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Non-repetitive coloring

A coloring of a graph G is non-repetitive if every
non-intersecting path in G induces a square-free word.

Non-repetitive chromatic number of some graph classes:

3 for paths [Thue 1906]

3 for “large subdivisions” [Pezarski, Zmarz 2009]

4 for trees

≤ C∆2 for graphs with degree max ∆ [Alon et al. 2002]

≤ 4t for graphs with treewidth t [Kündgen, Pelsmajer
2008]

≥ 10 for planar graphs

n for the complete graph on n vertices
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Repetition threshold

For a graph G and an alphabet size (number of colors) k:
we define the repetition threshold RT (k,G).

Non-repetitive chromatic number of
G ≤ k ⇐⇒ RT (k,G) ≤ 2.

For a graph class G, RT (k,G) = supG∈G RT (k,G).

RT (k,P) = k
k−1

, where P denotes all paths and k ≥ 5.

(Dejean’s conjecture)

RT (2, C) = 5

2
, where C denotes all cycles of length ≥ 18.

[Aberkane, Currie 2004]
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Repetition thresholds of trees

T denotes the class of trees.

RT (2, T ) = 7

2

RT (3, T ) = 5

2

RT (k, T ) = 3

2
, for k ≥ 4.
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Universal trees - Level coloring

Un: universal family of rooted trees:

U0 is a single vertex.

Un is a root adjacent to the roots of (kn + 1) copies of
Un−1.

NB: RT (k, T ) = RT (k, Un)

A rooted tree is level colored iff vertices with the same
height have the same color.

A level coloring is specified by its coding word.
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Reduction to level coloring

Claim: Every k-colored Un contains a complete binary level
colored tree of height n.

Proof: By induction on n.
Un contains (kn + 1) subtrees Un−1.
There are at most kn ways of coloring the binary tree that
Un−1 contains.
So two of these binary trees have the same coloring, which
creates the binary tree of height n.

Conclusion: level coloring is unavoidable and is the best

coloring of Un.
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Lower bounds for trees

RT (2, T ) ≥ 7

2
: Long enough binary 7

2
-free words contain

aaa, abab or abbabba where a, b ∈ {0, 1}.

RT (3, T ) ≥ 5

2
: Long enough ternary 5

2
-free words

contain aa or aba where a, b ∈ {0, 1, 2}.

RT (k, T ) ≥ 3

2
, for k ≥ 4: The bound 3

2
comes from the

star K1,k.
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Upper bounds for trees

k = 2: w is the Thue-Morse word (overlap-free, 2+-free).

k = 3: w is the image by the following morphism of an

infinite
(

7

5

+
)

-free word over Σ4 starting with 0.

k = 4: w is any infinite 3

2
-free over the 4-letter alphabet.

0 7→ 0210201021201210212021012010212
1 7→ 0210201021201210201021012010212
2 7→ 0121012021201021012010201210212
3 7→ 0121012021020121012010201210212

Contains 02102 but avoids 20120
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The suitable lemma

Let w = w1w2 . . . wr−1wr be an α+-free word and let l be an

integer such that 2 ≤ l ≤ r and wlwl−1 . . . w2w1w2 . . . wr−1wr

is a repetition of exponent strictly greater than β. Then l >
(

β
α
− 1

)

r + 1.
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Subdivisions

Not an actual class of graphs.
You are allowed to subdivide as much as you want in order
to minimize the repetition threshold:

∀G,∃Gs a subdivision of G s.t. RT (k,Gs) ≤ α.

∃G,∀Gs a subdivision of G s.t. RT (k,Gs) ≥ α.

=⇒ pseudo-class S. We set RT (k,S) = α.
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Repetition thresholds of subdivisions

RT (2,S) = 7

3
.

RT (3,S) = 7

4
.

RT (k,S) = 3

2
, for k ≥ 4.
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Lower bounds for graph subdivisions

RT (2,S) ≥ 7

3
: 7

3
-free, starting with 0: {00, 010, 0110}.

RT (3,S) ≥ 7

4
: The bound 7

4
comes from the path.

RT (k,S) ≥ 3

2
: the bound 3

2
comes from the star K1,k.
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Upper bound for subdivisions: k = 2

RT (2,S) ≤ 7

3
.

w is the Thue-Morse word starting at position 7,
w = 011001011010010110011010 . . . .
We use prefixes of w ending with 1011001.
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Upper bound for subdivisions: k = 3

RT (3,S) ≤ 7

4
.

w is the image by the following morphism of an infinite
(

7

5

+
)

-free word over Σ4.

0 7→ 0210201021201210212021012010212
1 7→ 0210201021201210201021012010212
2 7→ 0121012021201021012010201210212
3 7→ 0121012021020121012010201210212

Contains 02102 but avoids 20120.
We use factors of w starting with 02102010 and ending with
21202102.
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Upper bound for subdivisions: k ≥ 4

RT (4,S) ≤ 3

2
.

w is the image by the following morphism of an infinite
(

7

5

+
)

-free word over Σ4.

0 7→ 01321203
1 7→ 01312023
2 7→ 01231302
3 7→ 01213032

Contains 01 but avoids 10.
We use factors of w starting with 0132 and ending with
2301.
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Open problem

Is the non-repetitive chromatic number bounded for planar

graphs ?
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