Repetition thresholds for subdivided graphs and trees

Pascal Ochem and Elise Vaslet

Non-repetitive coloring

A coloring of a graph *G* is non-repetitive if every non-intersecting path in *G* induces a square-free word.

Non-repetitive chromatic number of some graph classes:

- 3 for paths [Thue 1906]
- J for "large subdivisions" [Pezarski, Zmarz 2009]
- 4 for trees
- $\leq C\Delta^2$ for graphs with degree max Δ [Alon et al. 2002]
- $\bullet \geq 10$ for planar graphs
- \checkmark *n* for the complete graph on *n* vertices

Repetition threshold

For a graph *G* and an alphabet size (number of colors) *k*: we define the repetition threshold RT(k, G).

Non-repetitive chromatic number of $G \leq k \iff RT(k,G) \leq 2$.

For a graph class \mathcal{G} , $RT(k, \mathcal{G}) = \sup_{G \in \mathcal{G}} RT(k, G)$.

 $RT(k, \mathcal{P}) = \frac{k}{k-1}$, where \mathcal{P} denotes all paths and $k \ge 5$. (Dejean's conjecture)

 $RT(2, C) = \frac{5}{2}$, where C denotes all cycles of length ≥ 18 . [Aberkane, Currie 2004]

Repetition thresholds of trees

 $\ensuremath{\mathcal{T}}$ denotes the class of trees.

•
$$RT(2,\mathcal{T}) = \frac{7}{2}$$

$$\mathbf{P} \ RT(3,\mathcal{T}) = \frac{5}{2}$$

•
$$RT(k, \mathcal{T}) = \frac{3}{2}$$
, for $k \ge 4$.

Universal trees - Level coloring

 U_n : universal family of rooted trees:

- U_0 is a single vertex.
- U_n is a root adjacent to the roots of $(k^n + 1)$ copies of U_{n-1} .

NB: $RT(k, \mathcal{T}) = RT(k, U_n)$

A rooted tree is *level colored* iff vertices with the same height have the same color.

A level coloring is specified by its coding word.

Reduction to level coloring

Claim: Every k-colored U_n contains a complete binary level colored tree of height n.

Proof: By induction on n. U_n contains $(k^n + 1)$ subtrees U_{n-1} . There are at most k^n ways of coloring the binary tree that U_{n-1} contains. So two of these binary trees have the same coloring, which

creates the binary tree of height n.

Conclusion: level coloring is unavoidable and is the best

coloring of U_n .

Lower bounds for trees

- $RT(2, T) \ge \frac{7}{2}$: Long enough binary $\frac{7}{2}$ -free words contain *aaa, abab* or *abbabba* where $a, b \in \{0, 1\}$.
- $RT(3, \mathcal{T}) \ge \frac{5}{2}$: Long enough ternary $\frac{5}{2}$ -free words contain *aa* or *aba* where $a, b \in \{0, 1, 2\}$.
- $RT(k, T) \ge \frac{3}{2}$, for $k \ge 4$: The bound $\frac{3}{2}$ comes from the star $K_{1,k}$.

Upper bounds for trees

- k = 2: w is the Thue-Morse word (overlap-free, 2⁺-free).
- k = 3: w is the image by the following morphism of an infinite $\left(\frac{7}{5}^+\right)$ -free word over Σ_4 starting with 0.
- k = 4: w is any infinite $\frac{3}{2}$ -free over the 4-letter alphabet.

$\begin{array}{l} 0 \mapsto 0210201021201210212021012010212 \\ 1 \mapsto 0210201021201210201021012010212 \\ 2 \mapsto 0121012021201021012010201210212 \\ 3 \mapsto 0121012021020121012010201210212 \end{array}$

Contains 02102 but avoids 20120

The suitable lemma

Let $w = w_1 w_2 \dots w_{r-1} w_r$ be an α^+ -free word and let l be an integer such that $2 \le l \le r$ and $w_l w_{l-1} \dots w_2 w_1 w_2 \dots w_{r-1} w_r$ is a repetition of exponent strictly greater than β . Then $l > \left(\frac{\beta}{\alpha} - 1\right)r + 1$.

Subdivisions

Not an actual class of graphs.

You are allowed to subdivide as much as you want in order to minimize the repetition threshold:

- \forall **G**, \exists *G*_s a subdivision of *G* s.t. *RT*(*k*, *G*_s) ≤ *α*.
- $\exists G, \forall G_s \text{ a subdivision of } G \text{ s.t. } RT(k, G_s) \ge \alpha.$
- \implies pseudo-class S. We set $RT(k, S) = \alpha$.

Repetition thresholds of subdivisions

- $I RT(2, S) = \frac{7}{3}.$
- $I RT(3, \mathcal{S}) = \frac{7}{4}.$
- $RT(k, \mathcal{S}) = \frac{3}{2}$, for $k \ge 4$.

Lower bounds for graph subdivisions

- $RT(2, S) \ge \frac{7}{3}$: $\frac{7}{3}$ -free, starting with 0: {00,010,0110}.
- $RT(3, S) \ge \frac{7}{4}$: The bound $\frac{7}{4}$ comes from the path.
- $RT(k, S) \ge \frac{3}{2}$: the bound $\frac{3}{2}$ comes from the star $K_{1,k}$.

Upper bound for subdivisions: k = 2

 $RT(2,\mathcal{S}) \leq \frac{7}{3}.$

w is the Thue-Morse word starting at position 7, w = 011001011010010110011010...We use prefixes of w ending with 1011001.

Upper bound for subdivisions: k = 3

 $RT(3,\mathcal{S}) \leq \frac{7}{4}.$

w is the image by the following morphism of an infinite $\left(\frac{7}{5}^+\right)$ -free word over Σ_4 .

 $\begin{array}{l} 0 \mapsto 0210201021201210212021012010212 \\ 1 \mapsto 0210201021201210201021012010212 \\ 2 \mapsto 0121012021201021012010201210212 \\ 3 \mapsto 0121012021020121012010201210212 \end{array}$

Contains 02102 but avoids 20120. We use factors of w starting with 02102010 and ending with 21202102.

Upper bound for subdivisions: $k \ge 4$

 $RT(4,\mathcal{S}) \leq \frac{3}{2}.$

w is the image by the following morphism of an infinite $\left(\frac{7}{5}^+\right)$ -free word over Σ_4 .

 $\begin{array}{l} 0 \mapsto 01321203 \\ 1 \mapsto 01312023 \\ 2 \mapsto 01231302 \\ 3 \mapsto 01213032 \end{array}$

Contains 01 but avoids 10. We use factors of w starting with 0132 and ending with 2301.

Open problem

Is the non-repetitive chromatic number bounded for planar graphs ?