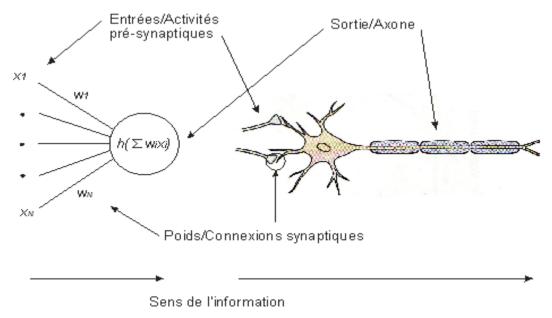
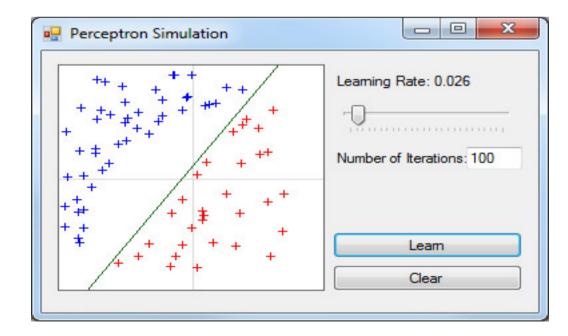
Projet: Apprentissage Automatique PO2 (2016-2017)

Apprentissage Automatique

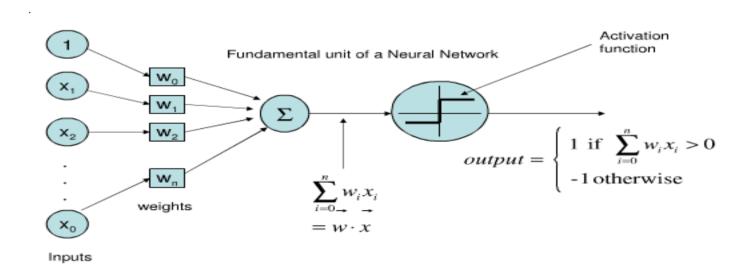

- Qu'est-ce que l'apprentissage automatique?
 - L'apprentissage se fait grâce à l'interaction entre les données et la conception de l'apprenant.
 - L'apprentissage consiste à déduire une conclusion à partir de données. Si l'apprenant fait une erreur, il ajuste sa conception en fonction du résultat.

Apprentissage Automatique

- L'apprentissage automatique a pour objectif de construire une « bonne » fonction h(x) à partir d'un échantillon S de données, en espérant que h(x) prédit bien la valeur de sortie des données à venir.
 - S est un ensemble de données dont un exemple est constitué de l'entrée x= (x1,x2,...xn) et d'une valeur de la sortie y.


Perceptron

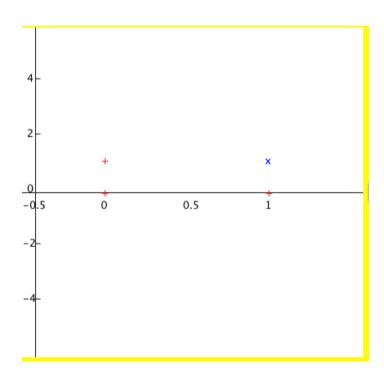
- Un algorithme d'apprentissage automatique le plus simple est un perceptron :
 - https://fr.wikipedia.org/wiki/Perceptron
- Le perceptron est le neurone artificiel qui est le modèle simplifié du neurone biologie :


Classification Binaire

- Un perceptron est un classifieur linéaire permettant de faire la classification binaire.
- L'idée est de placer l'échantillon de données dans un plan cartésien, et essayer de tracer une ligne qui séparera les données.

Classification Binaire

- La ligne est représentée par w0+w1*x1+...+wn*xn=0.
- La fonction d'activation h :
 - y = h(z) = 1, si z = w0 + w1*x1 + ... + wn*xn > 0;
 - y = h(z) = 0, si z = w0 + w1*x1 + ... + wn*xn < 0.



Classification Binaire

- La question est : comment calculer les poids synaptiques Wi à partir d'un échantillon S de données?
 - Initialiser aléatoirement les poids Wi
 - Faire passer les exemples l'un après l'autre
 - calculer l'erreur de prédiction pour l'exemple
 - ajuster les poids avec une règle d'apprentissage
 - Jusqu'à convergence du processus
- Une règle d'apprentissage
 - Wi' = Wi + alpha * (Yt Y) *Xi
 - Wi': le poids corrigé
 - Wi : le poids actuel
 - Yt : sortie attendue
 - Y : sortie calculée
 - Alpha: le taux d'apprentissage
 - Xi : l'entrée du poids wi

• L'échantillion S de données :

X1	X2	Yt
0	0	0
0	1	0
1	0	0
1	1	1

Entrée: un échantillon S

Initialiser aléatoirement les poids Wi et le taux d'apprentissage alpha :

W0=0.1, W1=0.2, W2=0.05, alpha=0.1

Frontière : 0=0.1+0.2*X1+0.05*X2 => X2 = -4.0*X1-2.0

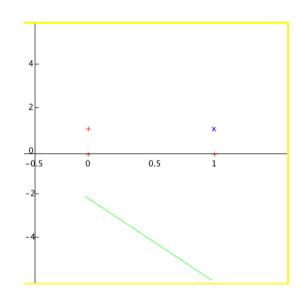
Ajuster Wi:

Pour l'exemple (X0=1, X1=0, X2=0, Yt=0)

Z = 0.1*1+0.2*0+0.05*0=0.1

Y = H(Z) = 1

W0=0.1+0.1*(0-1)*1=0.0


W1=0.2+0.1*(0-1)*0=0.2

W2=0.05+0.1*(0-1)*0=0.05

Nouvelle frontière:

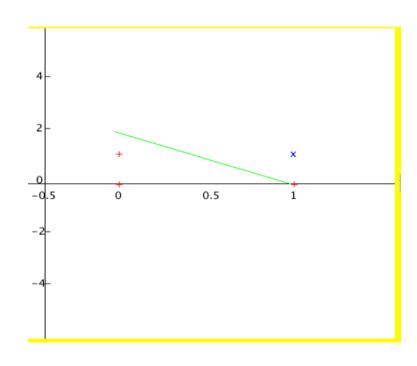
0.2*X1+0.05*X2=0

=> X2=-4.0*X1

Ajuster Wi avec W0=0.0, W1=0.2, W2=0.05:

Pour l'exemple (X0=1, X1=1, X2=0, Yt=0)

$$Z = 0.0*1+0.2*1+0.05*0=0.2$$


$$Y = H(Z) = 1$$

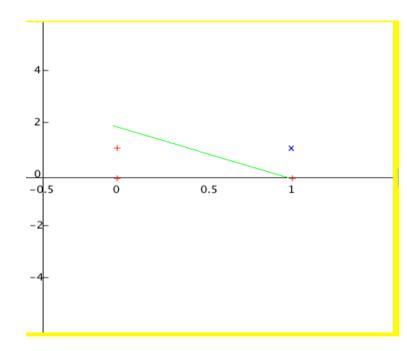
W0=0.0+0.1*(0-1)*1=-0.1

W1=0.2+0.1*(0-1)*1=0.1

W2=0.05+0.1*(0-1)*0=0.05

Nouvelle frontière:

Ajuster Wi avec W0=-0.1, W1=0.1, W2=0.05:


Pour l'exemple (X0=1, X1=0, X2=1, Yt=0)

$$Z = -0.1*1+0.1*0+0.05*0=-0.05$$

$$Y=H(Z)=0$$

Nouvelle frontière:

$$=> X2=-2.0*X1+2.0$$

Pas de correction ici, pourquoi? Voir la position de cette ligne dans le plan : elle a séparé 4 points.