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Abstract—This paper studies a generalization of the standard
continuous-time consensus protocol, obtained by replacing the
Laplacian matrix of the undirected communication graph with
the so-called deformed Laplacian. The deformed Laplacian is a
second-degree matrix polynomial in the real variable s which
reduces to the standard Laplacian for s equal to unity. The sta-
bility properties of the ensuing deformed consensus protocol
are studied in terms of parameter s for some special families
of undirected graphs, and for graphs of arbitrary topology by
leveraging the spectral theory of quadratic eigenvalue problems.
Examples and simulation results are provided to illustrate our
theoretical findings.

I. INTRODUCTION
The last decade has witnessed a spurt of interest in multi-

agent systems research, in both the control and robotics
communities [1], [2]. Distributed control and consensus
problems [3], had a large share in this research activity.
Consensus theory originated from the work of Tsitsiklis [4],
Jadbabaie et al. [5] and Olfati-Saber et al. [6], in which the
consensus problem was first formulated in system-theoretical
terms. A very rich literature emanated from these seminal
contributions in recent years. In particular, numerous ex-
tensions to the prototypal consensus protocol in [6] have
been proposed both in the continuous- and discrete-time
domain: among them, we limit ourselves to mention here
the cases of time-varying network topology [7], of networks
with delayed [6] or quantized

/
noisy communication and

link failure [8], [9], of random networks [10], of distributed
average tracking [11], of finite-time convergence [12], and
of nonlinear agreement [13].
This paper follows this vibrant line of research and

presents an original extension to the basic continuous-time
consensus protocol in [6], that exhibits a rich variety of
behaviors and whose flexibility makes it ideal for a broad
range of mobile robotic applications (e.g. for clustering
or formation control). The new protocol, termed deformed
consensus protocol, relies on the so-called deformed Lapla-
cian matrix, a second-degree matrix polynomial in the real
variable s, which extends the standard Laplacian matrix and
reduces to it for s equal to unity: the deformed Laplacian
is indeed an instance of a more general theory of deformed
differential operators developed in mathematical physics in
the last three decades (c.f. [14, Ch. 18]). Parameter s has a
dramatic effect on the stability properties of the deformed
consensus protocol, and it can be potentially used by an ex-
ternal supervisor to dynamically modify the behavior of the
network and trigger different agents’ responses. The stability
properties of the proposed protocol are studied in terms of
parameter s for some special families of undirected graphs
for which the eigenvalues and eigenvectors of the deformed
Laplacian can be computed in closed form. Our analysis is
also extended to graphs of arbitrary topology by exploiting
the spectral theory of quadratic eigenvalue problems [15].

The author is with the Institute for Design and Control of Mechatronical
Systems, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz,
Austria. Email: fabio.morbidi@jku.at
The author gratefully acknowledges the sponsoring of this work by the COMET

K2 center “Austrian Center of Competence in Mechatronics” (ACCM).

The rest of the paper is organized as follows. Sect. II
presents some preliminaries on algebraic graph theory.
The main theoretical results of the work are provided in
Sect. III. Finally, in Sect. IV, the theory is illustrated via
numerical simulations and in Sect. V the main contributions
of the paper are summarized and possible future research
directions are outlined.

II. PRELIMINARIES

In this section, we briefly recall some basic notions of
algebraic graph theory that will be used through the paper.
Let G = (V, E) be a graph1 where V = {1, . . . , n} is the

set of nodes, and E is the set of edges [16].
Definition 1 (Adjacency matrix A): The adjacency ma-

trix A = [aij ] of graph G is an n× n matrix defined as,

aij =

{
1 if {i, j} ∈ E,

0 otherwise. �
Definition 2 (Laplacian matrix L): The Laplacian matrix

of graph G is an n× n matrix defined as,

L = D−A,

where D = diag(A1) is the degree matrix and 1 = 1n is a
column vector of n ones. �
Note that the Laplacian L is a symmetric positive semi-

definite matrix.
Property 1 (Spectral properties of L):

Let λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L) be the ordered
eigenvalues of the Laplacian L. Then, we have that:
1) λ1(L) = 0 with corresponding eigenvector 1. The al-
gebraic multiplicity of λ1(L) is equal to the number
of connected components in G.

2) λ2(L) > 0 if and only if the graph G is connected.
λ2(L) is called the algebraic connectivity or Fiedler
value of the graph G. �

Definition 3 (Bipartite graph): A graph G is called bipar-
tite if its node set V can be divided into two disjoint sets V1

and V2, such that every edge connects a node in V1 to one
in V2. Equivalently, a graph is bipartite if and only if it does
not contain cycles of odd length. �
Definition 4 (Signless Laplacian matrix Q [17]):

The signless Laplacian matrix of graph G is defined as,
Q = D+A. �

Note that as L, the signless Laplacian Q is a symmet-
ric positive semidefinite matrix (but it is not necessarily
singular).
Property 2 (Spectral properties of Q [17]):

The signless Laplacian Q has the following properties:
1) Let G be a regular graph of degree κ (i.e., each
node of the graph G has degree κ ≤ n − 1).

1All graphs in this paper are finite and undirected, with no loops and
multiple edges.



Then, pL(λ) = (−1)n pQ(2κ− λ) where pL(λ) de-
notes the characteristic polynomial of the Laplacian L.
If G is a bipartite graph, then pL(λ) = pQ(λ).

2) The least eigenvalue ofQ of a connected graph is equal
to 0 if and only if the graph is bipartite. In this case,
0 is a simple eigenvalue.

3) In any graph, the multiplicity of the eigenvalue 0 of Q
is equal to the number of bipartite components of G. �
III. DEFORMED CONSENSUS PROTOCOL

A. Problem formulation
It is well-known [6], that if the undirected communication

graph G is connected, each component of the state x �
[x1, . . . , xn]

T ∈ IRn of the linear time-invariant system,

ẋ(t) = −Lx(t), (1)

asymptotically converges to the average of the initial states
x1(0), . . . , xn(0),

lim
t→∞ xi(t) =

1

n

n∑
i=1

xi(0) =
1

n
xT
0 1,

where x0 � [x1(0), . . . , xn(0)]
T , i.e., average consensus is

achieved. The converge rate of the consensus protocol (1) is
dictated by the algebraic connectivity λ2(L).
Let us now consider the following generalization of the

Laplacian L.
Definition 5 (Deformed Laplacian Δ(s)): The deformed

Laplacian of the graph G is an n× n matrix defined as,

Δ(s) = (D− In) s
2 − A s + In,

where In is the n × n identity matrix, and s is a real
parameter. �
Note that Δ(s) is a symmetric matrix (but not positive

semidefinite as L, in general), and that:

Δ(1) = L, Δ(−1) = Q.

Inspired by (1), in this paper we will study the stability
properties of the following linear system,

ẋ(t) = −Δ(s)x(t), (2)

in terms of the real parameter s, assuming that the graph G
is connected. We will refer to (2), as the deformed consensus
protocol.
Note that sinceΔ(1) = L, we will always achieve average

consensus for s = 1. Moreover, since Δ(s) is real symmet-
ric, all the eigenvalues of Δ(s) (which are nonlinear func-
tions of s) are real, and the deformed Laplacian admits the
spectral decomposition Δ(s) = U(s)Λ(s)UT (s), where
U(s) = [u1(s) u2(s) . . . un(s)] is the matrix consisting of
normalized and mutually orthogonal eigenvectors of Δ(s)
and Λ(s) = diag(λ1(Δ(s)), . . . , λn(Δ(s))). The solution
of (2), can thus be written as,

x(t) =

n∑
i=1

e−λi(Δ(s))t (uT
i (s)x0)ui(s). (3)

In Sect. III-B, we will focus on some special families
of graphs for which the eigenvalues and eigenvectors of
Δ(s) can be computed in closed form, and thus the stability
properties of system (2) can be easily deduced from (3).
In Sect. III-C, we will address, instead, the more challenging
case of undirected graphs with arbitrary topology.

B. Stability conditions for special families of graphs
This section presents a sequence of nine proposi-

tions which provide stability conditions for system (2),
in the case of path, cycle, full m-ary tree, wheel,
m-cube (or hypercube), Petersen, complete, complete bi-
partite and star graphs (see [16] for a precise defi-
nition of these graphs). In the next two propositions,
k � [−1, 1,−1, 1, . . . , (−1)n−1, (−1)n]T ∈ IRn, and here-
after we will use λi(s) as a shorthand for λi(−Δ(s)),
i ∈ {1, . . . , n}.
Proposition 1 (Path graph Pn): For a path graph Pn with

n ≥ 2 nodes (we number the nodes from 1 to n in the natural
order from left to right), we have that:

• For |s| < 1, system (2) is asymptotically stable.
• For |s| > 1, system (2) is unstable.
• For s = −1, system (2) is marginally stable. In this
case, it is possible to identify two groups of n/2 nodes
(if n is even), or one group of �n/2� nodes and one
of �n/2�+ 1 nodes (if n is odd). The states associated
to the nodes in one group asymptotically converge to
1
n xT

0 k and the states associated to the nodes in the
other group converge to − 1

n xT
0 k.

Proof: In this case, −Δ(s) is a tridiagonal matrix,

−Δ(s) =

⎡
⎢⎢⎢⎣

−1 s
s −(s2 + 1) s

. . .
s −(s2 + 1) s

s −1

⎤
⎥⎥⎥⎦ .

The Sturm sequence of −Δ(s) [18, Sect. 8.5.2], is given
by 1,−1, 1,−1, 1, . . . ,−1, 1, s2 − 1, if n is odd, and
1,−1, 1,−1, 1, . . . , 1,−1, 1 − s2, if n is even. Therefore
by Theorem 8.5.1 of [18], if |s| < 1, s �= 0, all the
eigenvalues of −Δ(s) are strictly negative and system (2) is
asymptotically stable. On the other hand, the Sturm sequence
of Δ(s), for all n, is given by 1, 1, . . . , 1, 1 − s2, from
which we deduce that for |s| > 1, Δ(s) has a negative
eigenvalue, and hence system (2) is unstable. We also note
that Δ(0) = In, and hence the system is asymptotically
stable for s = 0. Finally, for s = −1, system (2) is marginally
stable and the unit-norm eigenvector associated to the zero
eigenvalue of −Δ(−1) is 1√

n
k.

Proposition 2 (Cycle graph Cn): For a cycle graph Cn

with n > 2 nodes, we have that:
• If n is even:

– For all s ∈ IR \{−1, 1}, system (2) is asymptoti-
cally stable.

– For s = −1, system (2) is marginally stable.
In this case, the states associated to n/2 nodes
asymptotically converge to 1

n xT
0 k and the states

associated to the other n/2 nodes converge to
− 1

n xT
0 k.

• If n is odd, system (2) is asymptotically stable for all
s ∈ IR \{ 1}.
Proof: In this case, −Δ(s) is a circulant matrix [19],

−Δ(s) = circ[−(s2 + 1), s, 0, . . . , 0, s].

It is well-known that circulant matrices are diagonalizable
by the Fourier matrix and hence their eigenvalues can be
computed in closed form. The eigenvalues of a general
n× n circulant matrix C = circ[c1, c2, . . . , cn], in fact, are
given by:

λi(C) = ρC(ω
i−1), i ∈ {1, . . . , n},



where ω � e2πj/n, j =
√−1, and the polynomial ρC(ξ) =

cnξ
n−1 + . . . + c3ξ

2 + c2ξ + c1 is called the circulant’s
representer [19, Th. 3.2.2]. By applying this result to matrix
−Δ(s), for i ∈ {1, . . . , n} we have that,

λi(−Δ(s)) = − s2 + 2 cos(2 π (i− 1)/n) s − 1. (4)

Observe now that the coordinates of the vertex of the
parabola (4) are [cos(2π(i − 1)/n), − sin2(2π(i − 1)/n)],
i ∈ {1, . . . , n}. If n is even, then λi(−Δ(s)) < 0, ∀ s ∈ IR
and ∀ i �= {1, n/2 + 1}. For i = 1, λ1(−Δ(s)) ≤ 0
and λ1(−Δ(s)) = 0 only for s = 1. For i = n/2 + 1,
λn/2+1(−Δ(s)) ≤ 0 and λn/2+ 1(−Δ(s)) = 0 only
for s = −1. The unit-norm eigenvector associated to
λn/2+1(−Δ(−1)) is 1√

n
k. On the other hand, if n is odd,

then λi(−Δ(s)) < 0, ∀ s ∈ IR and ∀ i �= 1. For i = 1,
λ1(−Δ(s)) ≤ 0 and λ1(−Δ(s)) = 0 only for s = 1.
Note that det(−Δ(s)) = (−1)n (s2n − 2sn + 1) for the

cycle graph Cn, and that the 2n roots of (−1)n(s2n−2sn+1)
are equally spaced on the unit circle.
A full m-ary tree is a rooted tree in which every node

other than the leaves has m children. The depth δ of a node
is the length of the path from the root to the node. The set
of all nodes at a given depth is called a level of the tree:
by definition, the root node is at depth zero. The number of
nodes of a full m-ary tree is n =

∑δ
i=0 m

i.
Proposition 3 (Full m-ary tree): For a full m-ary tree

with m ≥ 2, we have that:
• For |s| < 1, system (2) is asymptotically stable.
• For |s| > 1, system (2) is unstable.
• For s = −1, system (2) is marginally stable. In this
case, the states associated to the nodes in the even
levels of the tree asymptotically converge to 1√

n
xT
0 u1,

while the states associated to the nodes in the odd levels
of the tree converge to − 1√

n
xT
0 u1, where u1 is the

unit-norm eigenvector associated to the zero eigenvalue
of −Δ(−1).
Proof: The stability properties of (2) are determined in

this case by only one of the eigenvalues of −Δ(s) (in fact,
the other n − 1 are negative for all s). This eigenvalue is
negative for |s| < 1 and positive for |s| > 1.
Proposition 4 (Wheel graph Wn): Consider a wheel

graph Wn with n > 3 nodes where node 1 is the center of
the wheel, and let μ be the non-unitary root of

−n

2
s2 + s +

√
(n− 4)2 s2 + 4 (n− 4) s+ 4n

2
s − 1.

μ monotonically decreases from 1/2 (for n = 4) to 0
(for n = ∞). We have that:

• For s > 1 and for s < μ, system (2) is asymptotically
stable.

• For s ∈ (μ, 1), system (2) is unstable.
• For s = μ, system (2) is marginally stable. In this case
the state associated to node 1 asymptotically converges
to xT

0 [α
2, αβ, . . . , αβ]T , and the states associated to

the other n−1 nodes converge to xT
0 [αβ, β

2, . . . , β2]T ,
where [α, β, . . . , β]T , α, β ∈ IR, is the unit-norm
eigenvector associated to the zero eigenvalue of−Δ(μ).
Proof: The eigenvalues of matrix −Δ(s) are:

λ1,2(s) = −n

2
s2+ s±

√
(n− 4)2s2+ 4(n− 4)s+ 4n

2
s−1,

λi+1(s) = −2s2 + 2 cos
( 2π(i−1)

n−1

)
s− 1, i ∈{2, . . . , n− 1}.

Note that the coordinates of the vertex of the parabola
λi+1(s), i ∈{2, . . . , n− 1}, are [ 12 cos ( 2π(i−1)

n−1

)
, − 1

2

(
1 +

sin2
( 2 π(i−1)

n−1

))]
, therefore λi+1(s) < 0, ∀ s ∈ IR, ∀ i ∈

{2, . . . , n − 1}. We also have that λ2(s) < 0, ∀ s ∈ IR.
Finally, it is easy to verify that λ1(s) has always two roots,
s = μ and s = 1. λ1(s) > 0 for s ∈ (μ, 1) and λ1(s) < 0
for s > 1 and s < μ.
Proposition 5 (m-cube Qm): For the m-cube (or hyper-

cube) graph Qm with n = 2m > 4 nodes, we have that:
• For |s| > 1 and for |s| < 1

m−1 , system (2) is
asymptotically stable.

• For s ∈ (−1, − 1
m−1

)
and for s ∈ (

1
m−1 , 1

)
, system (2)

is unstable.
• For s = 1

m−1 , average consensus is achieved. The con-
vergence rate to 1

n xT
0 1n is slower for s = 1

m−1 than
for s = 1.

• For s ∈ {−1, − 1
m−1}, system (2) is marginally stable.

In this case, the states associated to n/2 nodes asymp-
totically converge to 1√

n
xT
0 u1, while the states asso-

ciated to the other n/2 nodes converge to − 1√
n
xT
0 u1,

where u1 is the unit-norm eigenvector associated to the
zero eigenvalue of −Δ(−1) or −Δ(− 1

m−1 ).
Proof: In this case, the stability properties of (2) are

only determined by the following two eigenvalues of −Δ(s)
(in fact, the other n− 2 are negative for all s):

λ1,2(s) = −((m− 1) s2 ∓ ms + 1).

We have that λ1(s) < 0 for s > 1 and for s < 1/(m− 1).
Instead, λ2(s) < 0 for s > −1/(m − 1) and for s < −1.
For s ∈ {−1, ±1/(m − 1)}, system (2) is marginally
stable. Finally, note that Δ

(
1

m−1

)
= 1

m−1 Δ(1), hence the
convergence rate to 1

n xT
0 1n is slower for s = 1/(m − 1)

than for s = 1.
Proposition 6 (Petersen graph): For the Petersen graph,

we have that:
• For s > 1 and for s < 1/2, system (2) is asymptotically
stable.

• For s ∈ (1/2, 1), system (2) is unstable.
• For s = 1/2, average consensus is achieved. The con-
vergence rate to 1

10 x
T
0 110 is slower for s = 1/2 than

for s = 1.
Proof: The ten eigenvalues of −Δ(s) are:

λ1(s) = −(2 s2 − 3 s+ 1),

λ2(s) = . . . = λ5(s) = −(2 s2 − s+ 1),

λ6(s) = . . . = λ10(s) = −(2 s2 + 2 s+ 1).

We have that λ2(s) < 0 and λ6(s) < 0, ∀ s ∈ IR. Moreover,
λ1(s) < 0 for s > 1 and for s < 1/2, and the unit-
norm eigenvector associated to λ1(1/2) is 1√

10
110. Finally,

Δ(1/2) = 1
2 Δ(1), hence the convergence rate to 1

10 x
T
0 110

is slower for s = 1/2 than for s = 1.
Proposition 7 (Complete graph Kn): For the complete

graph Kn with n > 2 nodes, we have that:
• For s > 1 and for s < 1

n−2 , system (2) is asymptoti-
cally stable.

• For s ∈ (
1

n−2 , 1
)
, system (2) is unstable.

• For s = 1
n−2 , average consensus is achieved. The con-

vergence rate to 1
n xT

0 1 is slower for s = 1
n−2 than

for s = 1.



Graph name Asymptotic stability for : Marginal stability for :

Path graph Pn, n ≥ 2 |s| < 1 s = −1 (2 groups of nodes)
Cycle graph Cn, n > 2, n even ∀ s ∈ IR \{−1, 1} s = −1 (2 groups of nodes)
Cycle graph Cn, n > 2, n odd ∀ s ∈ IR \{1}
Full m-ary tree, m ≥ 2 |s| < 1 s = −1 (2 groups of nodes)
Wheel graph Wn, n > 3 s > 1 and s < µ s = µ (2 groups of nodes)

m-cube, Qm, n = 2m > 4 |s| > 1 and |s| < 1
m−1

s ∈ {−1,− 1
m−1

} (2 groups of nodes)

s = 1
m−1

(average consensus)

Petersen graph s > 1 and s < 1/2 s = 1/2 (average consensus)
Complete graph Kn, n > 2 s > 1 and s < 1

n−2
s = 1

n−2
(average consensus)

Complete bipartite graph Km,n, m,n ≥ 2 |s| > 1 and |s| < 1√
(m−1)(n−1)

s ∈ {−1, − 1√
(m−1)(n−1)

} (2 groups of nodes)

s = 1√
(m−1)(n−1)

(if m = n, average consensus)
(if m �= n, 2 groups of nodes)

Star graph K1,n, n ≥ 3 |s| < 1 s = −1 (2 groups of nodes)

TABLE I
SUMMARY OF THE STABILITY PROPERTIES OF THE DEFORMED CONSENSUS PROTOCOL (2), FOR SOME SPECIAL FAMILIES OF GRAPHS.

Proof: The eigenvalues of −Δ(s) are:

λ1(s) = −((n− 2) s2 − (n− 1) s+ 1),

λ2(s) = . . . = λn(s) = −((n− 2) s2 + s+ 1).

We have that λ2(s) < 0, ∀ s ∈ IR. Moreover, λ1(s) < 0 for
s > 1 and for s < 1

n−2 , and the unit-norm eigenvector asso-
ciated to λ1

(
1

n−2

)
is 1√

n
1. Finally, Δ

(
1

n−2

)
= 1

n−2 Δ(1),
hence, the convergence rate to 1

n xT
0 1 is slower for s =

1
n−2

than for s = 1.
Proposition 8 (Complete bipartite graph Km,n): For the

complete bipartite graph Km,n = (V1 ∪ V2, E), where
Card(V1) = m, Card(V2) = n with m,n ≥ 2, we have that:

• For |s| > 1 and |s| < [(m− 1)(n− 1)]−1/2, system (2)
is asymptotically stable.

• For s ∈ (−1, −[(m − 1)(n − 1)]−1/2) and s ∈
([(m− 1)(n− 1)]−1/2, 1), system (2) is unstable.

• For s ∈ {−1, ±[(m − 1)(n − 1)]−1/2} system (2) is
marginally stable. In particular, with x0 ∈ IRm+n:
– If m �= n: for s = −1, the states associated
to the nodes in V1 asymptotically converge to

1
m+n xT

0 [1
T
m,−1T

n ]
T and the states associated to the

nodes in V2 converge to − 1
m+n xT

0 [1
T
m,−1T

n ]
T .

For s = ±[(m − 1)(n − 1)]−1/2 the states of the
nodes in V1 and V2 converge to two different values
(not further specified herein).

– If m = n: for s = 1/(n− 1) average consensus is
achieved, and the convergence rate to 1

2n xT
0 12n

is slower for s = 1/(n − 1) than for s = 1.
For s ∈ {−1,−1/(n − 1)} the states associated
to the nodes in V1 asymptotically converge to
1
2n xT

0 [1
T,−1T ]T and the states associated to the

nodes in V2 converge to − 1
2n xT

0 [1
T,−1T ]T .

Proof: In this case, only two of the m+n eigenvalues
of −Δ(s) determine the stability properties of system (2),
(the others are negative for all s):

λ1,2(s) = −n+m− 2

2
s2 ±

√
(n−m)2s2 + 4mn

2
s − 1.

A systematic study of the roots of λ1(s), λ2(s) easily leads
to the result. Note that if m = n, Δ

(
1

n−1

)
= 1

n−1 Δ(1),

hence, the rate of convergence to 1
2n xT

0 12n is slower for
s = 1/(n− 1) than for s = 1.
From Prop. 8, we can easily deduce the following result:
Proposition 9 (Star graph K1,n): For the star graphK1,n

with n ≥ 3 where node 1 is the center of the star, we have:
• For |s| < 1, system (2) is asymptotically stable.
• For |s| > 1, system (2) is unstable.
• For s = −1, system (2) is marginally stable. In this case,
the state associated to node 1 asymptotically converges
to 1

n+1 x
T
0 [1,−1T ]T and the states associated to the

other n nodes converge to − 1
n+1 x

T
0 [1,−1T ]T . �

For the reader’s convenience, all the results found in this
section are summarized in Table I.
Remark 1: Note that the path, cycle (with n even), full

m-ary tree, m-cube, complete bipartite and star graphs are
all bipartite graphs. Then, because of Property 2.2, for
s = −1 the state of system (2) asymptotically converges
to (u1u

T
1 )x0 with these graphs, where u1 is the unit-norm

eigenvector associated to the zero eigenvalue of the signless
Laplacian Q. �
Remark 2 (Discrete-time deformed consensus protocol):

Note that the stability properties in terms of parameter s,
of protocol (2) and its discrete-time version,

x(k + 1) = P(s)x(k), k ∈ {0, 1, 2, . . .},
where P(s) = In − εΔ(s) is the deformed Per-
ron matrix, 0 < ε < 1/dmax is the step-size and
dmax = maxi (

∑
j �=i aij) is the maximum degree of G, are

the same. �
C. Stability conditions for graphs of arbitrary topology
In order to extend the analysis of the previous section to

arbitrary graphs, we briefly review here the spectral theory
of quadratic eigenvalues problems (QEPs) [15, Sect. 3]. Let

P(λ) = B2 λ
2 +B1 λ+B0, B2, B1, B0 ∈ C

n×n,

be an n× n matrix polynomial of degree 2.
Definition 6 (Spectrum of P(λ), [15]): The spectrum of

P(λ) is defined as Σ(P) = {λ ∈ C : det(P(λ)) = 0}, i.e.,
it is the set of eigenvalues of P(λ). �
Definition 7 (Regular P(λ), [15]): The matrix P(λ) is

called regular when det(P(λ)) is not identically zero for
all values of λ, and nonregular otherwise. �



1

23

4

1

5

(a)

5

2

4

3

1

(b)

5

2

4

3

1

(c)

2

54

3

1

(d)

Fig. 1. Example 1: In (b)-(d), different shapes are used to identify distinct groups of nodes: the states associated to the nodes in these groups asymptotically
converge to the same value when system (2) is marginally stable.

Note that det(P(λ)) = det(B2)λ
2n+ lower-order terms,

so when B2 is nonsingular, P(λ) is regular and has 2n
finite eigenvalues [15]. When B2 is singular, the degree of
det(P(λ)) is r < 2n and P(λ) has r finite eigenvalues and
2n− r infinite eigenvalues.
Problem 1 (Quadratic eigenvalue problem (QEP), [15]):

The QEP consists of finding scalars λ and nonzero vectors
z, y, satisfying,

P(λ) z = 0, y∗ P(λ) = 0,

where z, y ∈ C
n are respectively the right and left eigen-

vector corresponding to the eigenvalue λ ∈ C, and y∗ is the
conjugate transpose of y. �
A QEP has 2n eigenvalues (finite or infinite) with up to 2n

right and 2n left eigenvectors. Note that a regular P(λ) may
possess two distinct eigenvalues having the same eigenvector.
In general, if a regularP(λ) has 2n distinct eigenvalues, then
there exists a set of n linearly independent eigenvectors.

Property 3 (Spectral properties of P(λ), [15]):
If matrices B2, B1, B0 are real symmetric, the eigenvalues
of P(λ) are either real or occur in complex conjugate pairs,
and the sets of left and right eigenvectors coincide. �
By leveraging the previous facts, we deduce the following

property of the deformed consensus protocol:
Proposition 10: The finite real eigenvalues λ of the QEP,

((In −D)λ2 +Aλ− In) z = 0, (5)

are the values of s for which system (2) is marginally stable.
Moreover, if λ is one of these eigenvalues and z = z/‖z‖ is
the associated unit-norm eigenvector, we have that:

lim
t→∞ x(t) = (z zT )x0. �

Remark 3 (Computation of the eigenvalues of the QEP):
The eigenvalues of the QEP (5) can be easily computed by
converting it to a standard generalized eigenvalue problem2

of size 2n, by defining the new vector w = λ z. In terms of
z and w, problem (5) then becomes [15, Sect. 3.4]:[

0 In
In −A

][
z
w

]
= λ

[
In 0
0 In −D

][
z
w

]
. �

The following proposition elucidates the relationship
between the topology of the communication graph G, and
the properties of the QEP (5).
Proposition 11: If the graph G has a node with degree

equal to one (i.e. only one edge is incident to that node),
the matrix (In − D)λ2 + Aλ − In is nonregular, and the
QEP (5) admits at least two infinite eigenvalues. �

2This construction is called “linearization” in the literature [15, Sect. 3.4]
and it is not unique, in general (c.f. Matlab’s function polyeig).

For example, with path graphs rank(In − D) = n − 2,
with star graphs rank(In − D) = 1 and with full m-ary
tree graphs rank(In −D) = n −mδ: in the first two cases
det((In −D)λ2 +Aλ− In) = (−1)n−1(λ2 − 1), while in
the last det((In −D)λ2 +Aλ − In) = λ2 − 1. Hence, in
all cases, the QEP (5) admits 2n− 2 infinite eigenvalues.
The next proposition shows how to determine the

s-stability interval of the deformed consensus protocol for
graphs with arbitrary topology.
Proposition 12 (Stability interval of (2) for arbitrary G):

Let q(s) � det((In −D) s2 +A s− In), then:
• If n is even, system (2) is asymptotically stable for all

s such that q(s) > 0, and unstable for all s such that
q(s) < 0.

• If n is odd, system (2) is asymptotically stable for all
s such that q(s) < 0, and unstable for all s such that
q(s) > 0.
Proof: The result follows from the observation that:

q(s) = (s− 1)
∏�

k=1(s− ζk)(s− ζ∗k)
∏r− 2�−1

j =1 (s− ηj),

where r ≤ 2n is the degree of q(s), (ζk, ζ∗k ) are the � pairs
of complex-conjugate roots of q(s), and ηj the r − 2� − 1
non-unitary real roots of q(s), (c.f. Prop. 10).
The following example illustrates the rich variety of be-

haviors exhibited by the deformed consensus protocol on
four generic (nonbipartite) graphs with five nodes.
Example 1: Consider the four graphs reported in Fig. 1.

Owing to Prop. 10 and Prop. 12, we have that:
• With the graph in Fig. 1(a), system (2) is asymptotically
stable ∀ s ∈ IR \{1}.

• With the graph in Fig. 1(b), system (2) is asymptotically
stable for s < 0.7022 and for s > 1. For s = 0.7022, the
system is marginally stable and three groups of nodes
can be identified: {1}, {2, 5}, {3, 4} (different shapes
are used in Fig. 1(b) to identify these groups).

• With the graph in Fig. 1(c), system (2) is asymptotically
stable for s < 0.4396 and for s > 1. For s = 0.4396, the
system is marginally stable and three groups of nodes
can be identified: {1}, {2, 5}, {3, 4}.

• With the graph in Fig. 1(d), system (2) is asymptotically
stable for s < 0.3804 and for s > 1. For s = 0.3804,
the system is marginally stable and two groups of nodes
can be identified: {1, 3}, {2, 4, 5}.

From Figs. 1(b)-1(d), we notice that nodes in the same group
have the same edge degree, and that an increase in the
algebraic connectivity of the graph leads to a reduction of
the s-stability interval of the deformed consensus protocol. �
Remark 4: Note that parameter s in the deformed Lapla-

cian can be regarded as an “exogenous input” and it can be
exploited to dynamically modify the behavior of system (2).
This may be useful when the nodes of the graph are mobile



robots and a human supervisor is interested in changing the
collective behavior of the team over time, e.g., by switching
from a marginally- to an asymptotically-stable equilibrium
point of system (2) or vice versa (c.f. Sect. IV). �

IV. SIMULATION RESULTS

In order to illustrate the theory presented in Sect. III, let us
consider a team of n vehicles modeled as single integrators,

ṗi(t) = νi(t), i ∈ {1, . . . , n},
where pi(t) = [pix(t), piy(t)]

T ∈ IR2 and νi(t) ∈ IR2

denote respectively the position and the input of agent i at
time t. Let the control input of vehicle i be of the form,

νi(t) = (s2 − 1)pi(t) + s
∑

j ∈N (i)

(pj(t)− spi(t)), (6)

where N (i) denotes the set of nodes adjacent to node i in
the communication graph. Then, the collective dynamics of
the group of agents adopting control (6), can be written as:

ṗ(t) = (−Δ(s) ⊗ I2)p(t),

where p = [pT
1 , . . . , p

T
n ]

T ∈ IR2n and “⊗” denotes
the Kronecker product. Fig. 2(a) shows the trajectory of
n = 6 vehicles implementing the control law (6), when the
communication topology is the path graph P6 (the initial
position of the agents is marked with a circle). In our
simulation, s = −1 for t ∈ [0, 50) sec, and s = 0 for
t ∈ [50, 100] sec. The time evolution of the x-, y-coordinates
of the vehicles is reported in Fig. 2(b). As it is evident in
Figs. 2(a) and 2(b), the vehicles first cluster in two distinct
groups and then rendezvous at the origin (recall Prop. 1).

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a generalization of the
classical consensus protocol, called deformed consensus pro-
tocol, and we have analyzed its stability properties for some
special families of undirected graphs. Theoretical results for
graphs of arbitrary topology are also provided. The theory
has been illustrated via examples and numerical simulations.
In future works, we will delve into the peculiar grouping

behaviors of Example 1, and we aim at studying the proper-
ties of the deformed consensus protocol when the (weighted)
communication graph is directed and/or changes over time.
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