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Abstract— Autonomous driving systems require robust
object detection in complex environments. Event cameras
outperform RGB cameras under challenging lighting
conditions, but face limitations due to the scarcity
of available datasets and lack of specialized training.
To narrow the gap between RGB- and event-based
detection accuracy and avoid the high complexity of
real-time RGB-event fusion, in this paper, we propose
a knowledge distillation framework. Our approach uses
both modalities during training but relies solely on
sparse event data at inference and transfers knowledge
from a robust RGB-based teacher model. We build on
the success of DETR (DEtection TRansformer) and we
leverage an event-aware masked knowledge distillation
mechanism, to boost event-based detection accuracy.
Experiments on the DSEC-DET dataset demonstrate
that our method not only excels in challenging driving
scenarios where RGB images are unreliable, but also
surpasses the state-of-the-art in event-based object
detection.

MULTIMEDIA MATERIAL

Our open-source code is available on GitHub at:
github.com/djessy1998/EA-DETR.git

Qualitative results are available in the video:
www.youtube.com/watch?v=MgFWLxA0IeE

I. INTRODUCTION

Event-based cameras are bio-inspired sensors, which
record visual information in a fundamentally different
way from conventional cameras. Instead of capturing
frames at a fixed rate, event-based cameras output a
continuous stream of events corresponding to pixel-level
brightness changes. The pixel-level detection of luminance
changes guarantees ultra-high temporal resolution, allowing
fast-moving objects in dynamic scenes to be captured
with minimal latency. In addition, the high dynamic
range ensures consistent performance in variable/adverse
lighting conditions. The emergence of compact, high-
resolution event cameras from companies like Prophesee
and iniVation has significantly impacted computer vision
and robotic perception. In spite of their advantages, using
an event camera to detect moving objects remains an open
issue [1], [2], due to the unique nature of input data.

To tackle this challenge, deep learning models have been
explored, but their performance varies widely depending on

1MIS laboratory, Université de Picardie Jules Verne, Amiens, France.
Emails: {firstname.lastname}@u-picardie.fr

2ICB UMR 6303, Université Bourgogne Europe, CNRS, Dijon, France.
Email: cedric.demonceaux@u-bourgogne.fr

3SUNY Korea, Incheon, South Korea.
Email: francois.rameau@sunykorea.ac.kr

the modality. Convolutional Neural Networks (CNNs) [3]
and Vision Transformers (ViTs) [4] are highly optimized
for RGB data due to large-scale pre-training on high-
resolution frame-based datasets. In contrast, Spiking Neural
Networks (SNNs) [5]–[7] and Graph Neural Networks
(GNNs) [8]–[10] are more suited for event data, as they can
better handle the sparse and asynchronous nature of events.
Nevertheless, the event-based models still underperform
when compared to RGB-based ones, in terms of accuracy.
In [11], [12] it has been shown that event cameras excel
in automotive scenarios involving fast motion or sudden
lighting changes, where RGB models struggle. However,
the lack of large annotated event datasets and specialized
deep learning architectures prevents event models from
achieving comparable performances. Consequently, while
event cameras hold great potential, significant work is needed
to close the performance gap with established RGB-based
architectures. This raises a critical question:

Can we take advantage of a high-precision RGB-based
model to enhance the performance of an event-based model?

While it is possible to fuse RGB images with sparse
event information and train a model with them [13]–[15],
this solution suffers from a number of limitations. First, it
requires two extrinsically-calibrated sensors to be installed
on a vehicle, both at the training and inference stage. Second,
the RGB and event cameras must be synchronized, which
is, generally, a tedious and error-prone process. Finally, the
volume of RGB-event data can become very large over
time and difficult to handle, thus adversely impacting the
performance of object-detection algorithm. However, instead
of pursuing this path, we argue that it is possible to achieve
performance comparable to or even better than that of RGB-
only models by relying solely on event cameras at inference.
In this paper, our goal is to address these issues and to narrow
the accuracy gap between the RGB and event-based models,
by utilizing the RGB information, indirectly. In fact, we
leverage the knowledge of a model pre-trained on a large
RGB dataset, during the training of a purely event-based
object-detection network. Taking advantage of knowledge
distillation for training event-based models, is justified by the
large availability of annotated RGB datasets. By employing
an event-aware masked knowledge distillation mechanism,
we take advantage of the sparse nature of event data, but also
of the robustness of consolidated RGB models. To maximize
accuracy, we evaluated the impact of knowledge distillation
on one of the most popular and powerful object-detection
models: DETR (DEtection TRansformer) [16].

In summary, the original contribution of this paper is
threefold:

1) We show how DETR (which is originally intended for
RGB images) can be adapted to event data thanks to
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our cross-modal RGB-event distillation. We called this
model EA-DETR (Event-Aware DETR),

2) EA-DETR is successfully validated on the DSEC-
DET dataset, derived from DSEC [17], and on a new
extract that we called Hard-DSEC-DET, which collects
challenging scenarios for RGB cameras,

3) EA-DETR delivers a strong performance on both
DSEC-DET and Hard-DSEC-DET, particularly
excelling at detecting medium to large objects.

The remainder of this paper is organized as follows.
In Sect. II, we discuss related work on RGB- and event-
based object detection, we examine the existing knowledge
distillation techniques, and provide an overview of DETR
architecture. In Sect. III, we present our RGB-event
distillation model, EA-DETR. In Sect. IV, EA-DETR is
validated on the DSEC-DET dataset, considering different
driving scenarios. Finally, in Sect. V, the main contributions
of the paper are summarized and possible avenues for future
research are discussed.

II. RELATED WORK

A. RGB and event-based object detection
Object detection using event data is an open problem.

Some researchers have developed neural networks tailored
to event cameras to fully leverage their high temporal
resolution and asynchronicity. Schaefer et al. [10] modeled
events as graph points for object detection, while Cordone
et al. [5] introduced a novel voxel cube encoding for
SNNs to improved detection accuracy. Similarly, Gehrig
& Scaramuzza [4] proposed Recurrent Vision Transformers
(RVTs), which combine temporal aggregation, convolutional
priors, self-attention, and LSTM (Long Short-Term Memory)
cells to enhance event-based detection. Despite these
advancements, event-based models generally lag behind
RGB models in terms of accuracy.

To address this issue, other researchers have focused on
RGB-event fusion. Zhou et al. [13] introduced RENet, a
network designed for moving object detection in autonomous
driving, which employs temporal multi-scale aggregation and
bi-directional feature fusion to enhance accuracy. Tomy et
al. [14] used a voxel grid representation for events and
a dual feature extraction network to improve robustness
under adverse conditions. Liu et al. [18] introduced
SFNet for object detection in traffic conditions, which
incorporates Speed Invariant Frames (SIF) and an Adaptive
Feature Complement Module (AFCM) for effective cross-
modal fusion under varying illumination. However, as these
methods rely on RGB data during inference, they suffer
from two main drawbacks. First, before the events being
processed, one should wait for the acquisition of an RGB
image, which introduces an inevitable delay. Second, the
need for two sensors during the inference step, increases the
overall complexity and cost of the system.

Another way to indirectly integrate RGB data for object
detection without the previous limitations, is via knowledge
distillation, as detailed in the next section.

B. Knowledge distillation for object detection
Knowledge distillation (KD) is a well-known technique

which consists in transferring the “knowledge” from a
larger, more complex model (Teacher) to a smaller, more
efficient model (Student). The main goal is to achieve the
same performances as the Teacher, while using reduced
computational resources. Using RGB images, Chen et
al. [19] introduced the first end-to-end trainable framework
for compact multi-class object detection: it includes a
distillation loss on the backbone, a classification head loss,
and a regression head loss between the Teacher and the
Student. This work also revealed that the imbalance between
the number of background and foreground pixels is critical
for knowledge distillation. To address this issue, several
solutions have been proposed in the literature [20]–[22].
In [20], the authors used distillation with an L2 loss only
at locations sampled by a Region Proposal Network (RPN),
while in [21], a mask is created via the model’s attention,
for attention-guided distillation. Finally, in [22], ground-truth
bounding boxes are directly used to mask an L2 loss.

Recently, motivated by the success of ViTs, the
research community has turned its attention to specialized
knowledge distillation techniques, for models in the DETR
family [23]–[25]. Notably, Chang et al. [26] developed a
method that utilizes DETR’s queries and the Hungarian
matching algorithm, as a means to distill knowledge.

Finally, knowledge distillation has been used with two
(or more) complementary modalities, to enhance model
accuracy. For example, Kruthiventi et al. [27] adapted the
knowledge distillation mechanism in [19] to a thermal and an
RGB camera, showing improved object-detection accuracy in
low-light conditions.

Despite the progress made in this domain, many existing
methods introduce significant architectural complexity. For
example, object-centric methods [28], utilize multi-stage
pipelines with coarse- and fine-level feature alignment, slot
attention modules, and object relation distillation, which can
be computationally intensive. Similarly, line-segment-based
techniques [29] rely on scene-level affinity alignment and
edge-specific feature masking, making them well-suited for
line detection, but less adaptable to general object detection
tasks. In contrast, our method employs a simpler and more
scalable event-aware backbone distillation. By generating
a Binary Events Mask (BEM) and applying a masked
MSE loss, we reduce the impact of foreground-background
imbalance without requiring specialized alignment modules.
This allows us to effectively leverage the sparsity of event
data, thus ensuring efficient training and inference for
dynamic scenarios, such as urban traffic. Compared to multi-
stage frameworks, our method strikes a balance between
simplicity, computational efficiency, and accuracy.

C. DEtection TRansformer (DETR)
Transformers have been introduced by Vaswani et

al. [30] for natural language processing. This prototypal
model in [30], has been successively adapted to
image classification [31] and object detection [16]. DETR
streamlines the object-detection pipeline by eliminating
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Fig. 1: Overview of the classical DETR architecture [16].
FFN and SPE stand for Feed-Forward Network and Spatial
Positional Encoding, respectively.

the need for RPNs, which were typically used in earlier
architectures, such as Faster R-CNN [32]. In contrast, DETR
employs a global attention mechanism to process the entire
image at once, and the object-detection problem is translated
into a set prediction problem. Each element of this set
represents a detected object, characterized by a bounding
box and a class label (see Fig. 1 for an overview).

In this paper, we propose a cross-modal knowledge
distillation method for RGB and event data, which is tailored
to DETR. In particular, as detailed in the next section, we
introduce a novel method for distilling knowledge from a
Teacher to a Student model, by leveraging event information.

III. PROPOSED METHOD: EA-DETR
This section begins by providing the necessary background

to understand our method, followed by a brief description
of the event representation used throughout the paper.
The section concludes with a detailed explanation of our
knowledge distillation mechanism. For later reference, Fig. 2
reports the overall training pipeline of EA-DETR.

A. Background
Since our method is based on DETR, it is worth briefly

recalling how it processes information from input to output
(see Fig. 1)

Given an input image I ∈ RH×W×3, DETR first uses a
CNN backbone to extract feature maps F ∈ RHf×Wf×C ,
which are flattened into a sequence of vectors. Here, Hf

and Wf denote the height and width of the feature map,
and C is the number of channels. This sequence is passed
to the transformer encoder, which refines the features. The
transformer decoder then uses learned object queries to
attend to different regions of the image, refining them to
focus on potential objects. Finally, these refined queries are
passed to the output stage where two Feed Forward Networks
(FFNs) decode each query into ŷi = (ĉi, b̂i), which includes
predicted classes and bounding boxes. These predictions are
matched to the ground-truth objects using the Hungarian

algorithm, which seeks to minimize the global matching cost,
defined as

σ̂ = argmin
σ

N∑
i=1

Lmatch(yi, ŷσi
), (1)

where σ̂ denotes the optimal permutation of the predictions.
The permutation σ, maps indices {1, 2, . . . , N} to the best
assignment of predictions to ground truth objects. N is
the total number of objects, and Lmatch(yi, ŷσi) represents
the matching cost between the ground-truth object yi =
(ci, bi) and the predicted object ŷi = (ĉi, b̂i), defined
as Lmatch(yi, ŷσi) = Lcls(ci, ĉσi) + 1{ci ̸= ∅} Lbbox(bi, b̂σi

)
where Lcls(ci, ĉσi

) denotes the classification loss between
the predicted class ĉσi

and the ground truth class ci, and 1
is the indicator function:

1{ci ̸= ∅} =

{
1 if ci ̸= ∅,
0 otherwise.

(2)

Finally, Lbbox(bi, b̂σi
) denotes the bounding-box loss between

the predicted box b̂σi
and the ground-truth box bi.

The predictions which are paired with a ground-truth object
are called positive samples, while those which are not,
are called negative samples. Once the optimal assignment
σ̂ is found, the overall detection loss Ldet is computed as:

Ldet(y, ŷσ̂) =

N∑
i=1

Lmatch(yi, ŷσ̂i
). (3)

In addition to using DETR’s detection loss, our logit-level1

distillation method is based on the approach of Chang et
al. [26]. In this paper, the authors proposed to exploit
both the positive and negative predictions in the distillation
process. Let yT and yS denote the predictions of the Teacher
and Student models, respectively. The loss for knowledge
distillation on logits, LlogitsKD, is computed separately, for
positive and negative predictions as follows:

LlogitsKD(ŷ
Tpos, ŷS

σ̂pos) =

N∑
i=1

Lmatch(ŷ
Tpos
i , ŷS

σ̂pos
i
), (4)

LlogitsKD(ŷ
Tneg, ŷS

σ̂neg) =

N∑
i=1

Lmatch(ŷ
Tneg
i , ŷS

σ̂neg
i
). (5)

Since the Teacher’s positive predictions are assumed to be
closely related to the target, in [26] the authors used them as a
knowledgeable pseudo ground truth. In equations (4) and (5),
ŷTpos
i and ŷTneg

i represent the logits of the Teacher model’s
positive and negative predictions for the i-th instance,
respectively. Similarly, ŷS

σ̂pos
i

and ŷS
σ̂neg
i

denote the Student
model’s predictions, which have been optimally matched to
the Teacher model’s positive and negative predictions. This
alignment ensures that the Student not only learns from the
correct detections, but also from instances where the Teacher
confidently identifies the absence of objects.

1We focus here on the raw output values (logits) produced by the model
before they are converted into probabilities by the softmax function.
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Fig. 2: Training pipeline of EA-DETR.

B. Event modeling
All the pixels in an event camera work independently

and operate asynchronously. An event is generated when the
brightness change exceeds a pre-defined threshold and it is
represented by the 4-tuple, e = (x, y, t, p), where (x, y) are
the spatial coordinates of the pixel, t is the timestamp, and
p ∈ {−1, +1} is the polarity, i.e. the sign of brightness
change. In this paper, the events are pre-processed using
a simple histogram representation (see Fig. 2(a)). For a
given accumulation time T , a histogram H(x, y) is built
by aggregating the events at each pixel location (x, y) over
the time period T , H(x, y) =

∑t0+T
t= t0

e(x, y, t) where
e(x, y, t) represents the occurrence of an event at pixel
(x, y) at time t, and t0 is the current time. For the sake
of simplicity, the polarity of the events is ignored.

C. Event-aware backbone distillation
In this section, we describe the backbone distillation

process (see Fig. 2(b)). As mentioned in Sect. II-B, the
disparity between the number of background and foreground
pixels is problematic for knowledge distillation. We argue
that event cameras can effectively get around this issue:
in fact, thanks to the sparsity of events, the number of
background pixels is significantly reduced, compared to an
RGB image. Hence, we first generate a Binary Events Mask
(BEM) Mevents ∈ {0, 1}H×W from the event image tensor
Hevents. This mask identifies the regions with events, where
non-zero values in Hevents become 1, and zero values remain
0. The binary mask Mevents is resized to match the spatial
dimension of the features of the Teacher model. To do this,
we use a nearest-neighbor interpolation which maintains the
original event locations by assigning the value of the nearest

pixel. We define the backbone loss

LMSE =
1

M

M∑
i=1

(
F

(i)
events − F

(i)
RGB

)2
, (6)

which is the Mean Squared Error (MSE) between the Student
model’s feature map, Fevents, and the Teacher model’s feature
map, FRGB, with M the number of elements in the feature
maps. In equation (6), F(i)

events denotes the i-th element of the
vectorized feature map generated by the Student model using
event data, and F

(i)
RGB is the i-th element of the vectorized

feature map produced by the Teacher model using RGB
data. LMSE measures the squared difference between the
corresponding feature values, and pushes the Student to learn
similar representations as the Teacher. To ensure that only the
regions defined by the mask Mevents contribute to the loss,
we define

LMaskedBack =
1

∥Mevents∥0

N∑
i=1

M
(i)
events

(
F

(i)
events −F

(i)
RGB

)2
, (7)

where ∥ · ∥0 denotes the L0 norm of a matrix, i.e. the
number of non-zero elements of the matrix. This masked
loss guarantees that only the relevant regions of the scene,
as specified by the events, contribute to the training process.

D. Event-aware logits distillation
This section presents the logits distillation step

(see Fig. 2(c)). The Hungarian-matching logits distillation
technique proposed in [26] and described in Sect. II-B, has
been modified to account for the sparse nature of event
data. In fact, most of negative predictions from DETR, are
empty. To assist the model in converging and to increase the
convergence speed, we introduce an additional filter, Mneg,
which only selects negative detection boxes containing
events. More precisely, equation (5) has been modified as



follows:

LMaskedLogs(ŷ
Tneg, ŷS

σ̂neg) =

N∑
i=1

I(M(i)
neg)Lmatch(ŷ

Tneg
i , ŷS

σ̂neg
i
).

(8)
In LMaskedLogs, the indicator function I(M(i)

neg) plays a critical
role in determining whether the loss associated with a
particular negative prediction ŷTneg

i is included in the final
loss. More specifically, this function evaluates Mneg for the
i-th prediction, i.e. M

(i)
neg. If the corresponding detection

box contains a sufficient number of events, exceeding a
predefined threshold Tmask, then I(M(i)

neg) = 1. In this way,
the matching loss Lmatch for that prediction can contribute to
the overall loss LMaskedLogs. Conversely, if the detection box
is essentially empty, I(M(i)

neg) = 0, and the matching loss is
excluded from LMaskedLogs.

E. Overall loss
The overall loss function is the combination of the

detection loss, logits knowledge distillation loss and feature
knowledge distillation loss

L = Ldet + λ1 LMaskedBack + λ2 LMaskedLogs, (9)

where λ1 and λ2 are positive hyperparameters that can be
used to weigh the contributions of masked-features and logits
knowledge distillation losses, respectively.

IV. EXPERIMENTAL RESULTS

We evaluated EA-DETR on DSEC-DET, an extension of
the DSEC dataset [17], which also includes ground-truth
bounding boxes. To push our analysis a step further, we also
created an extract of DSEC-DET, called Hard-DSEC-DET,
which comprises challenging RGB images and provides
ground-truth annotations. As a baseline, we trained a DETR
model using event data only as input and no knowledge
distillation.

A. Setup
Implementation details: For the definition of our model,

we used PyTorch [33], while for training, we took advantage
of PyTorch Lightning [34]. For the baseline DETR, we
employed a ResNet101-DC5 backbone initialized with
random weights. For the Teacher DETR, we employed the
ResNet101-DC5 architecture with weights pre-trained on
the COCO dataset. For knowledge distillation between the
Teacher and the Student DETR, we utilized the optimal
weights of the RGB model pre-trained on DSEC-DET.
The two positive weights λ1 and λ2 in equation (9) were
empirically set to 1, assuming equal importance of both
terms. Similarly, the threshold Tmask for logits distillation
was set to 1, which allowed us to consider Teacher boxes
containing at least one event. Each training session was
conducted with a batch size of 16 across 4 Tesla V100
GPUs. This setup required approximately 2 days to train
DETR on DSEC-DET and 2 days for knowledge distillation.
We trained our models over 50 epochs using AdamW
optimizer [35].

Datasets: DSEC [17] is a driving scenario dataset which
includes two event cameras (640 × 480 pixels) and two

color cameras (1440×1080 pixels). It contains 53 sequences
totaling 3193 seconds, split into 41 sequences (2634 seconds)
for training and 12 sequences (559 seconds) for testing.
Since ground-truth annotations for object detection are
missing in the DSEC dataset, DSEC-DET has been recently
created. It provides 60 sequences (70379 frames, 390118
bounding boxes) across 8 object classes: pedestrians, riders,
cars, buses, trucks, bicycles, motorcycles, and trains. These
annotations have become essential for benchmarking event-
based detection models.

Hard-DSEC-DET, is a test subset, which focuses on
challenging lighting conditions, like tunnel transitions. It
allowed us to evaluate the robustness of EA-DETR in
dynamic scenes, under extreme conditions, where RGB-only
models work poorly. It currently consists of a single 16-
second sequence (500 frames, 722 bounding boxes), with
additional sequences planned for future inclusion.

Performance metrics: To evaluate the performance
of EA-DETR, we employed the COCO’s mean Average
Precision (mAP) metric. It measures precision and recall
across various intersection over union (IoU) thresholds,
ranging from 0.5 (mAP50) to 0.95 (mAP95). This metric
calculates the Average Precision (AP) at each IoU threshold
by plotting the precision-recall curve and determining the
area under it. The final mAP is the mean of these AP
values, providing a comprehensive assessment of the model’s
accuracy in detecting objects with varying degrees of overlap.
For example, the mAP50:95 score captures the model’s
performance by averaging precision across IoU thresholds
ranging from 0.5 to 0.95 in increments of 0.05.

B. DSEC-DET: Comparison with the state-of-the-art
We compared EA-DETR with the state-of-the-art methods

(see Table I). To the best of our knowledge, we are the
first to perform RGB-event distillation on DSEC-DET, a
direct comparison with the majority of existing methods,
impossible. Since EA-DETR infers on event data alone, to be
fair, we restrict our comparison to other event-only methods.
To this end, we used the results from the ablation study of
DAGr model [2], which relies solely on event data during
inference and on our DETR baseline, as a benchmark. EA-
DETR surpasses the DETR baseline, achieving an mAP50

Input type Model DSEC-DET
mAP50 mAP50:95 Time

RGB

Faster R-CNN [32] 35.4 18.2 58.2

RetinaNet [36] 30.5 16.6 73

CenterNet [37] 35.1 10.4 7.0

YOLOv7-E6E [38] 31.5 18.2 27.8

YOLOv5-L [39] 33.2 20.9 4.4
Baseline DETR [16] 50.6 27.7 23.3

Events

Baseline DETR [16] 25.8 12.0 23.3
DAGr [2] – 14.0 –

EA-DETR (ours) 27.2 14.7 23.3

TABLE I: Performance comparison of different state-of-the-
art models on DSEC-DET. The fifth column of the table
reports the average inference time per image, in milliseconds.
The best values are shown in bold.



Fig. 3: Predictions on Hard-DSEC-DET: (first row, events) EA-DETR, (second row, color images) DETR-RGB baseline.
The green bounding boxes correspond to the model’s prediction, and the red bounding boxes to the ground truth.

Model
Hard-DSEC-DET

mAP50 mAP50:95 APS APM APL

Baseline DETR† 37.6 20.4 14.6 52.5 50.0

Baseline DETR∗ 31.5 14.6 7.5 46.0 23.5

EA-DETR (ours) 31.6 15.3 6.3 49.5 47.2

TABLE II: Performance comparison of our model,
EA-DETR, on Hard-DSEC-DET. APS: Average Precision
Small; APM: Average Precision Medium; APL: Average
Precision Large. These acronyms refer to the detection of
small, medium and large objects. Finally, the symbols “†”
and “*” refer to the RGB and event baselines, respectively.

of 27.2 and an mAP50:95 of 14.7. However, a significant
performance gap remains, when compared to the RGB-
based models, with the RGB DETR baseline reaching an
mAP50 of 50.6 and an mAP50:95 of 27.7. Other RGB
models, like Faster R-CNN and YOLOv5-L, exhibit greater
detection accuracy, showing that there is still room for
further improvement. This gap persists because of limited
specialized architectures for event cameras. EA-DETR’s
distillation mechanism and event-focused masks, are a first
important step in this direction.

C. Hard-DSEC-DET: Performance comparison
Table II summarizes our results with Hard-DSEC-DET.

We can see that EA-DETR outperforms the baseline DETR
in the challenging mAP50:95 category, scoring 15.3 instead
of 14.6. EA-DETR particularly excels at detecting medium
and large objects, with significant improvements in APM,
reaching 49.5, and APL, reaching 47.2, while the baseline
achieves 46.0 and 23.5, respectively. However, it falls slightly
behind in detecting small objects, scoring 6.3 (the best
value is 7.5). A possible explanation for this phenomenon,
is that DETR’s aggressive spatial downsampling reduces
small objects to very few feature tokens and BEM-based
distillation concentrates on regions with high event activity
(mostly corresponding to medium or large objects). This

Logits Backbone DSEC-DET
mAP50 mAP50:95 APS APM APL

✗ ✗ 27.1 12.8 2.6 17.6 41.5
✗ ✓ 25.8 13.7 2.8 18.8 42.3
✓ ✓ 26.6 14.7 3.0 20.5 42.6

TABLE III: Effect of distillation on DETR using RGB-event
data and BEM (DSEC-DET dataset).

thus negatively impacts the detection of small-sized objects.
However, this limitation is minor in an automotive contexts,
where the detection of large objects has a priority due
to collision risks. In addition to the previous quantitative
analysis, Fig. 3 reports some qualitative graphical results.
Green boxes show the model’s predictions, and red boxes
indicate ground truth. EA-DETR (top row) detects vehicles
on the opposite lane more accurately than the DETR-RGB
baseline, in low-light conditions, especially inside the tunnel.

D. Ablation studies
We finally evaluated the impact of our distillation

mechanism through ablation studies on DSEC-DET.
Table III reports results for logits and backbone distillation,
applied separately or conjointly. Backbone distillation alone
improves mAP50:95 by nearly one point, highlighting
the importance of capturing event-specific features. Logits
distillation also improves performance, though to a lesser
extent. Their combination yields the best results, enhancing
average precision for small, medium, and large objects
(APS, APM, APL). supports the conclusion that the joint
application of logits and backbone distillation is beneficial
(cf. the convergence curves in the accompanying video).

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed EA-DETR (Event-Aware
DETR), a new transformer-based object detection model
that optimally exploits RGB and event data via cross-
modal knowledge distillation. Ablation studies on the DSEC-
DET dataset have demonstrated the model’s accuracy and
robustness, especially in challenging dynamic conditions. In



future works, we plan to develop a spiking architecture that
leverages our distillation method, in order to better exploit
the sparse, asynchronous nature of events. This architecture
efficiently integrates temporal and spatial features to enhance
detection accuracy.
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