New Graph Distance Measures and Matching of Topological Maps for Robotic Exploration

Fabio Morbidi

MIS laboratory

University of Picardie Jules Verne – Amiens, France

May 20, 2025

ICRΛ. SLAM 1 - TuAT2.3

Motivation and related work

Comparing graph-structured maps: crucial for robotic exploration and cartography

Problem:

Cost of the existing similarity measures, e.g. **Graph Edit Distance** (GED^{*}):

Prohibitive for large graphs (> 1000 nodes)

*"A survey of graph edit distance", X. Gao, B. Xiao, D. Tao, X. Li., Pattern Analysis Applications, vol. 13, pp. 113-129, 2010

INIVERSITE

Picardie

Original contributions

Two connected undirected graphs \mathcal{G}_a and \mathcal{G}_b with n nodes

Three new graph distances:

Assumption:

1. LogEig:
$$d_{\log}(\mathcal{G}_a, \mathcal{G}_b) = \sqrt{\sum_{i=1}^n \ln^2(\lambda_i(\mathbf{L}'_a, \mathbf{L}'_b))} \quad \mathbf{L}'_a, \mathbf{L}'_b$$
: Shifted Laplacians ($\mathbf{L}' = \mathbf{L} + \frac{1}{n}\mathbb{1}\mathbb{1}^T$)
of \mathcal{G}_a and \mathcal{G}_b
2. Bures: $d_{\mathrm{B}}(\mathcal{G}_a, \mathcal{G}_b) = \sqrt{\mathrm{trace}\left[\mathbf{L}'_a + \mathbf{L}'_b - 2\left((\mathbf{L}'_a)^{1/2}\mathbf{L}'_b(\mathbf{L}'_a)^{1/2}\right)^{1/2}\right]}$
3. Rank: $d_{\mathrm{rk}}(\mathcal{G}_a, \mathcal{G}_b) = \mathrm{rank}(\mathbf{S}_a - \mathbf{S}_b)$ $\mathbf{S}_a, \mathbf{S}_b$: Graph Shift Operators (GSOs) of \mathcal{G}_a and \mathcal{G}_b

Property: The three graph distances satisfy the axioms for a **metric**

Comparison of five metrics:

- GED (graph_edit_distance of *NetworkX**)
- Frobenius norm
- LogEig
- Bures
- Rank (with the Laplacian rk, L or the adjacency matrix rk, A)

*https://networkx.org

 $\mathbb{D}_{\text{GED}}, \mathbb{D}_{\text{F}}, \mathbb{D}_{\log}, \mathbb{D}_{\text{B}}, \mathbb{D}_{\text{rk}, \mathbf{L}}, \mathbb{D}_{\text{rk}, \mathbf{A}}$:

7 × 7 distance matrices corresponding to $\mathcal{G}_a, \mathcal{G}_b, \dots, \mathcal{G}_g$

- GED and Rank cannot discriminate between **3 (or more) pairs** of graphs
- Frobenius, logEig and Bures cannot discriminate between **2** pairs of graphs only
- The largest Frobenius norm, $[\mathbb{D}_F]_{1,7} = 2.000$, is obtained with the isomorphic graphs \mathcal{G}_a and \mathcal{G}_g

- More quantitative analysis with the Mantel test* (a randomization test): computation of the *correlation* between two distance matrices
- We took the GED as our "baseline" and set M = 5000. Values of the Pearson coefficient $r \in [-1, 1]$:
 - $\operatorname{Mntl}(\mathbb{D}_{\operatorname{GED}}, \mathbb{D}_{\operatorname{F}}) = -0.1794$
 - $\operatorname{Mntl}(\mathbb{D}_{\operatorname{GED}}, \mathbb{D}_{\operatorname{log}}) = 0.2711$
 - $\operatorname{Mntl}(\mathbb{D}_{\operatorname{GED}}, \mathbb{D}_{\operatorname{B}}) = 0.4728$
 - $\operatorname{Mntl}(\mathbb{D}_{\operatorname{GED}}, \mathbb{D}_{\operatorname{rk}, \mathbf{L}}) = 0.3691$
 - $\operatorname{Mntl}(\mathbb{D}_{\operatorname{GED}}, \mathbb{D}_{\operatorname{rk}, \mathbf{A}}) = 0.2390$

Conclusion:

Example:

- \mathbb{D}_{GED} has a strong relationship with \mathbb{D}_B
- The correlation between \mathbb{D}_{GED} and $\mathbb{D}_{rk,L}$, \mathbb{D}_{log} , $\mathbb{D}_{rk,A}$ is *significant* as well

UNIVERSITE ^{de} Picardie

Matching of 2D topological maps 2.

- 38 pairs of topological maps: COLD-TopoMaps dataset
- **13 pairs** with 90 and 92 nodes (Freiburg)
- **13 pairs** with 52 and 53 nodes (Saarbrücken) •
- **12 pairs** with 107, 122 and 191 nodes (Stockholm) •

Seq1 sunny4

82

Freiburg							
#	Map 1	Map 2	n				
1	seq1_sunny1	seq1_sunny3	90				
2	seq1_sunny1	seq3_sunny1	90				
3	seq1_sunny3	seq3_sunny1	90				
4	seq1_cloudy2	$seq1_night2$	92				
5	seq1_cloudy2	$seq1_night3$	92				
6	seq1_cloudy2	seq1_sunny4	92				
7	seq1_cloudy2	seq3_sunny3	92				
8	seq1_night2	seq1_night3	92				
9	seq1_night2	seq1_sunny4	92				
10	$seq1_night2$	seq3_sunny3	92				
11	seq1_night3	seq1_sunny4	92				
12	seq1_night3	seq3_sunny3	92				
13	seq1_sunny4	seq3_sunny3	92				
Saarbrücken							
1	seq3_cloudy1	seq3_night1	52				
2	seq3_cloudy1	seq3_night3	52				
3	seq3_night1	seq3_night3	52				
4	seq3_cloudy2	seq3_cloudy5	53				
5	seq3_cloudy2	$seq3_night2$	53				
6	seq3_cloudy2	seq3_sunny1	53				
7	seq3_cloudy2	seq3_sunny3	53				
8	seq3_cloudy5	seq3_night2	53				
9	seq3_cloudy5	seq3_sunny1	53				
10	seq3_cloudy5	seq3_sunny3	53				
11	seq3_night2	seq3_sunny1	53				
12	seq3_night2	seq3_sunny3	53				
13	seq3_sunny1	seq3_sunny3	53				
	Stock	kholm					
1	floor6_base_cloudy_c	floor6_base_night_b	107				
2	floor6_base_cloudy_c	floor6_base_sunny_a2	107				
3	floor6_base_night_b	floor6_base_sunny_a2	107				
4	floor4_cloudy_a1	floor4_night_a2	122				
5	floor4_cloudy_a1	floor4_night_b	122				
6	floor4_cloudy_a1	floor5_night_c	122				
7	floor4_night_a2	floor4_night_b	122				
8	floor4_night_a2	floor5_night_c	122				
9	floor4_night_b	floor5_night_c	122				
10	floor7_cloudy_a2	floor7_cloudy_b	191				
11	floor7_cloudy_a2	floor7_night_a2					
12	floor7_cloudy_b	$floor7_night_a2$	191				

"Learning Graph-Structured Sum-Product Networks for Probabilistic Semantic Maps", K. Zheng, A. Pronobis, R.P.N. Rao, in Proc. 32nd AAAI Conf. Artif. Intell., pp. 4547-4555, 2018

2. Matching of 2D topological maps

$Mntl(\mathbb{D}_{GED}, \cdot)$	\mathbb{D}_{F}	\mathbb{D}_{\log}	\mathbb{D}_{B}	$\mathbb{D}_{\mathrm{rk},\mathbf{L}}$	$\mathbb{D}_{\mathrm{rk},\mathbf{A}}$
Freiburg, $n = 90$	0.9973	0.9827	0.9985	0.9848	0.9753
Freiburg, $n = 92$	0.9130	0.9588	0.9556	0.9395	0.9229
Saarbrücken, $n = 52$	0.9976	0.9813	0.9955	0.9970	0.9728
Saarbrücken, $n = 53$	0.8392	0.9545	0.9395	0.7285	0.7364
Stockholm, $n = 107$	0.9826	0.9366	0.9636	0.9658	0.9892
Stockholm, $n = 122$	0.0628	0.6496	0.5960	0.3785	0.3545
Stockholm, $n = 191$	0.9332	0.9284	0.9183	0.9793	0.9702
Mean value	0.8180	0.9131	0.9183	0.8520	0.8475

Conclusion:

- $\mathbb{D}_{\rm GED}$ has a strong relationship with $\mathbb{D}_{\rm B}$ and $\mathbb{D}_{\rm log}$
- The correlation between \mathbb{D}_{GED} and $\mathbb{D}_{rk,L}$, $\mathbb{D}_{rk,A}$ is strong as well, and superior to that between \mathbb{D}_{GED} and \mathbb{D}_{F}

2. Matching of 2D topological maps

- Computation time of LogEig and Rank: small (< 4 ms)
 - The calculation of the GED is *exceedingly slow* (not shown)

•

• The Bures distance can still be computed in real time (for maps with up to 200 nodes)

UNIVERSITÉ de Picardie

les

3. Distance between a graph and its spectral sparsifier

Random graph with 1000 nodes in $[0,\,1]\times[0,\,1]~m^2$

Example of spectral sparsifier with $\epsilon=0.45$

- *G* : generated with *GSPBox toolbox* [Perraudin *et al.*, 2014]
- Sparsification of ${\mathcal G}$ with Spielman & Srivastava's algorithm
- Sparsification parameter ϵ : it varies between 0.05 and 0.45 (step size 0.01)

JNIVERSITE

Picardie

3. Distance between a graph and its spectral sparsifier

Statistics over 50 trials:

(*Left*) The mean number of edges of the spectral sparsifier $\tilde{\mathcal{G}}$ decreases as ϵ grows (*Right*) The mean distance between \mathcal{G} and $\tilde{\mathcal{G}}$ increases as ϵ grows, for the *five metrics*

3. Distance between a graph and its spectral sparsifier

Mean computation time:

- LogEig: 41-49 ms (best performance)
- Rank and Frobenius: 52-65 ms
- Bures: 662-686 ms (10× bigger than the other metrics)

UNIVERSITÉ de Picardie

uler

Conclusions and future work

- Three new graph distance measures (LogEig, Bures, Rank) which are metrics
- The new measures compare favorably with the existing distances (GED, Frobenius norm) for complex topological graphs in the COLD-TopoMaps dataset
 - LogEig and Rank ensure *real-time performance* on a standard laptop
- Study of the effect of *spectral sparsification* on the new graph distances

- Limitation of the new metrics: the two graphs must have the same number of nodes and be connected (with the exception of Rank)
 - In future works, study the *approximate graph matching problem*
- For time-varying maps, consider the sum-rank metric [Martínez-Peñas et al., 2022]
- Use the new metrics for *fast loop-closure detection* in (topological) SLAM

Picardie

New Graph Distance Measures and Matching of Topological Maps for Robotic Exploration

Fabio Morbidi

MIS laboratory, University of Picardie Jules Verne – Amiens, France

fabio.morbidi@u-picardie.fr

Poster TuAT2.3