Eléments de logique formelle et du raisonnement mathématique

Langage et Logique

2018-2019

Plan

- Exemple
- Langage formel
- L'aspect syntaxique
- L'aspect sémantique
- Raisonnement

Exemple

Situation 1:

- 1. Si le train arrive en retard et s'il n'y a pas de taxis à la gare alors l'invité arrive en retard.
- 2. L'invité n'est pas en retard.
- 3. Le train est arrivé en retard.

donc, il y avait des taxis à la gare.

Question : Pourquoi peut-on déduire qu'il y avait des taxis à la gare ?

Exemple

Situation 2:

- 1. Si il pleut et si l'invité a oublié son parapluie alors l'invité est trempé.
- 2. L'invité n'est pas trempé.
- 3. Il pleut. donc, l'invité n'a pas oublié son parapluie.

Pour justifier la déduction "l'invité n'a pas oublié son parapluie", on peut "réutiliser" le raisonnement fait précédemment.

Langage formel

Les deux situations ont la même structure logique : si ... alors, alors, donc, ...

Malheureusement les langages naturels manquent de précision et possèdent de l'ambiguïté. C'est pourquoi il y a un besoin d'un langage formel capable de dégager des structures logiques indépendantes du contenu afin de conduire un raisonnement correct.

Langage formel

Nous pouvons formaliser la situation 1 à l'aide du langage formel en définissant les variables propositionnelles comme :

p: le train arrive en retard

q: il y a des taxis à la gare

r: l'invité est en retard

Alors nous construisons les formules logiques suivantes :

- 1. $(p \land \neg q) \rightarrow r$
- 2. ¬r
- 3. p

Et nous pouvons formaliser le problème :

Montrer que $(p \land \neg q) \rightarrow r, \neg r, p \mid = q$

Propositions

Une proposition (assertion) est un énoncé ayant une valeur de vérité.

Une proposition élémentaire (variable propositionnelle) :

• p, q, r

Une proposition composée (formule) de propositions élémentaires reliées par des connecteurs suivant des règles syntaxique :

p∧¬q, (p∧¬q)→r

Connecteurs de base

Les connecteurs de base :

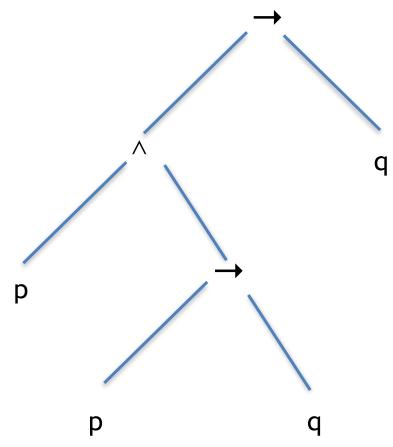
```
Par exemple, p : Je bois du lait. q : Je mange du céréale.
```

- − Négation : ¬
 - ¬p : Je ne bois pas de lait.
- Conjonction (et) : ^
 - p ^ q : Je bois du lait et je mange du céréale.
- Disjonction (ou) : v
 - p v q : Je bois du lait ou je mange du céréale.
- Implication (si alors): →
 - $p \rightarrow q$: Si je bois du lait, alors je mange du céréale.
- Double implication (si et seulement si): ↔
 - p ↔ q : Je bois du lait, si et seulement si je mange du céréale.

Arbre de décomposition

La structure syntaxique d'une proposition peut se présenter sous un arbre binaire où les feuilles sont des propositions élémentaires et les nœuds sont des connecteurs.

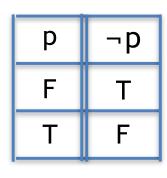
$$(p \land (p \rightarrow q)) \rightarrow q$$



Tables de vérité

Une table de vérité donne la valeur de vérité d'une proposition à partir des valeurs de vérité de ses propositions élémentaires.

La table de vérité définit une proposition de manière sémantique.



р	q	p ∧ q	p v q	$p \rightarrow q$	p ↔ q
F	F	F	F	Т	Т
F	Т	F	T	T	F
Т	F	F	T	F	F
Т	Т	Т	Т	Т	Т

Equivalence

Deux propositions p et q sont équivalentes si elles ont la même table de vérité, c'est à dire si elles sont vraies ou fausses en même temps.

Les équivalences de base :

$$\neg(p \land q) = \neg p \lor \neg q$$

$$\neg(p \lor q) = \neg p \land \neg q$$

$$p \rightarrow q = \neg p \lor q$$

$$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$$

$$p \land (q \lor r) = (p \land q) \lor (p \land r)$$

$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

Tautologie

Une tautologie est une proposition composée qui reste toujours vraie quelles que soient les valeurs de vérité données à ses propositions élémentaires. Par exemple :

- 1. p ∨ ¬p
- 2. $(p \land (p \rightarrow q)) \rightarrow q$

Interpretation:

p : Je bois du lait.

q : Je mange du céréale.

 $p \rightarrow q$: Si je bois du lait, alors je mange du céréale.

- 1. $p \vee \neg p$: Je bois du lait ou je ne bois pas de lait.
- 2. $(p \land (p \rightarrow q)) \rightarrow q$: Si je bois du lait, alors je mange du céréale, et je bois du lait, donc je mange du céréale.

Toutes les tautologies sont équivalentes.

Contradiction

Une contradiction est une proposition composée qui reste toujours fausses quelles que soient les valeurs de vérité affectées à ses propositions élémentaires. Par exemple :

p ∧ ¬**p**

Interpretation:

 $p \wedge \neg p$: ce n'est pas possible que je bois du lait et je ne bois pas de lait.

Toutes les contradictions sont équivalentes.

Raisonnement

Admettons que nous ayons à déduire une proposition ϕ à partir d'un ensemble de propositions Σ comme déjà acquises :

$$\Sigma \mid = \varphi$$

Exemple (au debut du cours) :

Soit
$$\Sigma = \{(p \land \neg q) \rightarrow r, \neg r, p\}, \phi = q$$

Montrer que $\Sigma \mid = \varphi$

Raisonnement basé sur la deduction

La règle du modus ponens (M.P.)

Elle consiste à affirmer une implication A → B et à poser ensuite l'antécédent A pour en déduire le conséquent B:

Le terme *ponens* est le participe présent du verbe latin ponere, *poser*.

Raisonnement par l'absurde

Le raisonnement par l'absurde consiste à montrer que l'hypothèse ¬φ mène à une contradiction logique. Ainsi φ ne peut pas être fausse et doit être donc vraie :

$$\Sigma \cup \{\neg \phi\} \mid = F$$

$$\Sigma \mid = \varphi$$

Exemple

Exemple au debut du cours :

Soit les propositions suivantes :

- (1) $(p \land \neg q) \rightarrow r$ (Si le train arrive en retard et s'il n'y a pas de taxis à la gare alors l'invité arrive en retard)
- (2) ¬r (L'invité n'est pas en retard)
- (3) p (Le train est arrivé en retard)

Montrer que $(p \land \neg q) \rightarrow r, \neg r, p \mid = q$

Raisonnement par l'absurde :

Supposons que ¬q

- 1. ¬q (l'hypoyhèse)
- 2. p (3)
- 3. p ∧ ¬q
- 4. $(p \land \neg q) \rightarrow r$ (1)
- 5. r (M.P.)
- 6. ¬r (2)
- 7. $r \wedge \neg r$ (contradiction)
- 8. Ainsi q ne peut pas être fausse, donc p est vraie.

Trois principes de la logique

1. Le principe d'identité : A=A

Il affirme la cohérence de l'être : une chose, considérée sous un même rapport, est identique à elle-même.

Il se présente sur :

- L'aspect ontologique (concept) : Une chose est ce qu'elle est.
- L'aspect logique (jugement) : Ce qui est vrai est vrai.

« Se demander pourquoi une chose est elle-même, c'est enquêter dans le vide parce que l'existence d'une chose doit être claire. Ainsi, le fait qu'une chose est elle-même est la seule réponse et la seule cause dans tous les cas, comme par exemple dans la question `pourquoi un homme est un homme?`..." - Aristote

Trois principes de la logique

- 2. Le principe de non-contradiction : $A \land \neg A = F$ Il prescrit qu'on ne peut affirmer et nier le même terme ou la même proposition
- « Il est impossible que le même attribut appartienne et n'appartienne pas en temps au même sujet et sous le même rapport » - Aristote

Trois principes de la logique

- 3. Le principe du tiers exclu: $A \lor \neg A = T$ Il soutient que soit une proposition est vraie, soit sa négation est vraie.
- « Il ne peut y avoir d'intermédiaire entre deux contraires, un sujet possède ou ne possède pas un attribut donné » Aristote