Repetition thresholds for subdividedgraphs and trees

Pascal Ochem and Elise Vaslet

Non-repetitive coloring

A coloring of a graph G is non-repetitive if every
non-intersecting peth in G induces a square free non-intersecting path in G induces a square-free word.

Non-repetitive chromatic number of some graph classes:

- 3 for paths [Thue 1906]
- 3 for "large subdivisions" [Pezarski, Zmarz 2009]
- 4 for trees
- \leq $C\Delta^2$ for graphs with degree max Δ [Alon et al. 2002]
- $\leq 4^t$ for graphs with treewidth t [Kündgen, Pelsmajer 2008]
- ≥ 10 for planar graphs
- \displaystyle{n} for the complete graph on \displaystyle{n} vertices

Repetition threshold

For a graph G and an alphabet size (number of colors) k :
we define the repetition threshold $DT(L,G)$ we define the repetition threshold $RT(k, G)$.

Non-repetitive chromatic number of $G \leq k \iff RT(k, G) \leq 2.$

For a graph class $\mathcal{G},$ $RT(k,\mathcal{G}) = \sup_{G \in \mathcal{G}}$ \mathcal{G} $RT(k,G)$.

 $RT(k,\mathcal{P}) = \frac{k}{k-1}$ (Dejean's conjecture) $\frac{k}{k-1}$, where ${\mathcal P}$ denotes all paths and $k\geq 5.$

 $RT(2, \mathcal{C})~=~\frac{5}{2}$ 2 $\frac{5}{2}$, where $\mathcal C$ denotes all cycles of length ≥ 18 . [Aberkane, Currie 2004]

Repetition thresholds of trees

 ${\cal T}$ denotes the class of trees.

•
$$
RT(2, \mathcal{T}) = \frac{7}{2}
$$

$$
\bullet \hspace{0.2cm} RT(3, \mathcal{T}) = \frac{5}{2}
$$

•
$$
RT(k, \mathcal{T}) = \frac{3}{2}
$$
, for $k \ge 4$.

Universal trees - Level coloring

 U_n : universal family of rooted trees:

- $U_{\mathbf{0}}$ is a single vertex.
- U_{n} is a root adjacent to the roots of $\left(k^{n}+1\right)$ copies of U_{n-1} .

$\mathsf{NB:}\ RT(k,\mathcal{T})=RT(k,U_n)$

A rooted tree is *level colored* iff vertices with the same height have the same color.

A level coloring is specified by its coding word.

Reduction to level coloring

Claim: Every k -colored U_n contains a complete binary level colored tree of height $n.$

Proof: By induction on $n.$ U_n contains (k^n+1) subtrees $U_{n-1}.$ There are at most k^n ways of coloring the binary tree that U_{n-1} ⌒ $_1$ contains. So two of these binary trees have the same coloring, which

creates the binary tree of height $n.$

Conclusion: level coloring is unavoidable and is the best

coloring of $U_n.$

Lower bounds for trees

- $RT(2,\mathcal{T})\geq \frac{7}{2}$ aaa, abab or abbabba where $a, b \in \{0, 1\}$. 2 $\frac{7}{2}$: Long enough binary $\frac{7}{2}$ 2 $\frac{7}{2}$ -free words contain
- $RT(3,\mathcal{I})\geq \frac{5}{2}$ contain aa or aba where $a, b \in \{0, 1, 2\}$. 2 $\frac{5}{2}$: Long enough ternary $\frac{5}{2}$ 2 $\frac{5}{2}$ -free words
- $RT(k,\mathcal{T})\geq \frac{3}{2}$ star $K_{1,k}.$ 2 $\frac{3}{2}$, for $k\geq4$: The bound $\frac{3}{2}$ 2 $\frac{3}{2}$ comes from the

Upper bounds for trees

- $k=2$: w is the Thue-Morse word (overlap-free, 2^{+} -free).
- $k=3: \, w$ is the image by the following morphism of an infinite $\left(\frac{7}{5}\right)$ 5 $\, + \,$ -free word over Σ_4 $_4$ starting with 0.
- $k=4$: w is any infinite $\frac{3}{2}$ 2 $\frac{3}{2}$ -free over the 4-letter alphabet.

$0\mapsto 0210201021201210212021012010212$ 1 \mapsto 0210201021201021021021010212 $1\mapsto 0210201021201210201021012010212$ $2\mapsto 0121012021201021012010201210212$ ک \mapsto 0121012021021012101210212 $3 \mapsto 0121012021020121012010201210212$

Contains 02102 but avoids 20120

The suitable lemma

Let $w=w_1w_2 \ldots w_{r-1}w_r$ $_r$ be an α^+ -free word and let l be an integer such that $2\leq l\leq r$ and $w_lw_{l-1}\ldots w_2w_1w_2\ldots w_{r-1}w_r$ is a repetition of exponent strictly greater than $\beta.$ Then $l>$ $\left(\frac{\beta}{\alpha}\right)$ $\frac{\rho}{\alpha}-1$ $\bigg)$ $r + 1$.

Subdivisions

Not an actual class of graphs.

You are allowed to subdivide as much as you want in orderto minimize the repetition threshold:

- \forall G, ∃ G_s a subdivision of G s.t. $RT(k, G_s) \leq \alpha$.
- ∃G, $\forall G_s$ a subdivision of G s.t. $RT(k, G_s) \geq \alpha$.
- \Longrightarrow pseudo-class S. We set $RT(k, \mathcal{S}) = \alpha$.

Repetition thresholds of subdivisions

- $RT(2, \mathcal{S}) = \frac{7}{3}$ 3.
- $RT(3, \mathcal{S}) = \frac{7}{4}$ 4.
- $RT(k,\mathcal{S})=\frac{3}{2}$ 2 $\frac{3}{2}$, for $k \geq 4$.

Lower bounds for grap^h subdivisions

- $RT(2, \mathcal{S}) \geq \frac{7}{3}$ 3:7 3 $\frac{7}{3}$ -free, starting with 0: $\{00, 010, 0110\}$.
- $RT(3,\mathcal{S})\geq \frac{7}{4}$ 4 $\frac{7}{4}$: The bound $\frac{7}{4}$ 4 $\frac{7}{4}$ comes from the path.
- $RT(k,\mathcal{S})\geq \frac{3}{2}$ 2 $\frac{3}{2}$: the bound $\frac{3}{2}$ 2 $\frac{3}{2}$ comes from the star $K_{1,k}.$

Upper bound for subdivisions: $k = 2$

 $RT(2, \mathcal{S}) \leq \frac{7}{3}$ 3.

 w is the Thue-Morse word starting at position 7, w is the Thue-Morse word starting at position 7, $w = 011001011010010110011010...$ We use prefixes of w ending with 1011001.

Upper bound for subdivisions: $k = 3$

 $RT(3,\mathcal{S})\leq \frac{7}{4}$ 4.

 w is the image by the following morphism of an infinite $\left(\frac{7}{5}\right)$ 5 $\, + \,$ -free word over $\Sigma_{4}.$

 $0\mapsto 0210201021201210212021012010212$ 1 \mapsto 0210201021201021021021010212 $1\mapsto 0210201021201210201021012010212$ $2\mapsto 0121012021201021012010201210212$ ک \mapsto 0121012021021012101210212 $3 \mapsto 0121012021020121012010201210212$

Contains 02102 but avoids 20120. We use factors of w starting with 02102010 and ending with
01000100 21202102.

Upper **bound for subdivisions:** $k \geq 4$

 $RT(4,\mathcal{S})\leq \frac{3}{2}$ 2 .

 w is the image by the following morphism of an infinite $\left(\frac{7}{5}\right)$ 5 $\, + \,$ -free word over $\Sigma_{4}.$

 $0\mapsto 01321203$
1 → 01312023 $1 \mapsto 01312023$
 $2 \mapsto 01231302$ $2\mapsto 01231302$
 $3\mapsto 01213032$ $3 \mapsto 01213032$

Contains 01 but avoids 10. We use factors of w starting with 0132 and ending with
0201 2301.

Open problem

Is the non-repetitive chromatic number bounded for planargraphs ?