

τ (pi,pj) (ξi − ξj)

χi = ξi[1 : 5]−
ξi[6 : 10]

ξi[11]
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ξ̇i = − γ ξi −
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ξi[6 : 10]

ξi[11]

[φ(pi)
T , hT

i , Ni]
T ∈ IR10× Z>0 : agent i’s input

ξi ∈ IR11 : agent i’s estimate of the average of all the agents’ input

ηi ∈ IR11 : internal state of the PI estimator

γ ∈ IR>0 : global forgetting factor governing the rate at which new information
replaces the old one in the dynamic averaging process

σ(pi,pj), τ (pi,pj): bounded symmetric gain functions

χi ∈ IR5 : output of the PI estimator −→ agent i’s estimate of f(p) − f⋆env
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Closed-loop stability

Theorem - (Main result)

Suppose that the topology of the network remains always connected in forward time.
Suppose that n ≥ 3 is fixed and that the control input of agent i is of the form

vi(t) = v, ωi(t) = ραi(t)

with αi(t) , proj(arg(gi(t))− θi(t)) and

gi(t) = −(Jφ(pi(t)))
T
Γ χi(t)

Let us also suppose that ‖Υk(q, t)‖, ∀ k ∈ {1, . . . , N}, is sufficiently smaller than v.
Then, for almost every initial configuration of the agents:

Each trajectory of the swarm system is bounded in forward time

For any ǫ > 0, there exists a sufficiently large gain ρ such that the error
f(p)− f∗env is uniformly ultimately bounded with an ultimate bound ǫ
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Closed-loop stability

Theorem - (Main result)

Suppose that the topology of the network remains always connected in forward time.
Suppose that n ≥ 3 is fixed and that the control input of agent i is of the form

vi(t) = v, ωi(t) = ραi(t)

with αi(t) , proj(arg(gi(t))− θi(t)) and

gi(t) = −(Jφ(pi(t)))
T
Γ χi(t)

Let us also suppose that ‖Υk(q, t)‖, ∀ k ∈ {1, . . . , N}, is sufficiently smaller than v.
Then, for almost every initial configuration of the agents:

Each trajectory of the swarm system is bounded in forward time

For any ǫ > 0, there exists a sufficiently large gain ρ such that the error
f(p)− f∗env is uniformly ultimately bounded with an ultimate bound ǫ

Proof: It leverages the small-gain theorem
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Simulation results: control + estimation

n = 4 agents

Gradient controllers: v = 1, ρ = 3 and Γ = diag(100, 100, 0.1, 0.1, 0.1)

PI estimators: γ = 7 and σ(·, ·), τ (·, ·) are chosen according to an
equal weighting scheme with a communication radius R = 27 m:

{
σ(pi,pj) = 25 and τ (pi,pj) = 0.8, if ‖pi − pj‖ ≤ R

σ(pi,pj) = τ (pi,pj) = 0, otherwise

N = 200 particles drawn from a bivariate normal distribution N (µ, Σ) with:

µ =

[
10

5

]

, Σ =

[
70 1

1 70

]
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Simulation results: control + estimation
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Simulation results: control + estimation

• Time history of Πenv(p) = (f(p)− f⋆env)
T Γ (f(p) − f⋆env)
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Simulation results: control + estimation

• f⋆env(t) (dashed) and f(p(t)) (solid): 1st-order (left) and 2nd-order moments (right)
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Conclusions

New estimation-and-control strategy for distributed monitoring tasks
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Conclusions

New estimation-and-control strategy for distributed monitoring tasks

Swarm of UAVs modeled as constant-speed unicycles

The geometric moments of the swarm are controlled via a nonlinear gradient
descent to match those of an ensemble of particles describing the occurrence
of events of interest to be monitored

PI average consensus estimators are used to make the control implementable
in a distributed fashion

Closed-loop stability analysis
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Future challenges

Extension of our strategy to SE(3) and to vehicles with non-constant positive
forward velocity

Use 2nd-order central moments in order to have a translation-invariant

description of the desired swarm configuration

Test our estimation-and-control algorithm on real data (e.g., on recorded or
simulated trajectories of marine oil spills)
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