

New Graph Distance Measures and Matching of Topological Maps for Robotic Exploration

Fabio Morbidi

MIS Laboratory, University of Picardie Jules Verne – Amiens, France

1. Motivation and original contributions

- Comparing graph-structured maps: crucial in *robotic exploration* and *cartography*
- Cost of the existing similarity measures, such as the *Graph Edit Distance* (GED): **Prohibitive** for large graphs ($> 10^3$ nodes)

$Mantel(\mathbb{D}_{GED}, \cdot)$	\mathbb{D}_{F}	\mathbb{D}_{\log}	\mathbb{D}_{B}	$\mathbb{D}_{\mathrm{rk},\mathbf{L}}$	$\mathbb{D}_{\mathbf{rk},\mathbf{A}}$
Freiburg, $n = 90$	0.9973	0.9827	0.9985	0.9848	0.9753
Freiburg, $n = 92$	0.9130	0.9588	0.9556	0.9395	0.9229
Saarbrücken, $n = 52$	0.9976	0.9813	0.9955	0.9970	0.9728
Saarbrücken, $n = 53$	0.8392	0.9545	0.9395	0.7285	0.7364
Stockholm, $n = 107$	0.9826	0.9366	0.9636	0.9658	0.9892
Stockholm, $n = 122$	0.0628	0.6496	0.5960	0.3785	0.3545
Stockholm, $n = 191$	0.9332	0.9284	0.9183	0.9793	0.9702
Mean value	0.8180	0.9131	0.9183	0.8520	0.8475

Pearson coefficients $r \in [-1, 1]$ from the Mantel test (M = 5000) between \mathbb{D}_{GED} and \mathbb{D}_{F} , \mathbb{D}_{\log} , \mathbb{D}_{B} , $\mathbb{D}_{rk,L}$, $\mathbb{D}_{rk,A}$ (distance matrices of different sizes):

• \mathbb{D}_{GED} (our baseline) has a strong relationship with \mathbb{D}_{B} and \mathbb{D}_{\log}

Three new graph distances which satisfy the axioms for a **metric**:

- LogEig: $d_{\log}(\mathcal{G}_a, \mathcal{G}_b)$
- Bures: $d_{\mathbf{B}}(\mathcal{G}_{a}, \mathcal{G}_{b})$
- $d_{\mathrm{rk}}(\mathcal{G}_a, \mathcal{G}_b)$ • Rank:

2. Background

Assumption: $\mathcal{G} = (V, E)$ is a *connected* undirected graph with n nodes

Definition (Shifted Laplacian L'). The shifted Laplacian is an $n \times n$ symmetric matrix defined as L' = L + J where L = D - A is the Laplacian matrix and $J = \frac{1}{n} \mathbb{1} \mathbb{1}^T$

Differently from the Laplacian L, the shifted Laplacian L' is positive definite

Definition (Graph Shift Operator, GSO (Mateos et al., 2019)). The GSO associated with a graph \mathcal{G} is an $n \times n$ matrix \mathbf{S} , such that $[\mathbf{S}]_{ij} \neq 0$ if and only if i = j or $\{i, j\} \in E$

3. Graph distance measures

Definition (LogEig distance). Let L'_a and L'_b be the shifted Laplacians of the graphs \mathcal{G}_a and \mathcal{G}_b . The LogEig distance between \mathcal{G}_a and \mathcal{G}_b is

$$d_{ ext{log}}(\mathcal{G}_a,\,\mathcal{G}_b)\,=\,\sqrt{\sum_{i=1}^n\,\ln^2(\lambda_i(oldsymbol{L}_a',\,oldsymbol{L}_b'))}$$

where $\lambda_i(\mathbf{L}'_a, \mathbf{L}'_b)$, $i \in \{1, \ldots, n\}$, are the generalized eigenvalues of \mathbf{L}'_a and \mathbf{L}'_b . **Definition** (Bures distance). Let L'_a and L'_b be the shifted Laplacians of the graphs • The correlation between \mathbb{D}_{GED} and $\mathbb{D}_{\text{rk},\mathbf{L}}$, $\mathbb{D}_{\text{rk},\mathbf{A}}$ is *strong* as well

Computation time of the five metrics: • LogEig and Rank distance: small (< 4 ms)

• Unlike the GED, whose calculation is very slow, the Bures distance can still be computed in real time (graphs with up to 200 nodes)

 \mathcal{G}_a and \mathcal{G}_b . The Bures distance between \mathcal{G}_a and \mathcal{G}_b is

$$d_{\rm B}(\mathcal{G}_a, \, \mathcal{G}_b) = \sqrt{{
m trace}\Big[L'_a + L'_b - 2((L'_a)^{1/2} L'_b (L'_a)^{1/2})^{1/2} \Big]}$$

where $(\mathbf{L}'_{a})^{1/2}$ is the matrix square root of \mathbf{L}'_{a}

Definition (Rank distance). Let S_a and S_b be the GSOs of the graphs \mathcal{G}_a and \mathcal{G}_b . The Rank distance between \mathcal{G}_a and \mathcal{G}_b is

Measure	Graph representation	\mathcal{G}_a and \mathcal{G}_b not connected	$If \mathcal{G}_a \simeq \mathcal{G}_b \\ d_*(\cdot, \cdot) = 0$	Metric
GED	(V, E)		 ✓ 	 ✓
Frobenius	L^{s} (symm. normal.)	×	×	~
LogEig	L' or L^{\star} (reduced)	×	×	 ✓
Bures	L' or L^{\star} (reduced)	×	×	~
Rank	Any GSO	~	×	~

 $d_{\mathbf{rk}}(\mathcal{G}_a, \mathcal{G}_b) = \operatorname{rank}(\mathbf{S}_a - \mathbf{S}_b)$

Comparison of five graph distance measures

4. Numerical experiments

4.1. Example

Spectral sparsification of a random graph \mathcal{G} with 1000 nodes [Spielman & Teng, 2011]. The sparsification parameter ϵ varies between 0.05 and 0.45 (step size 0.01)

Statistics over 50 trials (*GSPBox toolbox* [Perraudin *et al.*, 2014]):

- The mean number of edges of $\widetilde{\mathcal{G}}$ decreases as ϵ grows. The larger the value of ϵ , the larger the five graph distances (as expected)
- Mean computation time:
 - ▷ LogEig: 41-49 ms (best performance)
 - ▷ Rank and Frobenius: 52-65 ms

• As the GED, Rank cannot discriminate between $(\mathcal{G}_a, \mathcal{G}_b), (\mathcal{G}_a, \mathcal{G}_c)$ and $(\mathcal{G}_a, \mathcal{G}_d)$. With the adjacency matrix, Rank is not even able to tell $(\mathcal{G}_a, \mathcal{G}_e)$ and $(\mathcal{G}_a, \mathcal{G}_f)$ apart

- Frobenius, logEig, Bures cannot discriminate between $(\mathcal{G}_a, \mathcal{G}_b)$ and $(\mathcal{G}_a, \mathcal{G}_c)$ only
- The largest Frobenius norm is obtained with the *isomorphic graphs* \mathcal{G}_a and \mathcal{G}_q

4.2. Matching of 2D topological maps

COLD-TopoMaps dataset [Zheng *et al.*, 2018]: 38 pairs of 2D topological maps

 \triangleright Bures: 662 - 686 ms (10 × bigger than the other metrics)

5. Conclusion and future work

- Three new graph distance measures (LogEig, Bures, Rank)
- The new *metrics* compare favorably with the existing distances (GED, Frobenius norm), for complex graphs in the COLD-TopoMaps dataset
- LogEig and Rank ensure *real-time performance* on a standard laptop
- We studied the effect of *spectral sparsification* on the new distance measures

- Limitation: \mathcal{G}_a and \mathcal{G}_b must have the same number of nodes and be connected (Rank excluded). In future works, study the *approximate graph matching problem*
- For time-varying maps, consider the *sum-rank metric* [Martínez-Peñas *et al.*, 2022]
- Use the new metrics for *fast loop-closure detection* in (topological) SLAM

Contact: fabio.morbidi@u-picardie.fr