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Gyrevento: Event-based Omnidirectional Visual
Gyroscope in a Manhattan World

Daniel Rodrigues Da Costa, Pascal Vasseur, Fabio Morbidi

Abstract—In this paper, we study the problem of estimating
the orientation of an event omnidirectional camera mounted on a
robot and observing 3D parallel lines in a man-made environment
(Manhattan world). We present Gyrevento, the first event-based
omnidirectional visual gyroscope. Gyrevento does not require
any initialization, provides certifiably globally optimal solutions,
and is scalable, since the size of the nonlinear least-squares cost
function is independent of the number of lines. Thanks to the
Cayley-Gibbs-Rodrigues parameterization of a 3D rotation, this
cost function is a degree-four rational function in three variables,
which can be efficiently minimized via off-the-shelf polynomial
optimization software. Numerical simulations and real-world
experiments with a robot manipulator show the effectiveness of
our visual gyroscope and elucidate the impact of camera velocity
on the attitude estimation error.

I. INTRODUCTION

In the last decade, event cameras have been increasingly
used in computer vision and robotics [1], and they have made
serious inroads into real-world applications [2]. However, their
potential with agile robots, has yet to be fully exploited. Event
cameras asynchronously measure per-pixel brightness changes,
and output a stream of events that encode the time, location
and sign of these variations. They have several attractive
properties, compared to standard frame-based cameras: high
temporal resolution (in the order of microseconds), very high
dynamic range (up to 140 dB), low power consumption, and
high pixel bandwidth (in the order of kHz), which results
in reduced motion blur. Finally, the spatial resolution of
consumer-grade event cameras is comparable to that of tradi-
tional cameras (1280 × 720 pixels in Prophesee EVK4 - HD).

An area of active research in event-based vision, is
visual odometry. This is a challenging task, since event cam-
eras do not output images, and traditional computer vision
algorithms cannot be applied directly. Numerous event-based
visual odometry algorithms have appeared in the recent
literature [3]–[10]. However, with the exception of [3], [4],
[7], [9], which only take a stream of events from a monocular
camera as input, the other methods rely on an Inertial Mea-
surement Unit (IMU) [5], [6], a second extrinsically-calibrated
depth camera [10], or combine events and grayscale frames
from a DAVIS sensor [8].

Line features have a simple mathematical representation
and they are ubiquitous in urban environments (e.g., doors,
windows). Moving event cameras can easily detect edges in
a 3D scene and several methods have been recently proposed
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Figure 1. Three parallel and mutually orthogonal groups of 3D lines
{L1, L2} (red), {L3, L4, L5} (green), {L6, L7, L8} (blue), are observed
by an omnidirectional event camera. Gyrevento estimates the orientation of
the camera frame {C} with respect to the Manhattan (or world) frame {M}.

for event-based line detection and tracking. In [11], a variant
of Line Segment Detection (LSD) algorithm tailored to event
data, called ELiSeD, is introduced, while in [12], the authors
presented a method based on the detection of event planes
in the (x, y, t) space and tracking of these planes over time.
On the other hand, in [13], an algorithm for line and segment
detection which relies on iterative event-based weighted least-
squares fitting, is proposed. In [14], a geometric model of
line-generated manifolds is introduced, and the linear velocity
of an event camera is estimated from angular rates measured
by an IMU. This work has been recently improved in [15] (see
also [16], where a stereo event camera and an IMU are used).
Finally, in [17], the authors describe a line-based PTAM (Par-
allel Tracking and Mapping) algorithm that estimates structure
and motion, and produces accurate camera pose estimates
in real-time, by using an error-state Kalman filter. The line
extraction procedure is based on the Hough transform.

Unfortunately, event cameras, as conventional vision sen-
sors, suffer from a narrow field of view (FoV), which is
problematic when they are mounted on high-speed robots.
Relatively few works in the literature have addressed this
problem and dealt with omnidirectional event cameras. In [18],
the authors developed a stereo system consisting of two event
cameras mounted on a rotating head, which provides real-
time 360◦ panoramic vision. In [19], a panoramic tracking and
mapping algorithm that only relies on the pixel positions of the
events in the continuous stream is proposed. Finally, in [20]
a multi-view stereo method, called EOMVS, is designed to
estimate a depth map and reconstruct a 3D scene using an
omnidirectional (fisheye) event camera.

This paper presents Gyrevento, a new event-based omni-
directional visual gyroscope1 (see Fig. 1). The combination
of a 360◦ view and an event-based mechanism offers two

1By visual gyroscope, we mean an algorithm which exploits the visual
information to estimate the 3D orientation of a camera (but not its velocity).
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advantages which have not been jointly explored so far,
in the literature: the primitives (lines, in our case) always lie
within the FoV of the camera (persistence of measurement)
and the gyroscope is robust to strong accelerations (no motion
blur). Unlike conventional IMUs, our visual gyroscope is drift-
free, thus providing more reliable long-term attitude estimates.
Our work builds upon a large body of research on vanishing
point extraction and attitude estimation in a Manhattan world,
for perspective and omnidirectional color cameras [21]–[24].
By using the unified central projection model [25], these
results have been adapted to meet the special requirements
of an omnidirectional event camera. Gyrevento processes an
asynchronous stream of events, and detects and tracks great
circles on the unit sphere (the projection of groups of 3D paral-
lel lines in the Manhattan world) to estimate the orientation of
the camera frame. A RANSAC-based classifier generates hy-
potheses for orthogonal vanishing points. Our nonlinear least-
squares formulation relies on the Cayley-Gibbs-Rodrigues
(CGR) parameterization [26], [27] of a 3D rotation matrix and
on the minimization of a multivariate rational function, whose
degree is independent of the number of observed 3D lines.
Compared to the solution based on the eigendecomposition
of a large multiplication matrix in [21], [28], our approach is
simpler yet provably optimal (in fact, the minima are certified
to be global [29]). In summary, the original contributions of
this paper can be listed as follows:
1) We propose the first visual gyroscope for event omnidirec-

tional cameras only based on the detection and tracking
of line features. Gyrevento is initialization-free, provides
globally optimal certified solutions and is scalable (it is
independent of the number of 3D lines observed by the
camera).

2) We take advantage of the CGR parameterization of a 3D
rotation to define a nonlinear least-squares cost function.
This multivariate rational cost function is efficiently mini-
mized with GloptiPoly [30], for global attitude estimation.

3) In our real-world experiments with a manipulator, for a
given trajectory, we study the effect of camera velocity on
the attitude estimation error. The corresponding omnidirec-
tional event datasets have been publicly released.

We also describe a generic calibration procedure for event
central panoramic cameras, which is of independent interest
for the robotic and computer vision communities. An extended
version of this paper, with additional theoretical results and nu-
merical experiments with a car in CARLA simulator, is avail-
able at: http://home.mis.u-picardie.fr/˜fabio/Gyrevento.html

The remainder of this paper is organized as follows.
In Sect. II, we briefly introduce some mathematical tools for
later reference. In Sect. III, the problem studied in the article
is formulated and the different functional blocks of Gyrevento
are described. The theory is validated via extensive numerical
and hardware experiments in Sect. IV. Finally, in Sect. V, the
main contributions of the paper are summarized and possible
avenues for future research are outlined.

Notation: Throughout this paper, In denotes the n × n
identity matrix, {e1, e2, e3} the canonical basis for R

3 and
“�” stands for equality by definition. Finally, SO(n) � {R ∈
R

n×n : RT R = In, det(R) = 1} is the special orthogonal
group in dimension n.
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Figure 2. Great circle g (green) and its unit normal vector n (red). A generic
point on the unit sphere is denoted by p. For the sake of clarity, only the
upper hemisphere is shown.

II. PRELIMINARIES

A. CGR parameterization
Using the Cayley-Gibbs-Rodrigues (CGR) parameteriza-

tion, a rotation matrix R ∈ SO(3) is expressed as

R(s) =
R(s)

1 + sT s
, R(s) � (1− sT s)I3 + 2[s]× + 2ssT, (1)

where s = [s1, s2, s3]
T is the vector of CGR parameters [31,

p. 469], and

[s]× =

⎡
⎣ 0 s3 −s2
−s3 0 s1
s2 −s1 0

⎤
⎦, (2)

is the corresponding skew-symmetric matrix. The rotation
matrix R can be equivalently expressed as R(s) = (I3 +
[s]×)(I3 − [s]×)−1 which is generally known as Cayley’s
formula. The CGR parameterization is closely related to the
other well-known attitude representations: unit quaternion and
axis-angle [27].

B. Fitting great circles on the unit sphere
A great circle of a unit sphere (the intersection of the sphere

and a plane that passes through the center point of the sphere),
can be specified by two parameters α and β. These parameters
correspond to the directional angles of the normal vector n to
the plane containing the great circle in the Cartesian coordinate
system whose origin is located at the center of the sphere [32,
Sect. 4.1], see Fig. 2. A generic point p on the unit sphere can
be expressed as p = [sin θ cosϕ, sin θ sinϕ, cos θ]T where
θ ∈ [0, π] is the polar angle and ϕ ∈ [0, 2π] is the azimuthal
angle. Given a point p and a great circle g with unit normal
vector n = [sinα cosβ, sinα sinβ, cosα]T , the distance from
p to the plane containing g is given by δ = |pT n|. Let us now
consider N points pk, k ∈ {1, . . . , N}, on the unit sphere.
The great circle fitting problem can be stated as the problem
of finding a plane in order to minimize the sum of squares of
distances between the N points and the plane. The objective
function to minimize is then

V (n) =

N∑
k=1

(pT
k n)2,

where n is the normal vector to the plane containing the best-fit
great circle. In other words, the optimal normal n (in the least-
squares sense) is the one which minimizes the sum of squared

http://home.mis.u-picardie.fr/~fabio/Gyrevento.html
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Figure 3. Flowchart of Gyrevento.

residuals δ2k = (pT
k n)2. This problem can be converted into a

standard eigenvalue problem. In fact, by introducing the matrix
A = [p1, p2, . . . , pN ]T ∈ R

N×3, we can equivalently rewrite
the objective function as

V (n) = nTATAn. (3)

The solution for n is thus the eigenvector of matrix B �
ATA ∈ R

3×3 corresponding to its smallest eigenvalue. Having
found the unit-norm vector n, one may readily describe the
great circle by its two angles α and β.

III. DESIGN OF THE VISUAL GYROSCOPE

A. Problem formulation

Consider an event-based omnidirectional camera rigidly
attached to a robotic platform. The robot moves in a man-
made environment (Manhattan world) and the event camera
observes line features in the 3D space. Our goal is to design
a visual gyroscope which takes the asynchronous stream of
events from the camera as input, and outputs an estimate of the
orientation of camera frame {C} with respect to the world or
Manhattan frame {M} (see Fig. 1 and the flowchart in Fig. 3).

A stream of asynchronous events generated by a neuro-
morphic camera can be mathematically represented as ek =
[uk, vk, tk, pk]

T [1], [13]. This 4-tuple describes an event
occurring at time tk (a.k.a. timestamp) at pixel [uk, vk]

T .
The polarity pk ∈ {−1, +1} is the sign of brightness change
detected by the camera since the last event at pixel [uk, vk]

T .

B. Mapping to the unit sphere

Thanks to their 360◦ FoV on the horizontal plane, omni-
directional cameras are ideal for fast-moving robots since the
observed features are always visible. To describe these sensors,
we used the unified central projection model of [25], which
encompasses a breadth of cameras (perspective, catadioptric
and fisheye [33]). Event ek = [uk, vk, tk, pk]

T is thus mapped
to e�k = [θk, ϕk, tk, pk]

T on the surface of the unit sphere
of the unified model (see Fig. 4). The design of our visual
gyroscope takes full advantage of the spherical representation.
In fact, 3D lines in the Manhattan world, become great circles
on the unit sphere and all parallel lines in the 3D space
intersect at two points on the sphere, called vanishing points
(green squares in Fig. 4). These points can be obtained by
computing the cross product of the normal vectors to two great
circles. With reference to Fig. 4, let di be the 3D direction of

the i-th 3D line Li expressed in the Manhattan frame {M}, and
ni the normal vector to the corresponding great circle gi on
the unit sphere, expressed in the camera frame {C}. Both di

and ni are unit vectors.
The mapping to the unit sphere requires the camera to be

intrinsically calibrated, i.e. the parameters {fu, fv, u0, v0, ξ}
need to be known, where (fu, fv) are the sizes of unit length
in horizontal and vertical pixels, respectively, (u0, v0) are the
coordinates of the projection of the optical center of the camera
onto the image plane in pixels, and ξ is the distance between
the unit sphere’s first projection center and the perspective
second projection center of the camera [34].

C. Event clustering and great circle fitting
Our visual gyroscope relies on 3D lines (which map to great

circles on the unit sphere), as primitives. To detect the circles
from the continuous data stream, we take all the events with
the same polarity over a small time window T . In other words,
we slice the event cloud into batches, whose size depends
on the camera’s event rate. We then apply DBSCAN [35]
to find m clusters of events, C1, . . . , Cm, which represent
candidate great circles on the unit sphere. DBSCAN only
requires three parameters: minPts, the minimum number of
nearest neighbors required to form a dense region; ρ, the radius
of a neighborhood with respect to a point, and distFcn, the
distance function between two points. If the ρ-neighborhood
of a point contains at least minPts neighbors, then DBSCAN
identifies the point as the center point. Note that the choice of
the distance function is strongly related to that of ρ, the most
common metric being the Euclidean distance. However, since
the events ek are mapped to the unit sphere (cf. Sect. III-B),
the great-circle distance is the natural choice in our case. More
precisely, we set distFcn = 1− cosγ, where γ is the angle
subtended by two points along a great arc of the unit sphere.

Once the m clusters have been estimated by DBSCAN, the
procedure described in Sect. II-B is used to fit m great circles
to them. Let pk = [sin θk cosϕk, sin θk sinϕk, cos θk]

T be the
3D coordinates of event e�k and let Ci = {p1, p2, . . . , pNi

},
i ∈ {1, . . . ,m}, be the i-th cluster. Then, the normal vector
ni to gi is computed via the eigendecomposition of matrix
Bi = AT

i Ai where Ai = [p1, p2, . . . , pNi
]T ∈ R

Ni×3.

D. Classification of 3D lines
To estimate the orientation of the camera frame with respect

to the Manhattan frame, the knowledge of the normal vectors
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Figure 4. [Top right] Parallel lines L1 (cyan) and L2 (red) with directions
d1 and d2 in the Manhattan frame {M}. [Left] Great circles g1 and g2
corresponding to L1 and L2, with normal vectors n1 and n2 in the camera
frame {C}. The two vanishing points are marked as green squares on the
unit sphere.

to the great circles n1, . . . , nm alone, is not sufficient. In fact,
a crucial step consists in partitioning the 3D lines in the
Manhattan world, into three parallel and mutually-orthogonal
groups M1, M2 and M3. As in prior research [21], [22],
to classify the lines, we opted for a variant of RANSAC
(generically known as adaptive RANSAC, such as 3-line
RANSAC), which guarantees more accurate results.

Our variant of RANSAC serves the purpose of identifying
the dominant directions. A dominant direction is character-
ized by the vanishing point which best describes one of the
directions in the Manhattan frame. The first step consists in
selecting all possible pairs of distinct great circles. For each
pair, we find one of the vanishing points, by calculating the
cross product of the normals to the two great circles (see
the green squares in Fig. 4). Once all the vanishing points
have been obtained, those that are sufficiently close to the
directions estimated in the previous step, are grouped into three
categories. The centroid of each group of vanishing points is
computed, to make the algorithm less sensitive to outliers.
Finally, to determine the three sets of normals associated with
the three newly-established dominant directions, we choose
those which are close enough to the great circles of these
dominant directions (see Sect. IV for more details).

E. Global optimization: Attitude estimation

In the previous sections, we have seen how to estimate the
normal vectors to the great circles and how to partition the
3D parallel lines into different orthogonal groups. The last
module of our visual gyroscope takes these data as input, and
provides an estimate R̂M

C of RM
C ∈ SO(3), the rotation matrix

representing the orientation of the camera in the Manhattan
frame {M}, see Fig. 3. Following [21, Sect. 3], we can
formulate this problem, in general, as

R̂M
C = argmin

R

1

2

m∑
i=1

1

σ2
i

(
dT
i R ni

)2
,

s.t. RT R = I3, det(R) = 1,

(4)

where σi is a positive weight which reflects the uncertainty
in each line-normal observation, di is the 3D direction of

line Li in {M}, and ni is the noisy estimate of the normal
to the great circle gi in {C} (cf. Sects. III-B and III-D).
The nonlinear weighted constrained least-squares problem (4)
(for m ≥ 3) is known in the literature as the orientation-from-
line-correspondences problem. In what follows, we will make
the simplifying assumption that di ∈ {e1, e2, e3} (i.e. we
restrict ourselves to the three cardinal directions).

By using the CGR parameterization (cf. Sect. II-A), prob-
lem (4) can be equivalently rewritten as

ŝ = argmin
s

J, J =
1

2

m∑
i=1

1

σ2
i

(
dT
i R(s)ni

)2
. (5)

Note that compared to (4), the optimization problem (5)
is unconstrained (the constraint is dropped since the CGR
parameterization ensures that R(s) is a rotation matrix).

To algebraically find the global minimum of problem (5),
the authors in [21], first determined all the critical points of J ,
by solving the optimality conditions and then chose the one(s)
that minimize (5). The optimality conditions are three quin-
tic polynomials in the variable s, whose solutions comprise
the critical points of (5). Directly solving these polynomial
equations is challenging, and in [21], the authors computed
the multiplication matrix (a generalization of the companion
matrix to multivariate polynomial systems), whose eigenvalues
are the roots of the associated (saturated) polynomial system.
While this elegant method has the advantage of being not
iterative and not requiring any initialization, the construction
of this (40×40) matrix and the computation of its eigenvalues,
are far from trivial.

To circumvent this difficulty, in this paper we propose to
numerically solve problem (5) with GloptiPoly, a publicly-
available optimization toolbox for Matlab [30]. GloptiPoly
builds up a hierarchy of semidefinite programming (SDP) or
linear matrix inequality (LMI) relaxations of the generalized
problem of moments, whose associated monotone sequence of
optimal values converges to the global optimum. Note that the
cost function in (5) can be expressed as

J =
g(s)
h(s)

=

m∑
i=1

1

σ2
i

(
dT
i R(s)ni

)2
2(1 + sT s)2

,

where g(s) and h(s) are polynomials of degree 4 in s. The min-
imization of a rational function as J , can also be formulated
as a linear moment problem [36], [37], and GloptiPoly is
able to extract a certifiably globally optimal solution (which
corresponds to the best attitude estimation of the camera)
from the solution of SDP relaxations. Once the optimal vector
of CGR parameters ŝ has been computed, the corresponding
rotation matrix R̂M

C can be determined via equation (1).
In contrast to [21], an explicit expression for the weights σi

appearing in problem (5), is given in [28]. However, this leads
to a computationally intractable optimization problem, since
the degree of the rational cost function rapidly grows with
each new summand. To get around this problem, the authors
relaxed the formulation, by assuming that the variances σ2

i are
approximately the same for all measurements. To conclude this
section, two remarks are in order.
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Figure 5. Numerical simulations: (a) Figure-of-eight trajectory; (b) Helicoidal trajectory; (c),(d) Mean and standard deviation of the estimation error εj =∣∣φj − φ̂j

∣∣, j ∈ {1, 2, 3}, over 50 trials. The errors for different numbers of lines, m ∈ {15, 30}, and different levels of noise, ς∗ = κς , κ = sin(3◦),
ς ∈ {0, 0.5, 1}, are compared.

Remark 1: (Characterization of the solutions): In [21,
Sect. 3.5], the authors have studied the existence of solutions
to problem (5), and determined the number of global minima.
They have shown that regardless of the number of mea-
surements, there exist at least four solutions for a camera’s
orientation from observation of lines with known directions
in the Manhattan frame. Specifically, assuming noisy-free
measurements in the camera frame, if R̂M�

C is one solution,
then R̂M

C = ΠR̂M�
C with Π ∈ {

I3, Rx(π), Ry(π), Rz(π)
}

,
is a solution too, where Rx(π) denotes the 3 × 3 elementary
rotation of an angle π about the x-axis. �

Remark 2: (Singular configurations): When the rotation
angle corresponding to R ∈ SO(3) is equal to ±π, the
CGR parameterization is degenerate. In practice, even in the
proximity of ±π, we can have extremely large values for
the CGR parameters. To overcome this problem, in [28],
the authors simply proposed to rotate the measurements or
3D lines to an arbitrary (randomly generated) reference frame,
find the global minimum (or minima), and then rotate the
solution(s) back to the original frame. �

IV. EXPERIMENTAL VALIDATION

A. Numerical simulations: Global optimization

In our first test, we evaluated the accuracy and robustness of
the global optimization module described in Sect. III-E (ma-
genta block in Fig. 3), in a synthetic environment. To have a
realistic setup, we manually extracted 30 lines (from windows,

door frames, fixtures, etc.) in a 7×2×2.5 m3 hallway located
in our laboratory building (5 lines are parallel to the x axis,
10 are parallel to the y axis, and 15 are parallel to the z axis).
Two trajectories of the omnidirectional event camera have been
considered in this environment. The first trajectory is a figure-
of-eight (see Fig. 5(a)), with parametric representation⎧⎪⎪⎨
⎪⎪⎩

x = 60 sin(2aj), y = 120 cos(aj) + 300, z = 60,

φ1 = φ2 = 0, φ3 = − arctan
(cos(2aj)

sin(aj)

)
− π

2
,

j ∈ [−180◦, 180◦].
(6)

where (x, y, z) are the coordinates of the optical center of the
camera in centimeters, (φ1, φ2, φ3) are the roll, pitch and yaw
angles of the camera in radians, and a = π/180◦. The second
trajectory is a helix (see Fig. 5(b)), expressed by⎧⎪⎨
⎪⎩

x = 30 (sin(aj)− 1), y = 30 cos(aj), z = j/6,

φ1 = 50 a(1− e−j/180), φ2 = −3 a(1− e−j/180),

φ3 = aj, j ∈ [0, 3× 360◦].

(7)

In Figs. 5(a),(b), a set of 15 lines, marked in blue, is shown.
We used equation (6) to describe the planar motion of a camera
mounted on a wheeled robot, and equation (7), the ascending
motion of a quadrotor. We set the number of observed lines
either to 15 or to 30. In the first case, to guarantee that the
Manhattan world assumption is satisfied, 3 lines are imposed
(one per coordinate axis), while the other 12 are drawn at
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(a)

(b)
Figure 6. (a) Experimental setup: The catadioptric event camera is mounted
on the end-effector of a Stäubli TX-60 robot and observes the parallel lines in
the environment. (b) Event frame captured by the catadioptric event camera,
2.5 seconds after the beginning of Sequence 1a (a pixel is blue if the polarity
pk = +1, and black if pk = −1).

random out of the remaining 27 lines. In the second case, all
30 lines are taken. The measurements of the normal vectors
n1, . . . , nm were corrupted with additive zero-mean white
Gaussian noise of increasing magnitude. The noise acting on
the three components of the normal vectors is independent and
the standard deviation ς∗ = κς , κ = sin(3◦), ς ∈ {0, 0.5, 1}.
Figs. 5(c),(d) report the mean and standard deviation of the
angular estimation error of the camera over 50 trials, for the
two trajectories and for different values of m and ς∗. More
precisely, given R̂M

C = Rz(φ̂3)Ry(φ̂2)Rx(φ̂1), we computed
the statistics of the errors εj =

∣∣φj − φ̂j

∣∣, j ∈ {1, 2, 3}, in
degrees. Problem (5), with weights σ1 = . . . = σm = 1,
was numerically solved with GloptiPoly, using the conic
programming solver SeDuMi [38]. To single out the “best
solution” among the four possible minima of the cost function
J in (5) during camera motion (cf. Remark 1), we used
the chordal distance dchor[ · , · ] in SO(3) between the current
and previous rotation estimate. Thus, at time � ∈ {1, 2, . . .},
we compute

argmin
Π

dchor[ΠR̂M�
C (�), R̂M�

C (� − 1)] =

argmin
Π

∥∥ΠR̂M�
C (�)− R̂M�

C (�− 1)
∥∥

F ,

where ‖ · ‖F denotes the Frobenius norm of a matrix. While
this method is easy to implement, it is rather sensitive to the
accuracy of the initial camera orientation’s estimate.

From an inspection of Figs. 5(c),(d), we can notice that the
worst mean estimation error is 5.04◦ (4.45◦) for the figure-
of-eight (helicoidal) trajectory. In both cases, it corresponds
to the yaw angle: this is due to the unequal repartition
of 3D parallel lines in the specific simulation environment
considered. Moreover, for the same magnitude of noise, the

larger the number of observed lines, the more accurate the
visual gyroscope, as expected.

B. Real-world experiments: Event camera on a robot arm

a) Camera specifications : In our real-world experi-
ments, we used a Prophesee Evaluation Kit 3 - HD (EVK3).
This event camera has a resolution of 1280 × 720 pixels,
a latency of 220 μs, a dynamic range exceeding 110 dB
and a maximum bandwidth of 1.6 Gbps. An event ek =
[uk, vk, tk, pk]

T is encoded on 64 bits: 28 bits for uk and
vk, 32 bits for tk, and 4 bits for pk. A catadioptric event
camera was obtained by screwing a VStone VS-C450MRTK
objective with hyperbolic mirror, on top of EVK3.

b) Camera calibration : The calibration of an event
camera is more challenging than that of a traditional camera,
and it is a subject of ongoing research. Some authors have
proposed to use blinking patterns or active illumination with
static checkerboards, for the calibration of perspective event
cameras. Recently, a dynamic and a learning-based approach
have been described in [39] and [40], respectively, to simplify
and make the calibration procedure more robust (see also [41]
for fast calibration). However, with the exception of [20],
where a fisheye event camera is considered, we are no aware
of any other generic calibration algorithm for omnidirectional
event cameras. To calibrate different typologies of panoramic
event sensors (catadioptric, fisheye, etc.), we developed a pro-
tocol which consists in filming a flashing pattern in front of the
static camera. A grayscale image is generated by accumulating
the events over a fixed time window (that the user can select),
which, in turn, is exploited to estimate the intrinsic parameters
{fu, fv, u0, v0, ξ} of the camera via conventional calibration
algorithms (in our experiments, we used HySCaS [42]).

c) Experimental setup : To validate the overall pipeline
reported in Fig. 3, experiments were carried out in a laboratory
setting. Our catadioptric event camera was mounted on the
end-effector of a 6-axis Stäubli TX-60 robot (see Fig. 6).
The rotary encoders on the joints of the robot provide accurate
measurements of angular positions and velocities at 250 Hz.
The forward kinematics equations of the robot were used
to compute the position and orientation of the end-effector
(our ground truth), from specific values of joint parameters.
The stream of events and the measurements from the encoders
were synchronized offline, and the estimated orientation of
the camera was updated at a fixed (arbitrary) frequency
of 25 Hz. As in Sect. IV-A, problem (5), with weights
σ1 = . . . = σm = 1, was numerically solved with GloptiPoly,
using SeDuMi.

We evaluated the accuracy of Gyrevento, by considering
two sequences of growing complexity. For a given trajec-
tory, to study the effect of speed, three sets of camera
velocities were tested. In what follows, we use vmax

C =
[vmax

x , vmax
y , vmax

z , ωmax
x , ωmax

y , ωmax
z ]T to denote the maxi-

mum velocity of the camera (expressed in the camera frame),
where the linear velocities are in mm/s and the angular
velocities in deg/s.

• Sequence 1: 1-DoF motion (pure rotation about the
optical axis of the camera):

a) vmax
C = [0, 0, 0, 0, 0, 47.8]T , duration 18.20 s, T =

10 ms, rg = 30◦ (see Fig. 6(b)),



GYREVENTO: EVENT-BASED OMNIDIRECTIONAL VISUAL GYROSCOPE IN A MANHATTAN WORLD 7

10 12 14 16 18
0

50

100

150

200

250

300

350

 0  2 44 6 8
Time [s]

A
ng

le
[d

eg
]

Roll
Pitch
Yaw

ωz = 47.8 deg/s

ωz = 0 deg/s

ωz = −47.8 deg/s

(a)

10 15

0

20

40

60

80

100

120

140

160

180

 0  5
Time [s]

A
ng

le
[d

eg
]

Roll
Pitch
Yaw

ωz = 38 deg/s

ωz = 0 deg/s

ωz=−13 deg/s

ωz = −38 deg/s

(b)

0

1

2

3

4

5

6

7

8

Seq. 1a Seq. 1b Seq. 1c

E
rr

or
[d

eg
]

Yaw
Pitch
Roll

(c)

0

0.5

1

1.5

2

2.5

3

3.5

4

Seq. 2a Seq. 2b Seq. 2c

E
rr

or
[d

eg
]

Yaw
Pitch
Roll

Figure 7. Experimental results: Actual orientation of the camera in degrees (dashed) and orientation estimated by Gyrevento (solid): (a) Sequence 1a,
(b) Sequence 2c. Mean and standard deviation of the angular estimation error in degrees: (c) Sequences 1a-1c, (d) Sequences 2a-2c.

b) vmax
C = [0, 0, 0, 0, 0, 91.8]T , duration 10.24 s, T =

10 ms, rg = 30◦,
c) vmax

C = [0, 0, 0, 0, 0, 136.6]T , duration 7.56 s,
T = 5 ms, rg = 45◦.

• Sequence 2: 4-DoF motion (rotation about the optical
axis of the camera and 3D translation in the [−20, 290]×
[0, 230]× [380, 670] mm3 range):

a) vmax
C = [46.6, 55.6, 36.3, 0, 0, 19.2]T , duration

27.52 s, T = 22.5 ms, rg = 18◦,
b) vmax

C = [69.4, 80.8, 56.0, 0, 0, 28.8]T , duration
19.08 s, T = 20 ms, rg = 20◦,

c) vmax
C = [92.1, 108.0, 72.0, 0, 0, 38]T , duration

14.80 s, T = 15 ms, rg = 22.5◦.
The intrinsic parameters of the camera are, in pixels, fu =
310.2723, fv = 308.8265, u0 = 601.7725, v0 = 372.3330,
and ξ = 1.1099. Moreover, ρ = 0.75◦, minPts = 3, rg = 5◦,
Larc = 7◦ and Ld = 1◦. The last three parameters, rg , Larc
and Ld, have been introduced for enhanced flexibility in line
detection. The first parameter, rg , is the angle of the spherical
cone containing the vanishing points, with apex at the center
of the sphere, used to identify the new dominant directions in
RANSAC (cf. Sect III-D). Larc denotes the minimum length of
an arc on the unit sphere (corresponding to a straight line in the
Manhattan frame) and Ld is the maximum thickness of an arc.
We used a circular mask to discard the non-informative pixels
in the outer rim of the omnidirectional image.

d) Discussion : Figs. 7(a),(b) show the time evolution
of the actual orientation of the camera (dashed) and the
orientation estimated by Gyrevento (solid) in Sequence 1a
and Sequence 2c, respectively. The impact of camera velocity
on the attitude estimation error is evaluated in Fig. 7(c)
for Sequence 1 and in Fig. 7(d) for Sequence 2. For the
sake of clarity, the outliers are not shown in the box charts
in Figs. 7(c),(d): they are 6.7◦, 9.2◦, 12◦ and 11.5◦, 8.2◦,
4.0◦, respectively (the inertia of the camera during the rapid
accelerations/decelerations of the manipulator, is the main
responsible for them). Figs. 7(c),(d) indicate that Gyrevento
works best for angular velocities in the [20, 50] deg/s range
(the maximum mean error is less than 2.5◦). However, it
continues to deliver satisfactory performances for speeds up
to 136 deg/s. Gyrevento can thus be potentially used onboard
agile robots (e.g. quadrotors). The mean error in Sequence 2
is about twice as small as that in Sequence 1, since the
4-DoF camera motion offers richer visual information (and,
ultimately, more exploitable parallel lines).

For additional results with 3-DoF and 6-DoF camera mo-
tions, the reader is referred to the Supplementary Material.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented Gyrevento, the first om-
nidirectional visual gyroscope for event cameras only based
on the observation of 3D lines in a structured environment.
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The gyroscope has been successfully validated via simulation
and real-world experiments with a robot manipulator. The ex-
perimental results have also shed light on the impact of camera
velocity on the attitude estimation error.

In future research, we will work towards the design of an
event-based omnidirectional visual odometer and we plan to
relax the Manhattan world assumption about the existence
of three mutually orthogonal directions (cf. Atlanta world
assumption [24]). It would also be interesting to automatically
incorporate the Manhattan constraints into the event-clustering
step, which is, at present, the computational bottleneck of
Gyrevento (its complexity is O(ne log(ne)), where ne is the
number of detected events). On the other hand, the complexity
of the great circle fitting and classification steps (cf. Fig. 3)
is o(ne) and O(m2), respectively, with ne � m. To ro-
bustify our multi-line tracker, we could exploit the polarity
of the events and the spatio-temporal variant of DBSCAN,
ST-DBSCAN [43]. Finally, in future work, we will weigh
the pros and cons of other vectorial parameterizations of a
3D rotation [27], besides CGR.

SUPPLEMENTARY MATERIAL

The event datasets, calibration parameters, and videos rel-
ative to the experiments in Sect. IV and to additional tests
performed with CARLA simulator (3-DoF motion) and with
an IMU rigidly attached to the catadioptric event camera
(6-DoF motion, Sequence 3), are available at:

http://home.mis.u-picardie.fr/˜fabio/Gyrevento.html
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[17] W. Chamorro, J. Solà, and J. Andrade-Cetto. Event-based Line SLAM
in Real-time. IEEE Rob. Autom. Lett., 7(3):8146–8153, 2022.

[18] S. Schraml, A.N. Belbachir, and H. Bischof. An Event-Driven Stereo
System for Real-Time 3-D 360◦ Panoramic Vision. IEEE Trans. Ind.
Electron., 63(1):418–428, 2016.

[19] C. Reinbacher, G. Munda, and T. Pock. Real-Time Panoramic Tracking
for Event Cameras. In Proc. IEEE Int. Conf. Comput. Photog., 2017.

[20] H. Cho, J. Jeong, and K.-J. Yoon. EOMVS: Event-Based Omnidirec-
tional Multi-View Stereo. IEEE Rob. Autom. Lett., 6:6709–6716, 2021.

[21] F.M. Mirzaei and S.I. Roumeliotis. Optimal Estimation of Vanishing
Points in a Manhattan World. In Proc. IEEE Int. Conf. Comput. Vis.,
pages 2454–2461, 2011.

[22] J.-C. Bazin, C. Demonceaux, P. Vasseur, and I. Kweon. Rotation
estimation and vanishing point extraction by omnidirectional vision in
urban environment. Int. J. Robot. Res., 31(1):63–81, 2012.

[23] P. Kim, H. Li, and K. Joo. Quasi-Globally Optimal and Real-Time Visual
Compass in Manhattan Structured Environments. IEEE Rob. Autom.
Lett., 7(2):2613–2620, 2022.

[24] D. Yan, H. Jiang, T. Li, and C. Shi. Efficient Vanishing Point Estimation
for Accurate Camera Rotation Estimation in Indoor Environments. IEEE
Rob. Autom. Lett., 8(11):6899–6906, 2023.

[25] C. Geyer and K. Daniilidis. A Unifying Theory for Central Panoramic
Systems and Practical Implications. In Proc. Europ. Conf. Comput. Vis.,
pages 445–461, 2000.

[26] J.A. Hesch and S.I. Roumeliotis. A Direct Least-Squares (DLS) Method
for PnP. In Proc. IEEE Int. Conf. Robot. Automat., pages 383–390, 2011.

[27] O.A. Bauchau and L. Trainelli. The Vectorial Parameterization of
Rotation. Nonlinear Dyn., 32(1):71–92, 2003.

[28] F.M. Mirzaei and S.I. Roumeliotis. Globally Optimal Pose Estimation
from Line Correspondences. In Proc. IEEE Int. Conf. Robot. Automat.,
pages 5581–5588, 2011.

[29] F. Bugarin, D. Henrion, and J.B. Lasserre. Minimizing the sum of many
rational functions. Math. Prog. Comp., 8(1):83–111, 2016.

[30] D. Henrion, J.-B. Lasserre, and J. Löfberg. GloptiPoly 3: moments,
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