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1. Motivation and original contributions Mantel(Dgep, ) D Diog Dg Dicr, | Dica
Freiburg, n = 90 0.9973 | 0.9827 | 0.9985 @ 0.9848 | 0.9753

Freiburg, n = 92 0.9130 | 0.9588 | 0.9556 | 0.9395 | 0.9229
e Cost of the existing similarity measures, such as the Graph Edit Distance (GED): Saarbriicken, n = 52 | 0.9976 | 0.9813 | 0.9955 | 0.9970 | 0.9728
Prohibitive for large graphs (> 10° nodes) Saarbriicken, n = 53 | 0.8392 | 0.9545 | 0.9395 | 0.7285 | 0.7364
Stockholm, n = 107 | 0.9826 | 0.9366 | 0.9636 | 0.9658 | 0.9892

d(ga,: gb) =7

e Comparing graph-structured maps: crucial in robotic exploration and cartography

Stockholm, n = 122 | 0.0628 | 0.6496 | 0.5960 | 0.3785 | 0.3545
Stockholm, n = 191 | 0.9332 | 0.9284 | 0.9183 | 0.9793 | 0.9702

— —A_ Mean value 0.8180 | 0.9131 | 0.9183 | 0.8520 | 0.8475
Pearson coefficients » € [—1, 1] from the Mantel test (M = 5000) between Dggp and D,
Dyog, D, Dy 1, Dk o (distance matrices of different sizes):
G, gb e Dgep (our baseline) has a strong relationship with Dg and D,

. . . : . e The correlation between D and D 1., Dy A 18 strong as well
Three new graph distances which satisfy the axioms for a metric: GED rk,L> kA s

e LogEig: dil(Ya, Gp) 2N i
_ og
e Bures: dg(Ga, Go) ° 5 I
e Rank:  du(G., G) £ 167 | . d L .
ank: k(Ya, Yo = 44| | I dua Computation time of the five metrics:
2. Background E 12 e LogEig and Rank distance:
: . ] : 5 10} small (< 4 ms)
Assumption: G = (V, E) is a connected undirected graph with n nodes g . ; fi Unlike the GED. wh eul
= ‘ t , -
Definition (Shifted Laplacian L'). The shifted Laplacian is an n X n symmetric matrix = gl { it . A TIONE c.a -
defined as L' = L + J where L = D — A is the Laplacian matrix and J = - 117 S tion 1s very slow, the Bures distance
n 41 can still be computed in real time
Differently from the Laplacian L, the shifted Laplacian L’ is positive definite 2 (graphs with up to 200 nodes)
Definition (Graph Shift Operator, GSO (Mateos et al., 2019)). The GSO associated with ° 90 92 52 53 107 122 1o
a graph G is an n x n matrix S, such that [S|;; # 0 ifand only ifi = jor {i, j} € £ Freiburg Saarbriicken — Stockholm

Number of nodes n

3. Graph distance measures . . L
4.3. Distance between a graph G and its spectral sparsifier G

Definition (LogEig distance). Let L) and L, be the shifted Laplacians of the graphs
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where \;i(L, L;), 1 € {1,...,n}, are the generalized eigenvalues of L, and L, ORI A IR R N 10 § 2.7
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Definition (Bures distance). Let L) and L be the shifted Laplacians of the graphs §303 %% Ve ks "’,.-‘::.';.-:";.- A PN S B St § .
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G, and Gy. The Bures distance between G, and Gy is RDBATE AN ARSI =2
~ . 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
g Example of G with € = 0.45 €
dg(Ga, Gy) = 4/trace [L; + L, — 2((L))"*L; (L;)l/Z)l/Q}
10°
L) |
where (L)' is the matrix square root of L E £
VK . e d
Definition (Rank distance). Let S, and S, be the GSOs of the graphs G, and G;. The Rank Qg 2 . dig
distance between G, and Gy, is &é s dy
= S e (1,
Q = ’
drk(ga, Qb) = rank(Sa — Sb> ﬁ f§ e (i A
Q oF
- = 2 |
< 10° 1 _
raph n If g, ~ . Z S |
Measure Grap . Ga and G, Ga b Metric © = e -
representation not connected di(-,:) =0 § ﬁ - —rio -
GED (V, E) v % v = o
Frobenius LS (symm normaﬁ_,) x x ‘/ 0.05 0.1 0.15 0.2 0.25 0.3 035 04 045 0.05 0.1 0.15 0.2 0.25 0.3 035 04 045
: / * ]
Logkig L/ or L™ (reduced) X X v Spectral sparsification of a random graph G with 1000 nodes [Spielman & Teng, 2011].
* ] . . . .
Bures L or L” (reduced) X X v The sparsification parameter ¢ varies between 0.05 and 0.45 (step size 0.01)
Rank Any GSO v X i
Statistics over 50 trials (GSPBox toolbox [Perraudin et al., 2014]):
Comparison of five graph distance measures ~
P Stap e The mean number of edges of G decreases as € grows. The larger the value of ¢,
4. Numerical experiments the larger the five graph distances (as expected)

e Mean computation time:
4.1. Example P

> LogEig: 41-49 ms (best performance)

Q > Rank and Frobenius: 52-65 ms
> Bures: 662 - 686 ms (10X bigger than the other metrics)
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5. Conclusion and future work
9 e 9 e e Three new graph distance measures (LogEiqg, Bures, Rank)
e The new metrics compare favorably with the existing distances (GED, Frobenius
e 9 e e norm), for complex graphs in the COLD-TopoMaps dataset
e LogEig and Rank ensure real-time performance on a standard laptop
ga =P 4 gb gc gd ge gg

e We studied the effect of spectral sparsification on the new distance measures

e Asthe GED, Rank cannot discriminate between (G, G;), (G., G.) and (G,,, Gg). W\(
With the adjacency matrix, Rank is not even able to tell (G,, G.) and (G,, G) apart

e Limitation: G, and G, must have the same number of nodes and be connected

e Frobenius, 1ogEig, Bures cannot discriminate between (G,, G;) and (G,,, G.) only
(Rank excluded). In future works, study the approximate graph matching problem

e The largest Frobenius norm 1s obtained with the isomorphic graphs G, and G, | . .
e For time-varying maps, consider the sum-rank metric [Martinez-Penas et al., 2022]

4.2. Matching of 2D topological maps e Use the new metrics for fast loop-closure detection in (topological) SLAM

COLD-TopoMaps dataset [Zheng et al., 2018]: 38 pairs of 2D topological maps Contact: fabio.morbidi@u-picardie. fr




